Home Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos
Article
Licensed
Unlicensed Requires Authentication

Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos

  • Chettapong Janya-anurak

    Dr.-Ing. Chettapong Janya-anurak is a lecturer in a Faculty of Engineering at King Mongkut’s University of Technology Thonburi. He studied mechanical engineering at Karlsruhe Institute of Technology. He received his PhD in the Faculty of Informatics from the Karlsruhe Institute of Technology (KIT) in 2016. From 2011 until 2016, he was a research assistant at Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany. His main research areas are: simulation, control and data analysis under uncertainties and uncertainty quantification.

    EMAIL logo
    , Thomas Bernard

    Dr. Thomas Bernard is Physicist. He received his PhD from the University Karlsruhe (TH) in 2000 with a thesis in the field of automatic control. Since 1996, he has been a scientific assistant at Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany. Since 2007 he has been a leader of the research group Process Control and Data Analysis at IOSB. His main research areas are: Simulation, control and data analysis of environmental and industrial processes.

    and Jürgen Beyerer

    Prof. Dr.-Ing. habil. Jürgen Beyerer has been a full professor for informatics at the Institute for Anthropomatics and Robotics at the Karlsruhe Institute of Technology KIT since March 2004 and director of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Ettlingen, Karlsruhe, Ilmenau and Lemgo. His research interests include automated visual inspection, signal and image processing, variable image acquisition and processing, active vision, metrology, information theory, fusion of data and information from heterogeneous sources, system theory, autonomous systems and automaton.

Published/Copyright: March 28, 2019

Abstract

Many industrial and environmental processes are characterized as complex spatio-temporal systems. Such systems known as distributed parameter systems (DPSs) are usually highly complex and it is difficult to establish the relation between model inputs, model outputs and model parameters. Moreover, the solutions of physics-based models commonly differ somehow from the measurements. In this work, appropriate Uncertainty Quantification (UQ) approaches are selected and combined systematically to analyze and identify systems. However, there are two main challenges when applying the UQ approaches to nonlinear distributed parameter systems. These are: (1) how uncertainties are modeled and (2) the computational effort, as the conventional methods require numerous evaluations of the model to compute the probability density function of the response. This paper presents a framework to solve these two issues. Within the Bayesian framework, incomplete knowledge about the system is considered as uncertainty of the system. The uncertainties are represented by random variables, whose probability density function can be achieved by converting the knowledge of the parameters using the Principle of Maximum Entropy. The generalized Polynomial Chaos (gPC) expansion is employed to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing systems systematically and reducing the disagreement between model predictions and measurements of the real processes to fulfill user defined performance criteria. The efficiency of the framework is assessed by applying it to a benchmark model (neutron diffusion equation) and to a model of a complex rheological forming process. These applications illustrate that the framework is capable of systematically analyzing the system and optimally calibrating the model parameters.

Zusammenfassung

Viele Industrie- und Umweltprozesse sind komplexe örtlich-zeitliche Systeme, die auch als verteilt-parametrische Systeme bezeichnet werden. Sie können oft durch nichtlineare gekoppelte partielle Differentialgleichungen (PDE) beschrieben werden. Solche Systeme sind oft komplex und es ist schwierig, die Beziehung zwischen Modelleingang, Modellausgang und den Modellparametern herzustellen. Zusätzlich weicht die Prädiktion der physikalischen Modelle in der Regel von den realen Messungen ab. Im vorliegenden Beitrag wird ein systematischer Ansatz vorgestellt, um das Systemverhalten bei solchen Prozessen zu verstehen und die Abweichung zwischen der Modellprädiktion und dem realen Prozess zu reduzieren. Unvollständiges Wissen über den Prozess kann als Unsicherheit im Bayes’schen Sinn interpretiert werden. Die Unsicherheiten werden durch Zufallsvariablen oder ein Zufallsfeld beschrieben und mit der Methode der Unsicherheitsquantifizierung (UQ) quantifiziert. Die Hauptschwierigkeiten der Anwendung dieser UQ Ansätze auf nichtlineare PDE sind: (1) Modellierung der Unsicherheiten, (2) Reduktion des Rechenaufwandes. Herkömmliche Verfahren, wie beispielsweise sampling-basierte Verfahren, benötigen zahlreiche Modellberechnungen. Dieser Rechenaufwand kann durch die Methode des verallgemeinerten polynomialen Chaos (generalized polynomial chaos, gPC) vermindert werden. Die gPC Ansätze sind als effiziente Methode zur Quantifizierung der Unsicherheit bekannt. Als ein neues numerisches Verfahren wird die Polynomial Chaos Expansion (PCE) auf die rekursive Bayes’sche Schätzung angewendet. Die Effizienz und Leistungsfähigkeit des vorgeschlagenen Frameworks wird anhand der Diffusionsgleichung als Benchmark-Modell sowie anhand eines komplexen rheologischen Prozesses zur Herstellung von Glasstäben gezeigt. Mit Hilfe des beschriebenen Vorgehens kann der Prozess systematisch analysiert und die Modellparameter optimal kalibriert werden.

About the authors

Chettapong Janya-anurak

Dr.-Ing. Chettapong Janya-anurak is a lecturer in a Faculty of Engineering at King Mongkut’s University of Technology Thonburi. He studied mechanical engineering at Karlsruhe Institute of Technology. He received his PhD in the Faculty of Informatics from the Karlsruhe Institute of Technology (KIT) in 2016. From 2011 until 2016, he was a research assistant at Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany. His main research areas are: simulation, control and data analysis under uncertainties and uncertainty quantification.

Thomas Bernard

Dr. Thomas Bernard is Physicist. He received his PhD from the University Karlsruhe (TH) in 2000 with a thesis in the field of automatic control. Since 1996, he has been a scientific assistant at Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany. Since 2007 he has been a leader of the research group Process Control and Data Analysis at IOSB. His main research areas are: Simulation, control and data analysis of environmental and industrial processes.

Jürgen Beyerer

Prof. Dr.-Ing. habil. Jürgen Beyerer has been a full professor for informatics at the Institute for Anthropomatics and Robotics at the Karlsruhe Institute of Technology KIT since March 2004 and director of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Ettlingen, Karlsruhe, Ilmenau and Lemgo. His research interests include automated visual inspection, signal and image processing, variable image acquisition and processing, active vision, metrology, information theory, fusion of data and information from heterogeneous sources, system theory, autonomous systems and automaton.

Acknowledgment

This work was developed in Fraunhofer Cluster of Excellence “Cognitive Internet Technologies”.

References

1. Athanasios C. Antoulas, Danny C. Sorensen and Serkan Gugercin. A survey of model reduction methods for large-scale systems. Contemporary mathematics, 280:193–220, 2001.10.1090/conm/280/04630Search in Google Scholar

2. Ivo Babuška, Fabio Nobile and Raúl Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM review, 52(2):317–355, 2010.10.1137/100786356Search in Google Scholar

3. Ivo Babuska, Raúl Tempone and Georgios E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on numerical analysis, 42(2):800–825, 2004.10.1137/S0036142902418680Search in Google Scholar

4. Ivo Babuška, Raúl Tempone and Georgios E Zouraris. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Computer methods in applied mechanics and engineering, 194(12-16):1251–1294, 2005.10.1016/j.cma.2004.02.026Search in Google Scholar

5. Vinay A Bavdekar and Ali Mesbah. A polynomial chaos-based nonlinear bayesian approach for estimating state and parameter probability distribution functions. In American control conference (ACC), 2016, pages 2047–2052. IEEE, 2016.10.1109/ACC.2016.7525220Search in Google Scholar

6. Christoph Beierle, Gabriele Kern-Isberner, Marc Finthammer and Nico Potyka. Extending and completing probabilistic knowledge and beliefs without bias. KI-Künstliche Intelligenz, 29(3):255–262, 2015.10.1007/s13218-015-0380-1Search in Google Scholar

7. Thomas Bernard and E. Ebrahimi Moghaddam. Nonlinear model predictive control of a glass forming process based on a finite element model. In 2006 IEEE International symposium on intelligent control, pages 960–965, 2006.10.1109/CCA.2006.285976Search in Google Scholar

8. Jose M. Bernardo. Reference posterior distributions for bayesian inference. Journal of the royal statistical society. Series B (Methodological), 113–147, 1979.10.1111/j.2517-6161.1979.tb01066.xSearch in Google Scholar

9. Jürgen Beyerer. Verfahren zur quantitativen statistischen Bewertung von Zusatzwissen in der Meßtechnik. VDI-Verlag, 1999.Search in Google Scholar

10. Emmanuel D Blanchard, Adrian Sandu and Corina Sandu. A polynomial chaos-based kalman filter approach for parameter estimation of mechanical systems. Journal of dynamic systems, measurement, and control, 132(6):061404, 2010.10.1115/1.4002481Search in Google Scholar

11. Dan G. Cacuci and Madalina C. Badea. Predictive modeling of coupled multi-physics systems: II. illustrative application to reactor physics. Annals of nuclear energy, 70:279–291, 2014.10.1016/j.anucene.2013.11.025Search in Google Scholar

12. Stefano Conti, John Paul Gosling, Jeremy E Oakley and Anthony O’Hagan. Gaussian process emulation of dynamic computer codes. Biometrika, 96(3):663–676, 2009.10.1093/biomet/asp028Search in Google Scholar

13. Stefano Conti and Anthony O’Hagan. Bayesian emulation of complex multi-output and dynamic computer models. Journal of statistical planning and inference, 140(3):640–651, 2010.10.1016/j.jspi.2009.08.006Search in Google Scholar

14. Thierry Crestaux, Olivier Le Maître and Jean-Marc Martinez. Polynomial chaos expansion for sensitivity analysis. Reliability engineering & system safety, 94(7):1161–1172, 2009.10.1016/j.ress.2008.10.008Search in Google Scholar

15. Gert De Cooman, Da Ruan and Etienne Kerre. Foundations and applications of possibility theory. In Proceedings of FAPT 95. World scientific, Singapore, 328 biz, 1995.Search in Google Scholar

16. Fabián Duarte, Raúl Gormaz and Srinivasan Natesan. Arbitrary lagrangian–eulerian method for navier–stokes equations with moving boundaries. Computer methods in applied mechanics and engineering, 193(45):4819–4836, 2004.10.1016/j.cma.2004.05.003Search in Google Scholar

17. Isaac Elishakoff. Whys and hows in uncertainty modelling. Springer, 2000.10.1007/978-3-7091-2501-4Search in Google Scholar

18. Lorenzo Fagiano and Mustafa Khammash. Nonlinear stochastic model predictive control via regularized polynomial chaos expansions. In IEEE 51st annual conference on Decision and control (CDC), 2012, pages 142–147. IEEE, 2012.10.1109/CDC.2012.6425919Search in Google Scholar

19. Lorenzo Fagiano and Mustafa Khammash. Simulation of stochastic systems via polynomial chaos expansions and convex optimization. Physical Review E, 86(3):036702, 2012.10.1103/PhysRevE.86.036702Search in Google Scholar PubMed

20. Zhouxiang Fei, Yi Huang, Jiafeng Zhou and Xu Qian. Uncertainty quantification of crosstalk using stochastic reduced order models. IEEE Transactions on electromagnetic compatibility, 59(1):228–239, 2017.10.1109/TEMC.2016.2604361Search in Google Scholar

21. Steven Finette. A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation in ocean waveguides. The journal of the acoustical society of America, 120(5):2567–2579, 2006.10.1121/1.2335425Search in Google Scholar

22. James Fisher and Raktim Bhattacharya. Linear quadratic regulation of systems with stochastic parameter uncertainties. Automatica, 45(12):2831–2841, 2009.10.1016/j.automatica.2009.10.001Search in Google Scholar

23. Andrew Gelman, John B. Carlin, Hal S. Stern and Donald B. Rubin. Bayesian data analysis, volume 2. Taylor & Francis, 2014.10.1201/b16018Search in Google Scholar

24. Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical algorithms, 18(3–4):209–232, 1998.10.1023/A:1019129717644Search in Google Scholar

25. Roger Ghanem. Probabilistic characterization of transport in heterogeneous media. Computer methods in applied mechanics and engineering, 158(3–4):199–220, 1998.10.1016/S0045-7825(97)00250-8Search in Google Scholar

26. Roger Ghanem and S Dham. Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transport in porous media, 32(3):239–262, 1998.10.1023/A:1006514109327Search in Google Scholar

27. Roger Ghanem and Pol D. Spanos. Stochastic finite elements: a spectral approach. DoverPublications.com, 2003.Search in Google Scholar

28. M Grigoriu. Reduced order models for random functions. application to stochastic problems. Applied mathematical modelling, 33(1):161–175, 2009.10.1016/j.apm.2007.10.023Search in Google Scholar

29. Eldon Hansen and G William Walster. Global optimization using interval analysis: revised and expanded CRC Press, 2003.10.1201/9780203026922Search in Google Scholar

30. Tran Duong Hien and Michał Kleiber. Stochastic finite element modelling in linear transient heat transfer. Computer methods in applied mechanics and engineering, 144(1–2):111–124, 1997.10.1016/S0045-7825(96)01168-1Search in Google Scholar

31. David Higdon, Katrin Heitmann, Earl Lawrence and Sajad Habib. Using the bayesian framework to combine simulations and physical observations for statistical inference. In Large-scale inverse problems and quantification of uncertainty, pages 87–105, 2010.10.1002/9780470685853.ch5Search in Google Scholar

32. Franz S Hover. Gradient dynamic optimization with legendre chaos. Automatica, 44(1):135–140, 2008.10.1016/j.automatica.2007.06.001Search in Google Scholar

33. Bertrand Iooss and Paul Lemaître. A review on global sensitivity analysis methods. In Uncertainty management in simulation-optimization of complex systems, pages 101–122. Springer, 2015.10.1007/978-1-4899-7547-8_5Search in Google Scholar

34. Chettapong Janya-anurak. Framework for analysis and identification of nonlinear distributed parameter systems using Bayesian uncertainty quantification based on Generalized Polynomial Chaos, volume 31. KIT Scientific Publishing, 2017.Search in Google Scholar

35. Chettapong Janya-anurak, Hannes Birkhofer, Thomas Bernard and Ma Quilin. 3D Multiphysics finite element model of a highly nonlinear glass forming process. In NAFEMS World Congress 2013, 2013.Search in Google Scholar

36. Edwin T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.10.1103/PhysRev.106.620Search in Google Scholar

37. Edwin T. Jaynes. Prior probabilities. IEEE Transactions on systems science and cybernetics, 4(3):227–241, 1968.10.1109/TSSC.1968.300117Search in Google Scholar

38. Marcin Kamiński and Tran Duong Hien. Stochastic finite element modeling of transient heat transfer in layered composites. International communications in heat and mass transfer, 26(6):801–810, 1999.10.1016/S0735-1933(99)00068-8Search in Google Scholar

39. Jagat N. Kapur. Maximum-entropy models in science and engineering. Wiley, New York, revised ed. edition, 1993.Search in Google Scholar

40. Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the royal statistical society, Series B, Methodological, 63:425–464, 2000.10.1111/1467-9868.00294Search in Google Scholar

41. K Kim Kwang-Ki and Richard D Braatz. Generalized polynomial chaos expansion approaches to approximate stochastic receding horizon control with applications to probabilistic collision checking and avoidance. In IEEE international conference on Control applications (CCA), 2012, pages 350–355. IEEE, 2012.10.1109/CCA.2012.6402473Search in Google Scholar

42. K Kim Kwang-Ki and Richard D Braatz. Generalised polynomial chaos expansion approaches to approximate stochastic model predictive control. International journal of control, 86(8):1324–1337, 2013.10.1080/00207179.2013.801082Search in Google Scholar

43. K Kim Kwang-Ki, Dongying Erin Shen, Zoltan K Nagy and Richard D Braatz. Wiener’s polynomial chaos for the analysis and control of nonlinear dynamical systems with probabilistic uncertainties [historical perspectives]. IEEE Control systems, 33(5):58–67, 2013.10.1109/MCS.2013.2270410Search in Google Scholar

44. Kwang Ki Kevin Kim and Richard D Braatz. Probabilistic analysis and control of uncertain dynamic systems: Generalized polynomial chaos expansion approaches. In American control conference (ACC), 2012, pages 44–49. IEEE, 2012.Search in Google Scholar

45. George Klir and Bo Yuan. Fuzzy sets and fuzzy logic, volume 4. Prentice Hall New Jersey, 1995.10.3233/IFS-1996-4208Search in Google Scholar

46. OM Knio and OP Le Maitre. Uncertainty propagation in cfd using polynomial chaos decomposition. Fluid dynamics research, 38(9):616–640, 2006.10.1016/j.fluiddyn.2005.12.003Search in Google Scholar

47. Omar M Knio, Habib N Najm, Roger G Ghanem, et al. A stochastic projection method for fluid flow: I. basic formulation. Journal of computational Physics, 173(2):481–511, 2001.10.1006/jcph.2001.6889Search in Google Scholar

48. Olivier Le Maître and Omar M. Knio. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer Science & Business Media, 2010.10.1007/978-90-481-3520-2Search in Google Scholar

49. Olivier P Le Maıtre, Matthew T Reagan, Habib N Najm, Roger G Ghanem and Omar M Knio. A stochastic projection method for fluid flow: Ii. random process. Journal of computational Physics, 181(1):9–44, 2002.10.1006/jcph.2002.7104Search in Google Scholar

50. Sang H. Lee and Wei Chen. A comparative study of uncertainty propagation methods for black-box-type problems. Structural and multidisciplinary optimization, 37(3):239–253, 2009.10.1007/s00158-008-0234-7Search in Google Scholar

51. Jia Li and Dongbin Xiu. A generalized polynomial chaos based ensemble kalman filter with high accuracy. Journal of computational physics, 228(15):5454–5469, 2009.10.1016/j.jcp.2009.04.029Search in Google Scholar

52. Chad Lieberman, Karen Willcox and Omar Ghattas. Parameter and state model reduction for large-scale statistical inverse problems. SIAM Journal on scientific computing, 32(5):2523–2542, 2010.10.1137/090775622Search in Google Scholar

53. Dennis V Lindley. Scoring rules and the inevitability of probability. International statistical review/revue internationale de statistique, pages 1–11, 1982.10.21236/ADA097045Search in Google Scholar

54. Youssef Marzouk and Dongbin Xiu. A stochastic collocation approach to bayesian inference in inverse problems. Communications in computational physics, 6:826–847, 2009.10.4208/cicp.2009.v6.p826Search in Google Scholar

55. Hermann G. Matthies. Quantifying uncertainty: Modern computational representation of probability and applications. In Adnan Ibrahimbegovic and Ivica Kozar, editors, Extreme man-made and natural hazards in dynamics of structures, NATO Security through science series, pages 105–135. Springer Netherlands, 2007.10.1007/978-1-4020-5656-7_4Search in Google Scholar

56. Hermann G Matthies and Christian Bucher. Finite elements for stochastic media problems. Computer methods in applied mechanics and engineering, 168(1-4):3–17, 1999.10.1016/S0045-7825(98)00100-5Search in Google Scholar

57. Hermann G. Matthies and Andreas Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer methods in applied mechanics and engineering, 194(12):1295–1331, 2005.10.1016/j.cma.2004.05.027Search in Google Scholar

58. Hermann G. Matthies, Elmar Zander, Bojana V. Rosić, Alexander Litvinenko and Oliver Pajonk. Inverse problems in a bayesian setting. In Computational methods for solids and fluids, pages 245–286. Springer, 2016.10.1007/978-3-319-27996-1_10Search in Google Scholar

59. Ali Mesbah, Stefan Streif, Rolf Findeisen and Richard D Braatz. Stochastic nonlinear model predictive control with probabilistic constraints. In American control conference (ACC), 2014, pages 2413–2419. IEEE, 2014.10.1109/ACC.2014.6858851Search in Google Scholar

60. ZK Nagy and Richard D Braatz. Distributional uncertainty analysis using power series and polynomial chaos expansions. Journal of process control, 17(3):229–240, 2007.10.1016/j.jprocont.2006.10.008Search in Google Scholar

61. Zoltan K Nagy and Richard D Braatz. Distributional uncertainty analysis using polynomial chaos expansions. In IEEE International symposium on Computer-aided control system design (CACSD), 2010, pages 1103–1108. IEEE, 2010.10.1109/CACSD.2010.5612662Search in Google Scholar

62. Habib N. Najm. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual review of fluid mechanics, 41:35–52, 2009.10.1146/annurev.fluid.010908.165248Search in Google Scholar

63. Erich Novak and Klaus Ritter. High dimensional integration of smooth functions over cubes. Numerische Mathematik, 75(1):79–97, 1996.10.1007/s002110050231Search in Google Scholar

64. William L. Oberkampf and Jon C. Helton. Evidence theory for engineering applications, 2005.10.1201/9780203483930.ch10Search in Google Scholar

65. Oliver Pajonk, Bojana V. Rosić, Alexander Litvinenko and Hermann G. Matthies. A deterministic filter for non-gaussian bayesian estimation-applications to dynamical system estimation with noisy measurements. Physica D: Nonlinear phenomena, 241(7):775–788, 2012.10.1016/j.physd.2012.01.001Search in Google Scholar

66. Oliver Pajonk, Bojana V. Rosić and Hermann G. Matthies. Sampling-free linear bayesian updating of model state and parameters using a square root approach. Computers & Geosciences, 55:70–83, 2013.10.1016/j.cageo.2012.05.017Search in Google Scholar

67. Bojana V. Rosić. Variational formulations and functional approximation algorithms in stochastic plasticity of materials. PhD thesis, Faculty of Engineering, Kragujevac, 2012.Search in Google Scholar

68. Bojana V. Rosić, Anna Kučerová, Jan Sykora, Oliver Pajonk, Alexander Litvinenko and Hermann G. Matthies. Parameter identification in a probabilistic setting. Engineering structures, 50:179–196, 2013.10.1016/j.engstruct.2012.12.029Search in Google Scholar

69. Bojana V. Rosić, Alexander Litvinenko, Oliver Pajonk and Hermann G. Matthies. Sampling-free linear bayesian update of polynomial chaos representations. Journal of computational physics, 231(17):5761–5787, 2012.10.1016/j.jcp.2012.04.044Search in Google Scholar

70. Felix Sawo and Thomas Bernard. Finite element model of a complex glass forming process as a tool for control optimization. In European COMSOL conference, Milan, Italy, 2009.Search in Google Scholar

71. Gerhart I Schuëller. Computational stochastic mechanics–recent advances. Computers & structures, 79(22-25):2225–2234, 2001.10.1016/S0045-7949(01)00078-5Search in Google Scholar

72. Ralph C. Smith. Uncertainty quantification: Theory, implementation, and applications, volume 12. SIAM, 2013.10.1137/1.9781611973228Search in Google Scholar

73. Sergey A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. In Dokl. Akad. Nauk SSSR, volume 4, page 123, 1963.Search in Google Scholar

74. Il’ya Meerovich Sobol’. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1):112–118, 1990. Translated as “Sensitivity estimates for nonlinear mathematical models”. Mathematical modelling and computational experiments 1(4):407–414, (1993).Search in Google Scholar

75. Bruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability engineering & system safety, 93(7):964–979, 2008.10.1016/j.ress.2007.04.002Search in Google Scholar

76. Bruno Sudret and Armen Der Kiureghian. Stochastic finite element methods and reliability: a state-of-the-art report. Department of Civil and Environmental Engineering, University of California Berkeley, CA, 2000.Search in Google Scholar

77. Wolfgang von der Linden, Volker Dose and Udo von Toussaint. Bayesian probability theory: applications in the physical sciences. Cambridge University Press, 2014.10.1017/CBO9781139565608Search in Google Scholar

78. Warren E. Walker, Poul Harremoës, Jan Rotmans, Jeroen P. van der Sluijs, Marjolein B. A. van Asselt, Peter Janssen and Martin P. Krayer von Krauss. Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integrated assessment, 4(1):5–17, 2003.10.1076/iaij.4.1.5.16466Search in Google Scholar

79. Jingbo Wang and Nicholas Zabaras. A bayesian inference approach to the inverse heat conduction problem. International journal of heat and mass transfer, 47(17):3927–3941, 2004.10.1016/j.ijheatmasstransfer.2004.02.028Search in Google Scholar

80. Norbert Wiener. The homogeneous chaos. American journal of mathematics, 60(4):897–936, 1938.10.2307/2371268Search in Google Scholar

81. Dongbin Xiu. Numerical methods for stochastic computations: A spectral method approach. Princeton University Press, Princeton and N.J, 2010.Search in Google Scholar

82. Dongbin Xiu and Jan S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM Journal on scientific computing, 27(3):1118–1139, 2005.10.1137/040615201Search in Google Scholar

83. Dongbin Xiu and George E. Karniadakis. The wiener–askey polynomial chaos for stochastic differential equations. SIAM Journal on scientific computing, 24(2):619–644, 2002.10.1137/S1064827501387826Search in Google Scholar

84. Dongbin Xiu and George E. Karniadakis. Supersensitivity due to uncertain boundary conditions. International journal for numerical methods in engineering, 61(12):2114–2138, 2004.10.1002/nme.1152Search in Google Scholar

85. Dongbin Xiu and George Em Karniadakis. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of computational physics, 187(1):137–167, 2003.10.1016/S0021-9991(03)00092-5Search in Google Scholar

Received: 2017-11-16
Accepted: 2019-02-11
Published Online: 2019-03-28
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.8.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2017-0116/html
Scroll to top button