

International Journal of Internet Protocol Technology

ISSN online: 1743-8217 - ISSN print: 1743-8209
https://www.inderscience.com/ijipt

Secure and verifiable outsourcing of Euclidean distance and
closest pair of points with single untrusted cloud server

Shilpee Prasad, B.R. Purushothama

DOI: 10.1504/IJIPT.2023.10054905

Article History:
Received: 24 May 2020
Last revised: 23 February 2021
Accepted: 03 June 2021
Published online: 23 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijipt
https://dx.doi.org/10.1504/IJIPT.2023.10054905
http://www.tcpdf.org

34 Int. J. Internet Protocol Technology, Vol. 16, No. 1, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

Secure and verifiable outsourcing of Euclidean
distance and closest pair of points with single
untrusted cloud server

Shilpee Prasad* and
B.R. Purushothama
Department of Computer Science and Engineering,
National Institute of Technology Goa,
Farmagudi, Ponda, Goa 403401, India
Email: shilpeeprasad34@gmail.com
Email: puru@nitgoa.ac.in
*Corresponding author

Abstract: Owing to resource constraints, often, a client has to outsource the computation to the
untrusted cloud service provider. As cloud service providers are often untrusted, the
computation’s result should be verified for correctness. Also, the cost of verification should be
less than the cost of actual computation. In this paper, we address the problem of verifying the
computation of a geometric problem. In particular, we address the problem of verifying the
Euclidean distance and closest pair of points returned by the single untrusted cloud service
provider. We have designed verification schemes for outsourcing Euclidean distance and the
closest pair of points. We have proved that the proposed scheme has negligible server cheating
probability. Also, the scheme preserves the privacy of the outsourced data. We have implemented
the closest pair of points verification scheme and show that the verification cost is significantly
less than the actual computation cost. Also, compared to the existing scheme, the proposed
scheme has less server cheating probability.

Keywords: outsource computation; closest pair of points; Euclidean distance; privacy preserving;
cloud service provider.

Reference to this paper should be made as follows: Prasad, S. and Purushothama, B.R. (2023)
‘Secure and verifiable outsourcing of Euclidean distance and closest pair of points with single
untrusted cloud server’, Int. J. Internet Protocol Technology, Vol. 16, No. 1, pp.34–45.

Biographical notes: Shilpee Prasad is a post-graduate student at the Department of Computer
Science and Engineering, National Institute of Technology Goa. She works in the area of
Information Security and Cryptography, Key management and Security Analytics.

B.R. Purushothama obtained his PhD in Computer Science and Engineering from National
Institute of Technology Warangal (NIT Warangal), India and did his MTech in Computer
Science and Engineering from National Institute of Technology Karnataka (NITK) Surathkal,
India. He is currently working as Associate Professor in the Department of Computer Science
and Engineering at National Institute of Technology Goa, India. His areas of interest are
cryptography, key management, cloud security, data security, provable security, network security
and algorithms.

1 Introduction

Cloud computing offers storage and computation services for
the users, thereby eliminating the need for purchasing the
costly storage and computing resources by the users. The
users often outsource their data and computation to the cloud
service provider (CSP). The cloud service provider is often
honest-but-curious or untrusted. The data owner should
ensure the confidentiality of data with a piece of sensitive
information by encrypting the data and outsourcing it to the
CSP. Not only the data which could be outsourced to the
cloud but also computations. The resource-constrained

devices can outsource computational intensive tasks to CSP
and use unlimited computing resources by paying as per the
usage. However, the CSP is not trusted to return the correct
result of the computation. Thus, there is a necessity to verify
the computation result by the user/client who has outsourced
the computation. The challenge is that the computation cost to
verify the correctness of the result returned by the CSP should
be less than the computation cost of computing the result. For
instance, consider two matrices P and Q of order n. Suppose a
user outsources the task of computing the product of two
matrices to CSP. Let the result returned by the CSP be the
matrix R of order n . The result returned by the CSP might

 Secure and verifiable outsourcing of Euclidean distance 35

be incorrect as CSP is untrusted. So, the user should verify
whether the result computed by the CSP is correct or not. The
cost of computing the product of the two n order matrices is

3()O n . However, the cost of verifying the result should be

less than 3()O n . The motivation for the CSP not to compute

the correct result may be to save the computations. So, the
user should detect a “cheating" CSP. Any outsourcing
computation should ensure that the probability that a CSP
cheats the user should be negligible. There are works which
addresses verification of the correctness of the outsourced
computations such as modular exponentiation (Zhu et al.,
2018), polynomial function evaluation (Li et al., 2013), vector
inner product (Sheng et al., 2013), matrix multiplication
(Benjamin and Atallah, 2008) etc. In this paper, we focus on
verifying the correctness of a geometric problem.

1.1 Our contribution

Our contributions are summarised below.

 We propose a privacy-preserving verification scheme to
verify the correctness of Euclidean distance between any
two given points.

 We propose a privacy-preserving verification scheme to
verify the correctness of the closest pair of points among
the given n points.

 We analyse the proposed verification schemes and show
that the probability of CSP cheating is negligible.

 We analyse the performance of the proposed verification
scheme for the Closest pair of points and show that the
computation cost of verification is too low compared to
the CSP computation cost.

1.2 Organisation

The rest of the paper is organised as below. Related work is
given in Section 2. Section 3 gives the system model and
preliminaries. The proposed scheme for verifying the
Euclidean distance and closest pair of points is given in
Section 4 and Section 5 respectively. Section 6 provides
performance analysis and comparison, followed by the
conclusion in Section 7.

2 Related work

Due to resource constraints on the clients, the computations
are often outsourced to the untrusted cloud service provider.
However, the result of the computation needs to be verified as
the CSP might not do the legal computations and might send
arbitrary random results. So, it is crucial to verify the result
returned by the CSP. This paper aims to verify the correctness
of the Euclidean distance and the closest pair of points. There
are works wherein some of the critical problems have been
addressed in this model of verification. Also, preserving the
privacy of the data is important. Here, we highlight some of

the problems for which the verification schemes have been
designed. Modular exponentiation is one of the potential
problems to be outsourced since it is used in most of the
cryptographic algorithms. Ye et al. (2016) proposed an
algorithm for outsourcing modular exponentiation using a
two-server model, and for preserving the privacy of input
data, a mathematical division operation is used. Since the
algorithm is based on two-server model, it suffers from the
collusion attack. Shuai et al. (2017) proposed an algorithm for
outsourcing composite modular exponentiation in a single
server model.

Benjamin and Atallah (2008) introduced an algorithm for
outsourcing matrix multiplication using a two-server model,
and verification is done by performing vector multiplication.
This scheme, however, suffers from collusion attack due to
the two-server model. To solve the collusion problem of
Benjamin and Atallah (2008) scheme, Atallah and Frikken
(2010) proposed an improved protocol for matrix
multiplication using a single server model. Zhang et al.
(2016b) proposed an algorithm for matrix multiplication
using public verification. In this scheme, matrices are sent to
the CSP in the offline mode, and hence scheme is not suitable
for real-time applications. Erfan and Mal (2020) constructed
matrix multiplication scheme which is publicly verifiable and
works in online mode, hence can be used for real-time
applications. Lei et al. (2013) proposed an algorithm for
outsourcing large matrix inversion; this scheme addresses the
privacy of input data only for non zero elements in the matrix.
Zhang et al. (2016a) proposed a protocol for outsourcing the
system of linear matrix equations in which the permutation
technique is used to encrypt the linear matrix equations.
Sheng et al. (2013) proposed an algorithm for the outsourcing
of inner product of the vectors for verification they are using
the concept of aggregate vector; however, this scheme is not
publicly verifiable.

Sion (2005) proposed a method for query execution
assurance for outsourced databases using verification
schemes based on single challenge token, multiple challenge
token and fake challenge token. This scheme focuses on read-
only queries; update queries are processed with additional
cost. Le and Li (2012) proposed query access assurance for
IO-bound queries in the distributed databases. Xue et al.
(2018) designed a verifiable outsourcing identity-based
encryption scheme for private key generation. Li et al. (2019)
designed verifiable outsourced encryption and decryption
scheme using attribute-based encryption. Xixun et al. (2019)
designed a publicly verifiable scheme for encrypted data;
this scheme uses fully homomorphic encryption hence not
efficient.

The closest pair of points has many applications such as
computational biology, geographic information system,
computational finance, weather prediction. Kuruba et al.
(2016) proposed an algorithm for outsourcing the closest pair
of points for verification using the concept of single challenge
token proposed by Sion (2005). Kuruba et al. (2016)
method uses two-server model and homomorphic
encryption (Murugesan et al., 2010) for data privacy. Hence

36 S. Prasad and B.R. Purushothama

Kuruba et al. (2016) scheme suffers from collusion attack,
also due to the use of homomorphic encryption, it is not
efficient. Our proposed model is based on a single server
model and does not use homomorphic encryption, and the
probability of server cheating is negligible.

3 System model and preliminaries

The system model includes two entities, Client C and cloud
service provider S. Cloud service provider S is untrusted.
Client C outsources a computational task to S. Cloud server
performs the computational task given by client C and returns
the result to C. Then, client C verifies the result returned by S
for its correctness. Note that the cloud service provider and
cloud server are used interchangeably.

We propose two schemes; one for verifying the
correctness of the Euclidean distance computation and the
other for verifying the correctness of the closest pair of
points.

The proposed scheme 1 is defined to have three phases.

1 = { Outsource, Response Computation, Verification} .

1. Outsource: C sends the two points 1 2{ , }P P to S.

2. Response Computation: S computes the Euclidean
distance d of 1 2{ , }P P and sends d to C.

3. Verification: C verifies whether d is correct.

The proposed scheme 2 is defined to have three phases.

2 = { Outsource, Response Computation, Verification } .

1. Outsource: C sends the set of points 1= { , , }nP P P

to S.

2. Response Computation: S computes the distance d
and sends d to C.

3. Verification: C verifies whether d is the minimum
distance among the points in P .

3.1 Notations

 Point = (,)i i iP x y , where ix and iy are values from

two-coordinate system.

 _ (,)i jEuclidean Distance P P is defined as

2 2() ()i j i jx x y y  

4 Proposed scheme for verifying the correctness
of Euclidean distance

In this section, we elaborate the scheme to verify the
correctness of Euclidean distance of two points computed by
the CSP. The proposed scheme comprises of three phases;
Client Computation, CSP Computation and Client Verification.

4.1 Outsourcing of computation by client

The process of Client outsourcing the computation to S is
elaborated in Algorithm 1.

Algorithm 1: Client computation for outsourcing

Input: Points = (,), = (,)i i i j j jP x y P x y

Output: () ()(,)u u
i jP P , () ()(,)v v

i jP P to be sent to the CSP

1 Client chooses randomly u and computes:

2 () = (,)u
i i iP x u y u 

3 () = (,)u
j j jP x u y u 

4 Client chooses randomly v and m and computes:

5 () = ((), ())v
i i iP m x v m y v 

6 () = ((), ())v
j j jP m x v m y v 

7 Client sends () ()(,)u u
i jP P , () ()(,)v v

i jP P to CSP.

Let = (,)i i iP x y and = (,)j j jP x y be the two points. Client

C chooses randomly u and computes points
() = (,)u

i i iP x u y u  , () = (,)u
j j jP x u y u  . This is carried

out so as to not to reveal the original points to S. Also, C
chooses randomly v and m and computes

() = ((), ())v
i i iP m x v m y v  , () = ((), ())v

j j jP m x v m y v  .

Note that the points ()v
iP and ()v

jP are computed from the

original points iP and jP . The random v is used to hide the

points and m is used during the verification. C sends
() (){(,)u u

i jP P , () ()(,)}v v
i jP P to the CSP. C keeps ,u v and m

as secret.

4.2 Response computation by CSP

CSP after receiving () (){(,)u u
i jP P , () ()(,)}v v

i jP P from the

client C, computes the Euclidean distance between these pair
of points as given in Algorithm 2 and sends them to the C.

Algorithm 2: CSP computation

Input: () ()(,)u u
i jP P , () ()(,)v v

i jP P sent by the client.

Output: (,)  to be sent to the client.

1 Server computes following:

2 () ()= _ (,)u u
i jEuclidean distance P P

3 () ()= _ (,)v v
i jEuclidean distance P P

4 Server sends (,)  to the Client.

4.3 Client verification

After receiving the response from the CSP, client C verifies
whether the distance computed is correct or not by using
Algorithm 3.

 Secure and verifiable outsourcing of Euclidean distance 37

Algorithm 3: Client verification

Input: (,)  sent by the server.

Output: Verification of Euclidean distance computed by
the server.

1 Client computes = m 

2 =  then

3 Print “Correct Euclidean distance computation”

4 end

5 else

6 Print “Incorrect Euclidean distance computation”

7 end

4.3.1 Correctness of verification

In this section, we prove the correctness of the verification
procedure as given in Algorithm 4.3 that is being used by the
client for verification. Server S sends (,)  to the client,

where () ()= _ (,)u u
i jEuclidean distance P P and = _Euclidean

() ()(,)v v
i jdistance P P . For the computation to be correct,

=  should satisfy, where = m  . Note that,

() ()

2 2

2 2

2 2

= _ (,)

= (() ()) (() ())

= () ()

= () ()

u u
i j

j i j i

j i j i

j i j i

Euclidean distance P P

x u x u y u y u

x u x u y u y u

x x y y





      

      

  

and

() ()

2 2

2 2 2 2

2 2

= _ (,)

= (() ()) (() ())

= () ()

= () ()

v v
i j

j i j i

j i j i

j i j i

Euclidean distance P P

m x v m x v m y v m y v

m x v x v m y v y v

m x x y y



      

      

  

So, it can be observed that = m  .

4.4 Computational cost

This section analyses the computation cost for verification,
computation cost for challenge generation, and computation

cost at the CSP. Table 1 gives the details of the computational
cost. It can be observed that the cost of verification by the
client is less than the cost of server computation. The saving
in the computation at verification becomes very significant
when we use this approach in our proposed scheme to verify
the closest pair of points.

Table 1 Computational cost-Euclidean distance

Computation #Addition #Subtraction #Multiplication
#Square

root

Computational
Cost for client
verification

0 0 1 0

Computational
Cost for
Challenge
generation

8 0 4 0

Computational
Cost at Server

2 4 4 2

5 Proposed scheme for verifying the correctness
of closest pair of points

In this section, we elaborate the scheme for verifying the
correctness of the computation of the closest pair of points.
The closest pair of points problem involves n points and
expects to compute the closest pair of points among the given
n points. We address the problem of outsourcing the
computation of closest pair of points distance to the untrusted
CSP and verifying the correctness of the result returned by
the CSP by the client.

The proposed scheme consists of three phases; Client
computation and outsourcing, CSP Response Computation
and Client Verification. In particular, in the first phase, the
client outsources the task of computing minimum distance
points to the CSP, followed by the second phase wherein the
CSP computes the distance and returns it to the client.
Finally, in the third phase, the client verifies the correctness
of the returned distance.

5.1 Client computation and outsourcing

Suppose that the client has a set of n points and wants
the closest pair of points among n points. The detailed
algorithm for Client computation and outsourcing is given in
Algorithm 4.

Algorithm 4: Client computation and outsourcing

Input: Set of n points, 1 1= { , , }nS P P = 1 1{{ , }, ,{ , }}n nx y x y

Output: Input set 4 1 2= { , , , }n rS P P P  consisting of ()n r points to be sent to the CSP.

1 2 3 4= {}, = {}, = {}S S S

2 Client randomly chooses u

3 for each 1iP S do

4 () = (,)u
i i iP x u y u 

38 S. Prasad and B.R. Purushothama

5 ()
2 2= { }u

iS S P

6 end

7 4 4 2=S S S

 () () () ()
2 1 2 3 1 1 2 2 3 3= { , , , , } = {{ , },{ , },{ , }, ,{ , }}u u u u

n n nS P P P P x u y u x u y u x u y u x u y u        

Client adds r number of extra points to set 4S .

8 Choose randomly r points from set 1S .

9 Let '
1 1 2 3

= { , , , , }i i i ir
S P P P P be the set of r points selected from 1S .

 Note: 1 2 31 2 3
{ , , , , } { , , , , }i i i i nr
P P P P P P P P 

10 Choose randomly m and v .

11 for each '
1(,)i ix y S do

12 () = ((), ())v
i i iP m x v m y v 

13 ()
3 3= { }v

iS S P

14 end

15 4 4 3=S S S 4| |=S n r

16 Let 1 2 3, , ,....., rj j j j be the indices of the points of 3S present in 4S .

17 Let 1 2 3, , ,....., rk k k k be the indices of the points of 2S corresponding to 3S present in 4S .

 4 1[]S k = Element(point) present in the set 4S at index 1k . Corresponding points means that if 4 1 1 1
[] = (,)k kS k x u y u  then

4 1 1 1
[] = ((), ())j jS j m x v m y v  where

1 1
=k jx x and

1 1
=k jy y .

18 Client sends 4S to CSP, and instructs CSP to maintain the order of points in 4S .

To preserve data privacy, client masks the original points by
adding a randomly chosen value u to all the points in
input set. Let the original set of points be

1 1= { , , }nS P P = 1 1{(,), , (,)}n nx y x y . After masking the

points, let the new set be () ()
2 1= { , , } =u u

nS P P

1 1{(,), , (,)}n nx u y u x u y u    .

Client adds r number of extra points to the set 4S , where
() ()

4 1 1 1= { , , } = {(,), , (,)}u u
n n nS P P x u y u x u y u     and

r is very small compared to n . To carry out this, client
randomly chooses r points from original input set S1 to form
new set '

1S of r points. Client randomly chooses constant

value m and v and forms another set S3, where
() ()

3 1 1 1= { , , } = {{ (), ()}, ,{ (),v v
r rS P P m x v m y v m x v   

()}}rm y v . Finally, a new set of points 4S is formed such

that 4 3 4=S S S . So, 4| |=S n r .

Let 1 2, , , rj j j be the indices of the points of 3S

present in 4S and 1 2, , , rk k k be the indices of the points of

2S corresponding to 3S present in 4S . Here corresponding

point means that the same point (,)i ix y from set 1S has been

chosen to form the points 4[]S j and 4[]S k where if

4[] = (,)k kS k x u y u  then 4[] = ((), ())j jS j m x v m y v 

where =k jx x and =k jy y . Now, Client sends the set 4S to

the CSP and asks the CSP to maintain the order of points.CSP
though untrusted, is assumed to maintain the order of points.
This is a reasonable assumption, since the CSP has no
motivation to change the order. Changing the order of the
points indeed limits the server capability towards result
computation than assisting it. Detailed algorithm for client
computation is given Algorithm 4.

5.2 Response computation by CSP

The detailed algorithm of response computation by CSP is
elaborated in Algorithm 5.

Algorithm 5: CSP computation

Input: Input set 4 1 2= { , , , }n rS P P P  sent by the client.

Output: Euclidean distance matrix ()*()n r n rM   ,

Euclidean distance set 'D  and corresponding points

1 1 2 2{(,), (,), , (,)}d dM Q M Q M Q to be sent to the client.

1 = {}D

2 = []M

3 for 1i  to ()n r do

4 for 1j i  to ()n r do

5 4 4= _ ([], [])iD Euclidean distance S i S j

 Secure and verifiable outsourcing of Euclidean distance 39

6 = { iD D D }

7 [,] = iM i j D

8 [,] = iM j i D

9 end

10 end

11 CSP sends Euclidean distance matrix ()*()n r n rM   to the

client.

12 Let '
1 2 ()(1)

2

= { , , , }n r n rD d d d    be the Euclidean

distances in D in sorted order.

13 Let
(1)

= ()
2

r r
d nr




14 Let D be the set of first d number of distances in D .
15 CSP sends Euclidean distance set D and corresponding
points 1 1{(,), , (,)}d dM Q M Q to the client. Where

= (,)i i iM x y and = (,)t t tQ x y .

 Note: n =Actual number of input points in 4S , r =Extra

points added in input set 4S

CSP receives 4S with n r points and computes Euclidean

distance for all ()n r points present in input set 4S and

forms the Euclidean distance matrix ()*()n r n rM   . Let set D

contains all 2
n r C Euclidean distances. Note that CSP will

compute only 2
n r C distances as these are the distances

possible with n r points, here C represents combination.
Let 'D be the set of Euclidean distances present in D in
sorted order. Let 'D  contain the first d number of distances

from 'D where
(1)

= ()
2

r r
d nr


 . CSP sends Euclidean

distance matrix ()*()n r n rM   , Euclidean distance set 'D  and

corresponding points 1 1 2 2{(,), (,), , (,)}d dM Q M Q M Q to

the client, where = (,)i i iM x y and = (,)t t tQ x y . Detailed

algorithm for CSP computation is given in Algorithm 5.

5.3 Verification of the result by the client

The detailed algorithm for verifying the result returned by the
CSP is given in Algorithm 6.

Algorithm 6: Client verification

Input: Euclidean distance matrix ()*()n r n rM   , Euclidean

distance set 'D  and corresponding points 1 1{(,),M Q

2 2(,), , (,)}d dM Q M Q sent by the server.

Output: Closest pair of points (,)i m mi i
M x y and

(,)i q qi i
Q x y

1 for 1i  to r do

2 4 4 1= _ ([], [])i iEuclidean distance S k S k 

3 4 4 1= _ ([], [])i iEuclidean distance S j S j 

4 if ! = m  then

5 print “Incorrect Euclidean distance computation by
 server”

6 end

7 else

8 i   ;

9 Continue

10 end

11 end

12 if ==i r then

13 Print “Correct Euclidean distance computation by
 server”

14 end

 Find closest pair of points

 if point is from additional point set S3 then don’t
consider that point for closest pair

15 for 1i  to d do

16 if 3iM S or 3iQ S then

17 i  

18 Continue

19 end

20 else

21 = (,)i m mi i
M x u y u 

22 = (,)i q qi i
Q x u y u 

23 Print “Closest Pair of points (,)i iM Q ”

24 end

25 end

Client receives Euclidean distance matrix ()*()n r n rM   ,

Euclidean distance set 'D  and corresponding points

1 1 2 2{(,), (,)M Q M Q , , (,)}d dM Q from the CSP. First, the

client verifies whether the Euclidean distance computation
done by the server is correct or not. To verify this, client has
indices 1 2{ ,k k , , }rk of original r points and

corresponding indices of additional points 1 2{ , , , }rj j j in

set 4S . Assume 4 4 1= _ ([], [])i iEuclidean distance S k S k 

and 4 4 1= _ ([], [])i iEuclidean distance S j S j  . For all r

indices, the condition = m  should be satisfied for the

computed Euclidean distances to be correct by the CSP. Even
if the condition fails for one index, then it means that the
server has computed incorrect Euclidean distance. If all the
resulting r distances computed by the CSP are correct, then

CSP is honest with the probability
! !()!

(1)
()!

r r n r

n r





. After

Euclidean distance verification and finding that the CSP has
computed the correct Euclidean distances, the client will find

40 S. Prasad and B.R. Purushothama

the closest pair of points using the set 'D  , which is having d
number of distances. Starting from the first distance client will
check whether the corresponding points with the distance
belong to the extra added point set S3. If it is so, the client will
ignore that distance and check for the next distance in 'D  and
corresponding point until a distance for which both the points
belong to the original input set is found. The detailed algorithm
for Client verification is given in Algorithm 6.

5.4 Correctness of verification procedure

In this section, we prove the proposed verification scheme’s
correctness for the closest pair of points. First, we establish
the correctness of the Euclidean distance computation.

5.4.1 Correctness of Euclidean distance computation

To prove this, we have to show that = m  . For

convenience, let _E d denote _Euclidean distance .

4 4 1

1 1

2 2

1 1

2 2

1 1

2 2

1 1

= _ ([], [])

= _ ((,), (,))

= (() ()) (() ())

= () ()

= () ()

i i

k k k ki i i i

k k k ki i i i

k k k ki i i i

k k k ki i i i

Euclidean distance S k S k

E d x u y u x u y u

x u x u y u y u

x u x u y u y u

x x y y







 

 

 

 

   

      

      

  

and

4 4 1

1 1

1 1

2

1

2

1

2

1

= _ ([], [])

= _ ((((), ()),

((), ()))

= _ ((((), ()),

((), ()))

(() ())
=

(() ())

(
=

i i

j ji i

j ji i

k ki i

k ki i

k ki i

k ki i

k ki i

Euclidean distance S j S j

E d m x v m y v

m x v m y v

E d m x v m y v

m x v m y v

m x v m x v

m y v m y u

m x v x v

 

 

 







 

 

 

 

  

   

   2

2 2

1

2 2

1 1

)

()

= () ()

k ki i

k k k ki i i i

m y v y v

m x x y y



 

   

  

It can be observed that = m  . Note that 4[]iS k and 4[]iS j

are the points which have been formed using the same input
point (,)i ix y from set 1S , where 4[] = (,)i i iS k x u y u 

and 4[] = ((), ())i i iS j m x v m y v  . Therefore, = ,j ki i
x x

1 1
= , =j k j ki i i i

y y x x
 

 and
1 1

=j ki i
y y

 
.

Next, we prove that the closest pair of point distance
should be one among the (((1)) / 2 1)nr r r   distances

sent by the CSP.

Theorem 1: The closest pair of point distance should
be one among the (((1)) / 2 1)nr r r   distances sent by

the CSP.

Proof. Proof Let n be actual number of points in input
set 2S and let r be the extra number of points(3S)

added to input set 4S which also contains the points in 2S .

Define,

12 3()N S = the number of distances containing one or both point

from set 3S .

1 3()N S =Number of distances containing one point from

set 3S .

2 3()N S =Number of distances containing both the points from

set 3S .

So, 12 3 1 3 2 3() = () ()N S N S N S . And,

1 3() = =
r times

N S n n n nr   .

This is because, for each point present in the set 3S

(3| |=S r), Euclidean distance is computed with every point

present in the original input set 2 2(| |=)S S n .

2 3 2

! (1)
() = = =

2!(2)! 2
r r r r

N S C
r




. These are the

possible total number of distances that can be computed with
r points.

And, 12 3

(1)
() =

2

r r
N S nr


 .

At most
(1)

()
2

r r
nr


 number of distances will contain the

points from extra added r point set 3S . Hence

(1)
(1)

2

r r
nr


  number of distances ensures that there will

be at least one distance which will have both the points from
original input point set 2S . CSP provides first

(1)
(1)

2

r r
nr


  number of sorted distances as a response.

Hence, closest pair of point distance will be one among
(1)

(1)
2

r r
nr


  number of distances.

5.5 Server cheating probability

In this section, we compute the server cheating probability.
Server cheating probability depends on guessing extra added
r points and corresponding original points.

Theorem 2: The CSP can cheat the client with the

probability
! !()!

()!

r r n r

n r




.

 Secure and verifiable outsourcing of Euclidean distance 41

Proof. Proof Let (,)P e o be the probability of server guessing

extra added r points and corresponding original points. Let
()P e be the probability of guessing extra r points and ()P o

be the probability of guessing corresponding r original points.
So, (,) = ()* ()P e o P e P o

1 (1)
() =

() (1) ((1))

1 1
=

() (1) (1)

!
=

()!

!
! !

() =
()!

r r r r
P e

n r n r n r r

r r

n r n r n

r
n r

n
r n

P e
n r

  


     



   









and

1 !()!
() = =

!n
r

r n r
P o

nC



! ! !()! ! !()!
, (,) = =

()! ! ()!

r n r n r r r n r
So P e o

n r n n r

 


 

CSP chooses first point from the input set 4S containing

()n r points. The probability of choosing first point from

extra added r points is
r

n r
. Next CSP chooses second

point from remaining (1)n r  points, the probability that

this point is chosen from remaining 1r  points is
(1)

1

r

n r


 

.

CSP continues the selection until it chooses all r points.
There are n

rC combinations possible for selecting r points

from n points out of which one combination will match the

sequence of points selected in ()P e therefore
1

() =
n

r

P o
C

.

As we increase the value of r the probability of server
cheating decreases and becomes almost negligible.

5.6 Computational cost

Table 2 gives the computation cost of outsource, server
computation and verification cost. It can be observed that the
cost of verification is ()O r d whereas the cost of result

computation by the CSP is 2()O n . So, the cost of verification

is less in comparison with the actual computation.

Table 2 Computational cost-closest pair of points

Computation # of operations Complexity

Outsource of
computation(Client)

2 2r r ()O r

Server computation 2 ()n nlog n 2()O n

Verification(Client) r d ()O r d

6 Performance analysis and comparison

In this section, we analyse our proposed scheme’s
performance and compare the proposed scheme
with the existing scheme. We have implemented algorithm
for client computation, server computation and client
verification in Python language. All experiments were run
on Windows 10 operating system with an AMD A8-
7410@2.5 GHz CPU, 8 GB RAM. Experiments were
performed for the varying values of n and r . In particular,
the experiments were conducted for = 500,1000,n

1500,2000,2500,3000,3500,4000 and = , , ,
10 8 6 4

n n n n
r ,

where n is actual number of points present in the input set
and r is the extra points added to the input set.

We have performed experiments for each value of r
and for every r , the n ranges from 500 to 4000 . Graph

for = , , ,
10 8 6 4

n n n n
r is shown in Figure 1, Figure 2, Figure 3

and Figure 4 respectively. In each of the figure x axis
shows the number of input data points and y axis shows

the computational time in seconds. For =
10

n
r , Figure 1(a)

shows the client computation. It is the time taken by the
client to mask the input points and outsource the
points to the CSP. Figure 1(b) shows the CSP computation
time. This is the time taken by the server to
compute Euclidean distance matrix and sort the Euclidean
distances. Figure 1(c) shows the client verification time. It is
the time taken by the client to verify whether result returned
by the server is correct or not. Figure 1(d) shows together
the client computation, server computation and the client
verification time. Since client computation and client
verification time are very close they are overlapping in
Figure 1(d).

Figure 2(a), Figure 2(b), Figure 2(c) and Figure 2(d)

shows the cost of the computations for =
8

n
r .

42 S. Prasad and B.R. Purushothama

Figure 1 Computation cost for = / 10r n

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Server computation

 (a) Client computation (b) Server computation

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client verification

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation
Server computation

Client verification

(c) Client verification (d) Overall

Figure 2 Computation cost for = / 8r n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Server computation

 (a) Client computation (b) Server computation

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client verification

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation
Server computation

Client verification

(c) Client verification (d) Overall

 Secure and verifiable outsourcing of Euclidean distance 43

Figure 3(a), Figure 3(b), Figure 3(c) and Figure 3(d) shows

the cost of the computations for =
6

n
r .

Figure 4(a), Figure 4(b), Figure 4(c) and Figure 4(d)

shows the cost of the computations for =
4

n
r .

Figure 3 Computation cost for = / 6r n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Server computation

(a) Client computation (b) Server computation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client verification

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation
Server computation

Client verification

(c) Client verification (d) Overall

Figure 4 Computation cost for = / 4r n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Server computation

(a) Client computation (b) Server computation

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client verification

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000

T
im

e(
S

ec
on

ds
)

Number of Points(n)

Client Computation
Server computation

Client verification

(c) Client verification (d) Overall

44 S. Prasad and B.R. Purushothama

It can be observed that the client verification time is very less
compared to the original amount of computation done by the
CSP. Four experiments are carried out for different values of
r since, with the increase in the value of r , the probability of
server cheating decreases. So, there is a trade-off between the
computation at the CSP and the server cheating probability.
However, for practical applications, it can be seen that, for the
small change in the value of r , there is a significant decrease
in the probability with only less amount of extra computation

for verification. When =
10

n
r client computation time ranges

between 0 to 0.16 seconds, server computation time ranges
between 0 to 120 seconds, client verification time ranges

between 0 to 0.012 . When =
4

n
r client computation time

ranges between 0 to 1 seconds, server computation time
ranges between 0 to 160 seconds, client verification time
ranges between 0 to 0.013 seconds. Increasing the value of
r does not affect client computation and client verification
time too much, but server computation time is increased.
Hence the probability of server cheating can be reduced to
negligible by increasing r value with a negligible increase in
client computation and client verification.

6.1 Server cheating probability

We compare the proposed scheme’s cheating probability with
the existing scheme by Kuruba et al. (2016). Server cheating
probability comparison is shown in Figure 5. In Figure 5,
x axis shows the extra number of points ()r and y axis

shows server cheating probability. Graph is plotted for
= 100n and = 1, 2,3,4,5,6r . It can be seen that for the

proposed scheme, server cheating probability decreases as the

number of extra points ()r added increases but in the existing

scheme by Kuruba et al. (2016) cheating probability remains
constant. For practical applications, with very small r , our
proposed scheme almost has a negligible probability.

6.2 Comparison of proposed scheme and
existing scheme

In this section, we compare the proposed scheme with
the existing scheme by Kuruba et al. (2016) with respect to
the computation cost and the server cheating probability.
Comparison of Kuruba et al. (2016) scheme and
proposed scheme is shown in Table 3. The scheme by Kuruba
et al. (2016) uses homomorphic encryption whereas the
proposed scheme does not make use of homomorphic
encryption. Also, Kuruba et al. (2016) scheme has assumed a
two-server model, and the proposed scheme uses a single
server model where the server is not trusted. The server
cheating probability is more in Kuruba et al. (2016)
scheme, and in the proposed scheme, the server cheating
probability depends on r , and as r increases, the probability
decreases.

Table 3 Comparison of proposed scheme and existing scheme

Schemes
Kuruba et al. (2016)
scheme

Proposed
scheme

Homomorphic
Encryption

Yes No

Server Model Two-server model Single server
model

Probability of Server
Cheating

2

(1)n n 

! !()!

()!

r r n r

n r




Figure 5 Server cheating probability

 Secure and verifiable outsourcing of Euclidean distance 45

In Table 4, we have shown the proposed scheme’s
improvements over the existing scheme. The scheme by
Kuruba et al. (2016) uses a two-server model; hence it is not
collusion safe. Whereas the proposed scheme uses a single
server model; hence it is collusion safe. In Kuruba et al. (2016)
scheme, each point = (,)i i ip x y is split into two parts

1 1 1
= (,)i i ip x y and

2 2 2
= (,)i i ip x y and

1i
p ,

2i
p are sent to

first cloud server and second cloud server respectively. So for
n input points, the minimum number of points that should be
sent to CSP is (= 2)n n n , whereas in the proposed scheme

the minimum number of points that should be sent to CSP is
()n r , where 1r  . In Kuruba et al. (2016) scheme, server

cheating probability remains constant, whereas in proposed
scheme server cheating probability can be decreased by
increasing value of r .

Table 4 Proposed scheme improvements over the existing
scheme

Schemes
Kuruba et al.
(2016) scheme

Proposed
scheme

Collusion safe No Yes

Minimum number of
points to be sent to CSP

n n n r

Server Cheating Probability Remains constant Decreases by
increasing r

7 Conclusion

Privacy-preserving verification schemes have been proposed to
verify result of outsourced Euclidean distance and the closest
pair of points returned by the single untrusted cloud service
provider. The proposed scheme adds the flexibility of
achieving the tradeoff between the client verification time and
the server cheating probability. The proposed scheme allows
the applications to achieve the negligible server cheating
probability being collusion safe. Compared to the existing
scheme which is not collusion safe and with constant server
cheating probability, the proposed scheme is the choice for
diverse applications employing closest pair of point
computations because of its simplicity, flexibility and tendency
to reduce the server cheating probability to negligible. Also, the
server computation time is constant and more in the existing
scheme compared to the proposed scheme.

References

Atallah, M.J. and Frikken, K.B. (2010) ‘Securely outsourcing linear
algebra computations’, Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
pp.48–59.

Benjamin, D. and Atallah, M.J. (2008) ‘Private and cheating-free
outsourcing of algebraic computations’, Sixth Annual
Conference on Privacy, Security and Trust, pp.240–245.

Erfan, F. and Mala, H. (2020) ‘Secure and efficient publicly
verifiable outsourcing of matrix multiplication in online mode’,
Cluster Computing, Vol. 23, pp.2835–2845.

Kuruba, C., Gilbert, K., Sidhaye, P., Pareek, G. and
Purushothama, B.R. (2016) ‘Outsource-secured calculation of
closest pair of points’, Security in Computing and
Communications - 4th International Symposium, Proceedings,
pp.377–389.

Le, W. and Li, F. (2012) ‘Query access assurance in outsourced
databases’, IEEE Transactions on Services Computing, Vol. 5,
No. 2, pp.178–191.

Lei, X., Liao, X., Huang, T., Li, H. and Hu, C. (2013)
‘Outsourcing large matrix inversion computation to a public
cloud’, IEEE Transactions on Cloud Computing, Vol. 1,
pp.78–87.

Li, P., Xu, H. and Guo, S. (2013) ‘Public verification of outsourced
computation of polynomial functions’, 12th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, pp.776–780.

Li, Z., Li, W., Jin, Z., Zhang, H. and Wen, Q. (2019) ‘An efficient
ABE scheme with verifiable outsourced encryption and
decryption’, IEEE Access, Vol. 7, pp.29023–29037.

Murugesan, M., Jiang, W., Chris, C., Luo, S. and Vaidya, J. (2010)
‘Efficient privacy-preserving similar document detection’, The
VLDB Journal, Vol. 19, No. 4, pp.457–475.

Sheng, G., Wen, T., Guo, Q. and Yin, Y. (2013) ‘Verifying
correctness of inner product of vectors in cloud computing’,
Proceedings of the 2013 International Workshop on Security in
Cloud Computing, pp.61–68.

Shuai, L., Longxia, H., Anmin, F. and Yearwood, J. (2017)
‘CExp: secure and verifiable outsourcing of composite
modular exponentiation with single untrusted server’,
Digital Communications and Networks, Vol. 3, No. 4,
pp.236–241.

Sion, R. (2005) ‘Query execution assurance for outsourced
databases’, Proceedings of the 31st International Conference
on Very Large Data Bases, pp.601–612.

Xixun, Y., Zheng, Y. and Rui, Z. (2019) ‘Verifiable outsourced
computation over encrypted data’, Information Sciences,
Vol. 5, No. 2, pp.178–191.

Xue, T., Ren, Y. and Feng, G. (2018) ‘An IBE scheme with
verifiable outsourced key generation based on a single server’,
IETE Technical Review, Vol. 35, pp.97–105.

Ye, J., Xu, Z. and Ding, Y. (2016) ‘Secure outsourcing of modular
exponentiations in cloud and cluster computing’, Cluster
Computing, Vol. 19, pp.811–820.

Zhang, J., Yang, Y. and Wang, Z. (2016a) ‘Outsourcing large-scale
systems of linear matrix equations in cloud computing’, IEEE
22nd International Conference on Parallel and Distributed
Systems (ICPADS), pp.438–447.

Zhang, S., Li, H., Jia, K., Dai, Y. and Zhao, L. (2016b) ‘Efficient
secure outsourcing computation of matrix multiplication in
cloud computing’, 2016 IEEE Global Communications
Conference (GLOBECOM), pp.1–6.

Zhu, Y., Fu, A., Yu, S., Yu, Y., Li, S. and Chen, Z. (2018) ‘New
algorithm for secure outsourcing of modular exponentiation
with optimal checkability based on single untrusted server’,
IEEE International Conference on Communications (ICC),
pp.1–6.

