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Abstract: Owing to resource constraints, often, a client has to outsource the computation to the 
untrusted cloud service provider. As cloud service providers are often untrusted, the 
computation’s result should be verified for correctness. Also, the cost of verification should be 
less than the cost of actual computation. In this paper, we address the problem of verifying the 
computation of a geometric problem. In particular, we address the problem of verifying the 
Euclidean distance and closest pair of points returned by the single untrusted cloud service 
provider. We have designed verification schemes for outsourcing Euclidean distance and the 
closest pair of points. We have proved that the proposed scheme has negligible server cheating 
probability. Also, the scheme preserves the privacy of the outsourced data. We have implemented 
the closest pair of points verification scheme and show that the verification cost is significantly 
less than the actual computation cost. Also, compared to the existing scheme, the proposed 
scheme has less server cheating probability.  
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1 Introduction 

Cloud computing offers storage and computation services for 
the users, thereby eliminating the need for purchasing the 
costly storage and computing resources by the users. The 
users often outsource their data and computation to the cloud 
service provider (CSP). The cloud service provider is often 
honest-but-curious or untrusted. The data owner should 
ensure the confidentiality of data with a piece of sensitive 
information by encrypting the data and outsourcing it to the 
CSP. Not only the data which could be outsourced to the 
cloud but also computations. The resource-constrained 

devices can outsource computational intensive tasks to CSP 
and use unlimited computing resources by paying as per the 
usage. However, the CSP is not trusted to return the correct 
result of the computation. Thus, there is a necessity to verify 
the computation result by the user/client who has outsourced 
the computation. The challenge is that the computation cost to 
verify the correctness of the result returned by the CSP should 
be less than the computation cost of computing the result. For 
instance, consider two matrices P and Q of order n. Suppose a 
user outsources the task of computing the product of two 
matrices to CSP. Let the result returned by the CSP be the 
matrix R  of order n . The result returned by the CSP might 
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be incorrect as CSP is untrusted. So, the user should verify 
whether the result computed by the CSP is correct or not. The 
cost of computing the product of the two n  order matrices is 

3( )O n . However, the cost of verifying the result should be 

less than 3( )O n . The motivation for the CSP not to compute 

the correct result may be to save the computations. So, the 
user should detect a “cheating" CSP. Any outsourcing 
computation should ensure that the probability that a CSP 
cheats the user should be negligible. There are works which 
addresses verification of the correctness of the outsourced 
computations such as modular exponentiation (Zhu et al., 
2018), polynomial function evaluation (Li et al., 2013), vector 
inner product (Sheng et al., 2013), matrix multiplication 
(Benjamin and Atallah, 2008) etc. In this paper, we focus on 
verifying the correctness of a geometric problem. 

1.1 Our contribution 

Our contributions are summarised below. 

 We propose a privacy-preserving verification scheme to 
verify the correctness of Euclidean distance between any 
two given points.  

 We propose a privacy-preserving verification scheme to 
verify the correctness of the closest pair of points among 
the given n  points.  

 We analyse the proposed verification schemes and show 
that the probability of CSP cheating is negligible.  

 We analyse the performance of the proposed verification 
scheme for the Closest pair of points and show that the 
computation cost of verification is too low compared to 
the CSP computation cost.  

1.2 Organisation 

The rest of the paper is organised as below. Related work is 
given in Section 2. Section 3 gives the system model and 
preliminaries. The proposed scheme for verifying the 
Euclidean distance and closest pair of points is given in 
Section 4 and Section 5 respectively. Section 6 provides 
performance analysis and comparison, followed by the 
conclusion in Section 7. 

2 Related work 

Due to resource constraints on the clients, the computations 
are often outsourced to the untrusted cloud service provider. 
However, the result of the computation needs to be verified as 
the CSP might not do the legal computations and might send 
arbitrary random results. So, it is crucial to verify the result 
returned by the CSP. This paper aims to verify the correctness 
of the Euclidean distance and the closest pair of points. There 
are works wherein some of the critical problems have been 
addressed in this model of verification. Also, preserving the 
privacy of the data is important. Here, we highlight some of  
 

the problems for which the verification schemes have been 
designed. Modular exponentiation is one of the potential 
problems to be outsourced since it is used in most of the 
cryptographic algorithms. Ye et al. (2016) proposed an 
algorithm for outsourcing modular exponentiation using a 
two-server model, and for preserving the privacy of input 
data, a mathematical division operation is used. Since the 
algorithm is based on two-server model, it suffers from the 
collusion attack. Shuai et al. (2017) proposed an algorithm for 
outsourcing composite modular exponentiation in a single 
server model. 

Benjamin and Atallah (2008) introduced an algorithm for 
outsourcing matrix multiplication using a two-server model, 
and verification is done by performing vector multiplication. 
This scheme, however, suffers from collusion attack due to 
the two-server model. To solve the collusion problem of 
Benjamin and Atallah (2008) scheme, Atallah and Frikken 
(2010) proposed an improved protocol for matrix 
multiplication using a single server model. Zhang et al. 
(2016b) proposed an algorithm for matrix multiplication 
using public verification. In this scheme, matrices are sent to 
the CSP in the offline mode, and hence scheme is not suitable 
for real-time applications. Erfan and Mal (2020) constructed 
matrix multiplication scheme which is publicly verifiable and 
works in online mode, hence can be used for real-time 
applications. Lei et al. (2013) proposed an algorithm for 
outsourcing large matrix inversion; this scheme addresses the 
privacy of input data only for non zero elements in the matrix. 
Zhang et al. (2016a) proposed a protocol for outsourcing the 
system of linear matrix equations in which the permutation 
technique is used to encrypt the linear matrix equations. 
Sheng et al. (2013) proposed an algorithm for the outsourcing 
of inner product of the vectors for verification they are using 
the concept of aggregate vector; however, this scheme is not 
publicly verifiable. 

Sion (2005) proposed a method for query execution 
assurance for outsourced databases using verification 
schemes based on single challenge token, multiple challenge 
token and fake challenge token. This scheme focuses on read-
only queries; update queries are processed with additional 
cost. Le and Li (2012) proposed query access assurance for 
IO-bound queries in the distributed databases. Xue et al. 
(2018) designed a verifiable outsourcing identity-based 
encryption scheme for private key generation. Li et al. (2019) 
designed verifiable outsourced encryption and decryption 
scheme using attribute-based encryption. Xixun et al. (2019) 
designed a publicly verifiable scheme for encrypted data;  
this scheme uses fully homomorphic encryption hence not 
efficient. 

The closest pair of points has many applications such as 
computational biology, geographic information system, 
computational finance, weather prediction. Kuruba et al. 
(2016) proposed an algorithm for outsourcing the closest pair 
of points for verification using the concept of single challenge 
token proposed by Sion (2005). Kuruba et al. (2016)  
method uses two-server model and homomorphic  
encryption (Murugesan et al., 2010) for data privacy. Hence  
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Kuruba et al. (2016) scheme suffers from collusion attack, 
also due to the use of homomorphic encryption, it is not 
efficient. Our proposed model is based on a single server 
model and does not use homomorphic encryption, and the 
probability of server cheating is negligible. 

3 System model and preliminaries 

The system model includes two entities, Client C and cloud 
service provider S. Cloud service provider S is untrusted. 
Client C outsources a computational task to S. Cloud server 
performs the computational task given by client C and returns 
the result to C. Then, client C verifies the result returned by S 
for its correctness. Note that the cloud service provider and 
cloud server are used interchangeably. 

We propose two schemes; one for verifying the 
correctness of the Euclidean distance computation and the 
other for verifying the correctness of the closest pair of 
points. 

The proposed scheme 1  is defined to have three phases. 

1 = { Outsource, Response Computation, Verification} . 

1. Outsource: C sends the two points 1 2{ , }P P  to S.  

2. Response Computation: S computes the Euclidean 
distance d  of 1 2{ , }P P  and sends d  to C.  

3. Verification: C verifies whether d  is correct.  

The proposed scheme 2  is defined to have three phases.  

2 = { Outsource, Response Computation, Verification } .  

1. Outsource: C sends the set of points 1= { , , }nP P P   

to S.  

2. Response Computation: S computes the distance d  
and sends d  to C.  

3. Verification: C verifies whether d  is the minimum 
distance among the points in P .  

3.1 Notations 

 Point = ( , )i i iP x y , where ix  and iy  are values from 

two-coordinate system.  

 _ ( , )i jEuclidean Distance P P  is defined as 

2 2( ) ( )i j i jx x y y     

4 Proposed scheme for verifying the correctness 
of Euclidean distance 

In this section, we elaborate the scheme to verify the 
correctness of Euclidean distance of two points computed by 
the CSP. The proposed scheme comprises of three phases; 
Client Computation, CSP Computation and Client Verification. 

4.1 Outsourcing of computation by client 

The process of Client outsourcing the computation to S  is 
elaborated in Algorithm 1. 

Algorithm 1: Client computation for outsourcing 

Input: Points = ( , ), = ( , )i i i j j jP x y P x y  

Output: ( ) ( )( , )u u
i jP P , ( ) ( )( , )v v

i jP P  to be sent to the CSP 

1 Client chooses randomly u  and computes: 

2     ( ) = ( , )u
i i iP x u y u   

3     ( ) = ( , )u
j j jP x u y u   

4 Client chooses randomly v  and m  and computes: 

5     ( ) = ( ( ), ( ))v
i i iP m x v m y v   

6     ( ) = ( ( ), ( ))v
j j jP m x v m y v   

7 Client sends ( ) ( )( , )u u
i jP P , ( ) ( )( , )v v

i jP P  to CSP.  

Let = ( , )i i iP x y  and = ( , )j j jP x y  be the two points. Client 

C chooses randomly u  and computes points 
( ) = ( , )u

i i iP x u y u  , ( ) = ( , )u
j j jP x u y u  . This is carried 

out so as to not to reveal the original points to S. Also, C 
chooses randomly v  and m  and computes 

( ) = ( ( ), ( ))v
i i iP m x v m y v  , ( ) = ( ( ), ( ))v

j j jP m x v m y v  . 

Note that the points ( )v
iP  and ( )v

jP  are computed from the 

original points iP  and jP . The random v  is used to hide the 

points and m  is used during the verification. C sends 
( ) ( ){( , )u u

i jP P , ( ) ( )( , )}v v
i jP P  to the CSP. C keeps ,u v  and m  

as secret. 

4.2 Response computation by CSP 

CSP after receiving ( ) ( ){( , )u u
i jP P , ( ) ( )( , )}v v

i jP P  from the 

client C, computes the Euclidean distance between these pair 
of points as given in Algorithm 2 and sends them to the C. 

Algorithm 2: CSP computation 

Input: ( ) ( )( , )u u
i jP P , ( ) ( )( , )v v

i jP P  sent by the client. 

Output: ( , )   to be sent to the client.  

1     Server computes following: 

2    ( ) ( )= _ ( , )u u
i jEuclidean distance P P  

3    ( ) ( )= _ ( , )v v
i jEuclidean distance P P  

4 Server sends ( , )   to the Client. 

4.3 Client verification 

After receiving the response from the CSP, client C verifies 
whether the distance computed is correct or not by using 
Algorithm 3. 
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Algorithm 3: Client verification 

Input: ( , )   sent by the server.  

Output: Verification of Euclidean distance computed by 
the server. 

1 Client computes = m   

2 =   then  

3    Print “Correct Euclidean distance computation” 

4 end 

5 else 

6    Print “Incorrect Euclidean distance computation”  

7 end 

4.3.1 Correctness of verification 

In this section, we prove the correctness of the verification 
procedure as given in Algorithm 4.3 that is being used by the 
client for verification. Server S sends ( , )   to the client, 

where ( ) ( )= _ ( , )u u
i jEuclidean distance P P  and = _Euclidean  

( ) ( )( , )v v
i jdistance P P . For the computation to be correct, 

=   should satisfy, where = m  . Note that, 

( ) ( )

2 2

2 2

2 2

= _ ( , )

= (( ) ( )) (( ) ( ))

= ( ) ( )

= ( ) ( )

u u
i j

j i j i

j i j i

j i j i

Euclidean distance P P

x u x u y u y u

x u x u y u y u

x x y y





      

      

  

 

and 

( ) ( )

2 2

2 2 2 2

2 2

= _ ( , )

= ( ( ) ( )) ( ( ) ( ))

= ( ) ( )

= ( ) ( )

v v
i j

j i j i

j i j i

j i j i

Euclidean distance P P

m x v m x v m y v m y v

m x v x v m y v y v

m x x y y



      

      

  

 

So, it can be observed that = m  . 

4.4 Computational cost 

This section analyses the computation cost for verification, 
computation cost for challenge generation, and computation 

cost at the CSP. Table 1 gives the details of the computational 
cost. It can be observed that the cost of verification by the 
client is less than the cost of server computation. The saving 
in the computation at verification becomes very significant 
when we use this approach in our proposed scheme to verify 
the closest pair of points. 

Table 1 Computational cost-Euclidean distance 

Computation #Addition #Subtraction #Multiplication
#Square 

root 

Computational 
Cost for client 
verification 

0 0 1 0 

Computational 
Cost for 
Challenge 
generation 

8 0 4 0 

Computational 
Cost at Server 

2 4 4 2 

5 Proposed scheme for verifying the correctness 
of closest pair of points 

In this section, we elaborate the scheme for verifying the 
correctness of the computation of the closest pair of points. 
The closest pair of points problem involves n  points and 
expects to compute the closest pair of points among the given 
n  points. We address the problem of outsourcing the 
computation of closest pair of points distance to the untrusted 
CSP and verifying the correctness of the result returned by 
the CSP by the client. 

The proposed scheme consists of three phases; Client 
computation and outsourcing, CSP Response Computation 
and Client Verification. In particular, in the first phase, the 
client outsources the task of computing minimum distance 
points to the CSP, followed by the second phase wherein the 
CSP computes the distance and returns it to the client. 
Finally, in the third phase, the client verifies the correctness 
of the returned distance. 

5.1 Client computation and outsourcing 

Suppose that the client has a set of n  points and wants  
the closest pair of points among n  points. The detailed 
algorithm for Client computation and outsourcing is given in 
Algorithm 4. 

Algorithm 4: Client computation and outsourcing 

Input: Set of n  points, 1 1= { , , }nS P P = 1 1{{ , }, ,{ , }}n nx y x y   

Output: Input set 4 1 2= { , , , }n rS P P P   consisting of ( )n r  points to be sent to the CSP. 

1 2 3 4= {}, = {}, = {}S S S  

2 Client randomly chooses u  

3 for each 1iP S  do 

4    ( ) = ( , )u
i i iP x u y u   
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5    ( )
2 2= { }u

iS S P   

6 end 

7 4 4 2=S S S  

    ( ) ( ) ( ) ( )
2 1 2 3 1 1 2 2 3 3= { , , , , } = {{ , },{ , },{ , }, ,{ , }}u u u u

n n nS P P P P x u y u x u y u x u y u x u y u          

Client adds r  number of extra points to set 4S .  

8 Choose randomly r  points from set 1S . 

9 Let '
1 1 2 3

= { , , , , }i i i ir
S P P P P  be the set of r  points selected from 1S . 

    Note: 1 2 31 2 3
{ , , , , } { , , , , }i i i i nr
P P P P P P P P     

10 Choose randomly m  and v . 

11 for each '
1( , )i ix y S  do  

12    ( ) = ( ( ), ( ))v
i i iP m x v m y v   

13    ( )
3 3= { }v

iS S P  

14 end 

15 4 4 3=S S S               4| |=S n r  

16 Let 1 2 3, , ,....., rj j j j  be the indices of the points of 3S  present in 4S . 

17 Let 1 2 3, , ,....., rk k k k  be the indices of the points of 2S  corresponding to 3S  present in 4S . 

    4 1[ ]S k = Element(point) present in the set 4S  at index 1k . Corresponding points means that if 4 1 1 1
[ ] = ( , )k kS k x u y u   then 

4 1 1 1
[ ] = ( ( ), ( ))j jS j m x v m y v   where 

1 1
=k jx x  and 

1 1
=k jy y . 

18 Client sends 4S  to CSP, and instructs CSP to maintain the order of points in 4S . 
 

To preserve data privacy, client masks the original points by 
adding a randomly chosen value u  to all the points in  
input set. Let the original set of points be 

1 1= { , , }nS P P = 1 1{( , ), , ( , )}n nx y x y . After masking the 

points, let the new set be ( ) ( )
2 1= { , , } =u u

nS P P  

1 1{( , ), , ( , )}n nx u y u x u y u    . 

Client adds r  number of extra points to the set 4S , where 
( ) ( )

4 1 1 1= { , , } = {( , ), , ( , )}u u
n n nS P P x u y u x u y u      and 

r  is very small compared to n . To carry out this, client 
randomly chooses r points from original input set S1 to form 
new set '

1S  of r  points. Client randomly chooses constant 

value m and v and forms another set S3, where 
( ) ( )

3 1 1 1= { , , } = {{ ( ), ( )}, ,{ ( ),v v
r rS P P m x v m y v m x v     

( )}}rm y v . Finally, a new set of points 4S  is formed such 

that 4 3 4=S S S . So, 4| |=S n r . 

Let 1 2, , , rj j j  be the indices of the points of 3S  

present in 4S  and 1 2, , , rk k k  be the indices of the points of 

2S  corresponding to 3S  present in 4S . Here corresponding 

point means that the same point ( , )i ix y  from set 1S  has been 

chosen to form the points 4[ ]S j  and 4[ ]S k  where if 

4[ ] = ( , )k kS k x u y u   then 4[ ] = ( ( ), ( ))j jS j m x v m y v   

where =k jx x  and =k jy y . Now, Client sends the set 4S  to  

 

the CSP and asks the CSP to maintain the order of points.CSP 
though untrusted, is assumed to maintain the order of points. 
This is a reasonable assumption, since the CSP has no 
motivation to change the order. Changing the order of the 
points indeed limits the server capability towards result 
computation than assisting it. Detailed algorithm for client 
computation is given Algorithm 4. 

5.2 Response computation by CSP 

The detailed algorithm of response computation by CSP is 
elaborated in Algorithm 5. 

Algorithm 5: CSP computation 

Input: Input set 4 1 2= { , , , }n rS P P P   sent by the client.  

Output: Euclidean distance matrix ( )*( )n r n rM   , 

Euclidean distance set 'D   and corresponding points 

1 1 2 2{( , ), ( , ), , ( , )}d dM Q M Q M Q  to be sent to the client. 

1 = {}D  

2 = []M  

3 for 1i   to ( )n r  do  

4    for 1j i   to ( )n r  do  

5         4 4= _ ( [ ], [ ])iD Euclidean distance S i S j  
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6         = { iD D D } 

7         [ , ] = iM i j D  

8         [ , ] = iM j i D  

9    end 

10 end 

11 CSP sends Euclidean distance matrix ( )*( )n r n rM    to the 

client. 

12 Let '
1 2 ( )( 1)

2

= { , , , }n r n rD d d d     be the Euclidean 

distances in D in sorted order. 

13 Let 
( 1)

= ( )
2

r r
d nr


  

14 Let D  be the set of first d number of distances in D . 
15 CSP sends Euclidean distance set D  and corresponding 
points 1 1{( , ), , ( , )}d dM Q M Q  to the client. Where 

= ( , )i i iM x y  and = ( , )t t tQ x y . 

    Note: n =Actual number of input points in 4S , r =Extra 

points added in input set 4S   

CSP receives 4S  with n r  points and computes Euclidean 

distance for all ( )n r  points present in input set 4S  and 

forms the Euclidean distance matrix ( )*( )n r n rM   . Let set D  

contains all 2
n r C  Euclidean distances. Note that CSP will 

compute only 2
n r C  distances as these are the distances 

possible with n r  points, here C represents combination. 
Let 'D  be the set of Euclidean distances present in D  in 
sorted order. Let 'D   contain the first d  number of distances 

from 'D  where 
( 1)

= ( )
2

r r
d nr


 . CSP sends Euclidean 

distance matrix ( )*( )n r n rM   , Euclidean distance set 'D   and 

corresponding points 1 1 2 2{( , ), ( , ), , ( , )}d dM Q M Q M Q  to 

the client, where = ( , )i i iM x y  and = ( , )t t tQ x y . Detailed 

algorithm for CSP computation is given in Algorithm 5. 

5.3 Verification of the result by the client 

The detailed algorithm for verifying the result returned by the 
CSP is given in Algorithm 6. 

Algorithm 6: Client verification 

Input: Euclidean distance matrix ( )*( )n r n rM   , Euclidean 

distance set 'D   and corresponding points 1 1{( , ),M Q

2 2( , ), , ( , )}d dM Q M Q  sent by the server.  

Output: Closest pair of points ( , )i m mi i
M x y  and 

( , )i q qi i
Q x y  

1 for 1i   to r  do 

2      4 4 1= _ ( [ ], [ ])i iEuclidean distance S k S k   

3      4 4 1= _ ( [ ], [ ])i iEuclidean distance S j S j   

4      if ! = m   then  

5        print “Incorrect Euclidean distance computation by 
 server” 

6      end 

7      else 

8        i   ; 

9        Continue 

10      end 

11 end 

12 if ==i r  then  

13      Print “Correct Euclidean distance computation by 
 server” 

14 end 

            Find closest pair of points 

            if point is from additional point set S3 then don’t 
consider that point for closest pair  

15 for 1i   to d  do  

16      if 3iM S  or 3iQ S  then  

17            i    

18            Continue 

19      end 

20      else 

21            = ( , )i m mi i
M x u y u   

22            = ( , )i q qi i
Q x u y u   

23            Print “Closest Pair of points ( , )i iM Q ” 

24      end 

25 end 

Client receives Euclidean distance matrix ( )*( )n r n rM   , 

Euclidean distance set 'D   and corresponding points 

1 1 2 2{( , ), ( , )M Q M Q  , , ( , )}d dM Q  from the CSP. First, the 

client verifies whether the Euclidean distance computation 
done by the server is correct or not. To verify this, client has 
indices 1 2{ ,k k  , , }rk  of original r  points and 

corresponding indices of additional points 1 2{ , , , }rj j j  in 

set 4S . Assume 4 4 1= _ ( [ ], [ ])i iEuclidean distance S k S k   

and 4 4 1= _ ( [ ], [ ])i iEuclidean distance S j S j  . For all r  

indices, the condition = m   should be satisfied for the 

computed Euclidean distances to be correct by the CSP. Even 
if the condition fails for one index, then it means that the 
server has computed incorrect Euclidean distance. If all the 
resulting r  distances computed by the CSP are correct, then 

CSP is honest with the probability 
! !( )!

(1 )
( )!

r r n r

n r





. After 

Euclidean distance verification and finding that the CSP has  
computed the correct Euclidean distances, the client will find  
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the closest pair of points using the set 'D  , which is having d  
number of distances. Starting from the first distance client will 
check whether the corresponding points with the distance 
belong to the extra added point set S3. If it is so, the client will 
ignore that distance and check for the next distance in 'D   and 
corresponding point until a distance for which both the points 
belong to the original input set is found. The detailed algorithm 
for Client verification is given in Algorithm 6. 

5.4 Correctness of verification procedure 

In this section, we prove the proposed verification scheme’s 
correctness for the closest pair of points. First, we establish 
the correctness of the Euclidean distance computation. 

5.4.1 Correctness of Euclidean distance computation 

To prove this, we have to show that = m  . For 

convenience, let _E d  denote _Euclidean distance . 

4 4 1

1 1

2 2

1 1

2 2

1 1

2 2

1 1

= _ ( [ ], [ ])

= _ (( , ), ( , ))

= (( ) ( )) (( ) ( ))

= ( ) ( )

= ( ) ( )

i i

k k k ki i i i

k k k ki i i i

k k k ki i i i

k k k ki i i i

Euclidean distance S k S k

E d x u y u x u y u

x u x u y u y u

x u x u y u y u

x x y y







 

 

 

 

   

      

      

  

 

and 

4 4 1

1 1

1 1

2

1

2

1

2

1

= _ ( [ ], [ ])

= _ ((( ( ), ( )),

( ( ), ( )))

= _ ((( ( ), ( )),

( ( ), ( )))

( ( ) ( ))
=

( ( ) ( ))

(
=

i i

j ji i

j ji i

k ki i

k ki i

k ki i

k ki i

k ki i

Euclidean distance S j S j

E d m x v m y v

m x v m y v

E d m x v m y v

m x v m y v

m x v m x v

m y v m y u

m x v x v

 

 

 







 

 

 

 

  

   

   2

2 2

1

2 2

1 1

)

( )

= ( ) ( )

k ki i

k k k ki i i i

m y v y v

m x x y y



 

   

  

 

It can be observed that = m  . Note that 4[ ]iS k  and 4[ ]iS j  

are the points which have been formed using the same input 
point ( , )i ix y  from set 1S , where 4[ ] = ( , )i i iS k x u y u   

and 4[ ] = ( ( ), ( ))i i iS j m x v m y v  . Therefore, = ,j ki i
x x  

1 1
= , =j k j ki i i i

y y x x
 

 and 
1 1

=j ki i
y y

 
. 

Next, we prove that the closest pair of point distance 
should be one among the ( ( ( 1)) / 2 1)nr r r    distances 

sent by the CSP. 
 

Theorem 1: The closest pair of point distance should  
be one among the ( ( ( 1)) / 2 1)nr r r    distances sent by 

the CSP.  

Proof. Proof Let n  be actual number of points in input  
set 2S  and let r  be the extra number of points( 3S )  

added to input set 4S  which also contains the points in 2S . 

Define, 

12 3( )N S = the number of distances containing one or both point 

from set 3S .  

1 3( )N S =Number of distances containing one point from  

set 3S . 

2 3( )N S =Number of distances containing both the points from 

set 3S . 

So, 12 3 1 3 2 3( ) = ( ) ( )N S N S N S . And, 

1 3( ) = =
r times

N S n n n nr   . 

This is because, for each point present in the set 3S  

( 3| |=S r ), Euclidean distance is computed with every point 

present in the original input set 2 2(| |= )S S n . 

2 3 2

! ( 1)
( ) = = =

2!( 2)! 2
r r r r

N S C
r




. These are the 

possible total number of distances that can be computed with 
r  points. 

And, 12 3

( 1)
( ) =

2

r r
N S nr


 . 

At most 
( 1)

( )
2

r r
nr


  number of distances will contain the 

points from extra added r  point set 3S . Hence 

( 1)
( 1)

2

r r
nr


   number of distances ensures that there will 

be at least one distance which will have both the points from 
original input point set 2S . CSP provides first 

( 1)
( 1)

2

r r
nr


   number of sorted distances as a response. 

Hence, closest pair of point distance will be one among 
( 1)

( 1)
2

r r
nr


   number of distances. 

5.5 Server cheating probability 

In this section, we compute the server cheating probability. 
Server cheating probability depends on guessing extra added 
r  points and corresponding original points. 

Theorem 2: The CSP can cheat the client with the 

probability 
! !( )!

( )!

r r n r

n r




. 
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Proof. Proof Let ( , )P e o  be the probability of server guessing 

extra added r  points and corresponding original points. Let 
( )P e  be the probability of guessing extra r  points and ( )P o  

be the probability of guessing corresponding r  original points. 
So, ( , ) = ( )* ( )P e o P e P o  

1 ( 1)
( ) =

( ) ( 1) ( ( 1))

1 1
=

( ) ( 1) ( 1)

!
=

( )!

!
! !

( ) =
( )!

r r r r
P e

n r n r n r r

r r

n r n r n

r
n r

n
r n

P e
n r

  


     



   









 

and 

1 !( )!
( ) = =

!n
r

r n r
P o

nC


 

! ! !( )! ! !( )!
, ( , ) = =

( )! ! ( )!

r n r n r r r n r
So P e o

n r n n r

 


 
 

CSP chooses first point from the input set 4S  containing 

( )n r  points. The probability of choosing first point from 

extra added r  points is 
r

n r
. Next CSP chooses second 

point from remaining ( 1)n r   points, the probability that 

this point is chosen from remaining 1r   points is 
( 1)

1

r

n r


 

. 

CSP continues the selection until it chooses all r  points. 
There are n

rC  combinations possible for selecting r  points 

from n  points out of which one combination will match the 

sequence of points selected in ( )P e  therefore 
1

( ) =
n

r

P o
C

. 

As we increase the value of r  the probability of server 
cheating decreases and becomes almost negligible. 

5.6 Computational cost 

Table 2 gives the computation cost of outsource, server 
computation and verification cost. It can be observed that the 
cost of verification is ( )O r d  whereas the cost of result 

computation by the CSP is 2( )O n . So, the cost of verification 

is less in comparison with the actual computation. 

Table 2 Computational cost-closest pair of points 

Computation # of operations Complexity 

Outsource of 
computation(Client) 

2 2r r  ( )O r  

Server computation 2 ( )n nlog n  2( )O n  

Verification(Client) r d  ( )O r d  

6 Performance analysis and comparison 

In this section, we analyse our proposed scheme’s 
performance and compare the proposed scheme  
with the existing scheme. We have implemented algorithm 
for client computation, server computation and client 
verification in Python language. All experiments were run 
on Windows 10 operating system with an AMD A8-
7410@2.5 GHz CPU, 8 GB RAM. Experiments were 
performed for the varying values of n  and r . In particular, 
the experiments were conducted for = 500,1000,n  

1500,2000,2500,3000,3500,4000  and = , , ,
10 8 6 4

n n n n
r , 

where n  is actual number of points present in the input set 
and r  is the extra points added to the input set. 

We have performed experiments for each value of r  
and for every r , the n  ranges from 500  to 4000 . Graph 

for = , , ,
10 8 6 4

n n n n
r  is shown in Figure 1, Figure 2, Figure 3 

and Figure 4 respectively. In each of the figure x axis  
shows the number of input data points and y axis  shows 

the computational time in seconds. For =
10

n
r , Figure 1(a) 

shows the client computation. It is the time taken by the 
client to mask the input points and outsource the  
points to the CSP. Figure 1(b) shows the CSP computation 
time. This is the time taken by the server to  
compute Euclidean distance matrix and sort the Euclidean 
distances. Figure 1(c) shows the client verification time. It is 
the time taken by the client to verify whether result returned 
by the server is correct or not. Figure 1(d) shows together 
the client computation, server computation and the client 
verification time. Since client computation and client 
verification time are very close they are overlapping in 
Figure 1(d). 

Figure 2(a), Figure 2(b), Figure 2(c) and Figure 2(d) 

shows the cost of the computations for =
8

n
r . 
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Figure 1 Computation cost for = / 10r n  
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Figure 2 Computation cost for = / 8r n  
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Figure 3(a), Figure 3(b), Figure 3(c) and Figure 3(d) shows 

the cost of the computations for =
6

n
r . 

Figure 4(a), Figure 4(b), Figure 4(c) and Figure 4(d) 

shows the cost of the computations for =
4

n
r . 

Figure 3 Computation cost for = / 6r n  
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Figure 4 Computation cost for = / 4r n  
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It can be observed that the client verification time is very less 
compared to the original amount of computation done by the 
CSP. Four experiments are carried out for different values of 
r since, with the increase in the value of r , the probability of 
server cheating decreases. So, there is a trade-off between the 
computation at the CSP and the server cheating probability. 
However, for practical applications, it can be seen that, for the 
small change in the value of r , there is a significant decrease 
in the probability with only less amount of extra computation 

for verification. When =
10

n
r  client computation time ranges 

between 0  to 0.16  seconds, server computation time ranges 
between 0  to 120  seconds, client verification time ranges 

between 0  to 0.012 . When =
4

n
r  client computation time 

ranges between 0  to 1  seconds, server computation time 
ranges between 0  to 160  seconds, client verification time 
ranges between 0  to 0.013  seconds. Increasing the value of 
r  does not affect client computation and client verification 
time too much, but server computation time is increased. 
Hence the probability of server cheating can be reduced to 
negligible by increasing r  value with a negligible increase in 
client computation and client verification. 

6.1 Server cheating probability 

We compare the proposed scheme’s cheating probability with 
the existing scheme by Kuruba et al. (2016). Server cheating 
probability comparison is shown in Figure 5. In Figure 5, 
x axis  shows the extra number of points ( )r  and y axis  

shows server cheating probability. Graph is plotted for 
= 100n  and = 1, 2,3,4,5,6r . It can be seen that for the 

proposed scheme, server cheating probability decreases as the 

number of extra points ( )r  added increases but in the existing  

scheme by Kuruba et al. (2016) cheating probability remains 
constant. For practical applications, with very small r , our 
proposed scheme almost has a negligible probability. 

6.2 Comparison of proposed scheme and  
existing scheme 

In this section, we compare the proposed scheme with  
the existing scheme by Kuruba et al. (2016) with respect to 
the computation cost and the server cheating probability. 
Comparison of Kuruba et al. (2016) scheme and  
proposed scheme is shown in Table 3. The scheme by Kuruba 
et al. (2016) uses homomorphic encryption whereas the 
proposed scheme does not make use of homomorphic 
encryption. Also, Kuruba et al. (2016) scheme has assumed a 
two-server model, and the proposed scheme uses a single 
server model where the server is not trusted. The server 
cheating probability is more in Kuruba et al. (2016)  
scheme, and in the proposed scheme, the server cheating 
probability depends on r , and as r  increases, the probability 
decreases. 

Table 3 Comparison of proposed scheme and existing scheme 

Schemes 
Kuruba et al. (2016) 
scheme 

Proposed 
scheme 

Homomorphic 
Encryption 

Yes No 

Server Model Two-server model Single server 
model 

Probability of Server 
Cheating 

2

( 1)n n 
 

! !( )!

( )!

r r n r

n r




 

Figure 5 Server cheating probability 
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In Table 4, we have shown the proposed scheme’s 
improvements over the existing scheme. The scheme by 
Kuruba et al. (2016) uses a two-server model; hence it is not 
collusion safe. Whereas the proposed scheme uses a single 
server model; hence it is collusion safe. In Kuruba et al. (2016) 
scheme, each point = ( , )i i ip x y  is split into two parts 

1 1 1
= ( , )i i ip x y  and 

2 2 2
= ( , )i i ip x y  and 

1i
p , 

2i
p  are sent to 

first cloud server and second cloud server respectively. So for 
n  input points, the minimum number of points that should be 
sent to CSP is ( = 2 )n n n , whereas in the proposed scheme 

the minimum number of points that should be sent to CSP is 
( )n r , where 1r  . In Kuruba et al. (2016) scheme, server 

cheating probability remains constant, whereas in proposed 
scheme server cheating probability can be decreased by 
increasing value of r . 

Table 4 Proposed scheme improvements over the existing 
scheme 

Schemes 
Kuruba et al. 
(2016) scheme 

Proposed 
scheme 

Collusion safe No Yes 

Minimum number of  
points to be sent to CSP 

n n  n r  

Server Cheating Probability Remains constant Decreases by 
increasing r

7 Conclusion 

Privacy-preserving verification schemes have been proposed to 
verify result of outsourced Euclidean distance and the closest 
pair of points returned by the single untrusted cloud service 
provider. The proposed scheme adds the flexibility of 
achieving the tradeoff between the client verification time and 
the server cheating probability. The proposed scheme allows 
the applications to achieve the negligible server cheating 
probability being collusion safe. Compared to the existing 
scheme which is not collusion safe and with constant server 
cheating probability, the proposed scheme is the choice for 
diverse applications employing closest pair of point 
computations because of its simplicity, flexibility and tendency 
to reduce the server cheating probability to negligible. Also, the 
server computation time is constant and more in the existing 
scheme compared to the proposed scheme. 
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