
Large Language Models as Tuning Agents of
Metaheuristics

Alicja Martinek1,2 and Szymon Lukasik1,2 and Amir H. Gandomi3,4 ∗

1 - NASK - National Research Institute, Warsaw, Poland
2 - AGH University of Technology in Kraków, Kraków, Poland

3 - University of Technology Sydney, Sydney, Australia
4 - Obuda University, Budapest, Hungary

Abstract. This study examines whether LLMs can be utilized in meta-
heuristic tuning through selection of appropriate parameters. Instances of
two optimization problems, Travelling Salesman and Graph Coloring, were
solved with GA, ACO, PSO, and SA. Experiment involved running these
heuristic optimizers with parameter values advised by LLMs. A round of
feedback was performed through feeding LLMs with prompts that included
initial parameters, average performance, and population variance, where
applicable. The results show LLMs exhibit the ability to comprehend the
non-trivial task of tuning metaheuristics’ parameters. Additionally, feed-
back runs often outperform results achieved by initial setups, yielding a
new application of LLMs.

1 Introduction

Large Language Models (LLMs), since their introduction, made a significant im-
pact on multiple industries. They have been successfully applied in numerous
branches of computer science. Most notable use cases include but are not lim-
ited to Natural Language Processing, chatbots and assistance systems, content
creation, and guidance in code development [1]. The first widely acknowledged
LLM, BERT by Google, was introduced in 2018 [2]. However, the true revolution
broke out when OpenAI released publicly its ChatGPT in 2022. Since then, the
amount of papers and work devoted to LLMs is unprecedented.

Nonetheless, LLMs are not the only area of constant development in the
computer science domain. Metaheuristic Algorithms (MHAs) are still a hot
topic for many scientists, as their ability to optimize complex tasks is of great
value. With the rapidly growing MHAs, it is hard to keep up with all new ideas
and implementations. Recent attempts to classify and organize these algorithms
result in collections of over 500 distinct methods [3]. Each heuristic optimizer has
its own distinct set of parameters. Therefore, it is not trivial to remember and
understand all of these setups. To harness such detailed knowledge, it would be
beneficial to have guidance and advice on good practices and desired parameter
values for a wide range of MHAs.

This paper’s main contributions include examining various LLMs and their
capabilities as tuning agents of metaheuristics, giving some insightful, prompt

∗This work was partially supported by the program ”Excellence initiative - research univer-
sity” for the AGH University of Krakow and by Grant for Statutory Activity from the Faculty
of Physics and Applied Computer Science of the AGH University of Krakow.

631

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

advice in this context, and comparing tested models. The possibility of having
a head start as opposed to the default setting of the algorithm is highly valuable
and desired. Especially when the given set is already suited to the problem
being solved. This happens with using LLMs, where one can build a prompt
containing general information about the task. Such an approach often exceeds
the results achieved by running an algorithm with a default setup. Consequently,
using LLM-advised and problem-dedicated parameters constitutes a great way of
shifting the starting point towards already better and more promising solutions.

2 Related Work

The intersection of Large Language Models and Metaheuristic Algorithms yields
an abundance of possible applications. LLMs and MHAs can interact with each
other in two directions with regard to the subject of optimization. The first ap-
proach, more popular in literature, addresses the exploding popularity of LLMs
themselves. This direction employs Evolutionary Algorithms (EAs) to optimize
prompts [4], inputs of LLMs. That is a big research field, aiming to find the most
appropriate cues that would trigger a desired response of the Large Language
Model. Another way of utilizing bio-inspired computation is present in [5]. In
this work, the introduced framework mimics the Genetic Algorithm to generate
a set of candidate prompts. The alternative body of research is devoted to using
LLMs as systems that can design novel metaheuristics [6].

The second direction of LLMs and metaheuristics engagement employs the
first to optimize or tune the latter. The aforementioned works outline that,
so far, most interest is placed in the opposite direction of the interaction and
using LLMs to influence MHAs is not fully explored yet. However, the other
perspective of marrying together LLMs and EAs is present in [7]. This paper uses
LLM to perform selection and crossover, making it a sole part of the heuristic
itself. Such an approach is called an LLM-driven EA. A comprehensive overview
of both directions of interactions between LLMs and Evolutionary Algorithms
is presented in [8]. A limited amount of existing research in the field makes this
subject an exciting and open problem worth further exploration.

MHAs provide frameworks for search processes. They can be inspired by bi-
ology, human behavior, the sociology of mammals, physical phenomena, or even
sports strategies [9]. The most widespread examples of heuristic optimizers are
Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated Anneal-
ing (SA), or Particle Swarm Optimization (PSO). Despite the major drawback
of increasing computational complexity, these algorithms exhibit extraordinary
abilities in a variety of optimization tasks.

Combinatorial optimization problems create a rich playground for scientists
to find new approaches to solution seeking. Several challenges and also less
research-oriented events are devoted to solving such tasks. However, the oldest
and most well-studied problems make the best benchmarks as the primary at-
tention is directed not to the problem itself but to evaluating the novel idea of
solving it.

632

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

3 Methodology

The aim of this study is to examine if Large Language Models are capable
of optimizing MHAs’ parameters. As the models of interest, it was decided to
evaluate both versions of ChatGPT by OpenAI, Gemini by Google, and Le Chat
by Mistral AI models and thoroughly test their ability to tune metaheuristics.
To conduct such an experiment, two well-known discrete optimization problems
listed below, namely TSP and GCP, were chosen. An instance of TSP P01 is
defined on 15 cities, and it is provided along with TSPLIB [10]. The experimental
problem used for the second task, For the Graph Coloring Problem, the myciel3
graph was taken from [11], and it is defined by the graph of 11 vertices and 20
edges.

The LLMs themselves selected metaheuristic techniques by prompting which
algorithms best suit the given task. Once the problem instances and heuris-
tic optimization methods were chosen, the LLMs were asked to suggest initial
parameter values for heuristics. Moreover, the set of default values for each
metaheuristic was taken as a source for baseline experiments. Mealpy [12] was
determined as a go-to library for handling the optimization part of the experi-
ment. It is a well-established project that includes a huge collection of heuristic
optimizers. Another reason for selecting an existing, open-source library as op-
posed to personal implementations is that all 4 LLMs are aware of Mealpy’s
code, as documentation was part of their training corpora. Table 1 displays 3
types of exemplary prompts.

Which metaheuristic algorithms would you use to solve a TSP?

I want to solve TSP (defined on 15 cities) with GA. Its mealpy implementation takes
following parameters: parameters. Give advice on param values.

For TSP task with 15 cities you previously suggested parameter values for Genetic
Algorithm metaheuristic. Parameters and values. I run the GA algorithm 100 times
and got the avg global optimum of 0.375 with std of 0.03. I also measured variance
of the population at the beginning and last epoch: 9.598 and 5.675 correspondingly,
with std of 0.09 and 0.58. The solution at last epoch had avg fitness of 0.45 with std
of 0.37. What changes to the parameters would you suggest to improve performance?
Keep the epoch*pop size constant.

Table 1: Exemplary prompts. Text in italics is adjusted for each setup.

When LLM could not give an exact value for a given parameter, the default
one was used. In other scenarios, when the answer contained a range of values,
the middle point was calculated and passed to the heuristic optimizer. Each
MHA was run 100 times to achieve statistical significance, and after all of the
runs, the average values and standard deviations were derived.

To minimize the effect of the obvious advice of increasing population size or
the number of epochs, a constraint of the constant product of these two values
was introduced. This approach enables fair comparison between various runs of
experiments and fixes the computational cost.

633

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

(a) (b)

Fig. 1: (a) Genetic Algorithm solutions to Travelling Salesman Problem - P01
[10]. (b) Simulated Annealing solutions to Graph Coloring Scheduling Problem
- myciel3 [11].

As a consequence of selecting combinatorial optimization problems, the rep-
resentation of solutions is a vector adjusted accordingly to the task. To measure
the variance of generated populations, the Hamming distance was calculated.

To collect a new (feedback) set of parameter values, prompts containing in-
formation about the problem, initial setup, population variance (if applicable),
global optimum, and value at last epoch with their corresponding standard de-
viations were fed to LLMs. MHAs were rerun 100 times with new parameter
values and later compared with initial settings as well as with the default one.

4 Experimental Results

Detailed analysis of results is presented with regard to a certain task. Table 2
contains complete findings based on all experiments. Figure 1 presents exem-
plary convergence curves for 2 problems. It has to be pointed out that due to
the constant number of fitness function evaluations between both runs and the
fact that each LLM had the freedom to suggest its own values for them, curves
end in various epochs.

The first problem was solved with the use of ACO, GA, and SA. Figure 1(a)
shows the convergence curve of the Genetic Algorithm. It can be observed that
every LLM setup outperformed default settings. Interestingly, GPT4 in feedback
run yielded improvement from 386.01 to 359.97. The shape of the curves suggests
that if one increased the number of epochs for feedback runs, the results would
be even better.

The biggest disproportion can be observed in the case of Simulated Annealing
(see Table 2), where the default run settled at 478.315, whereas Mistral AI ended
calculations at 397.762 in the initial run. The feedback round of computation
resulted in a slight increase in solution quality, down to 391.805.

Solving GCP with Simulated Annealing resulted in the most differentiated
outcomes depicted in Figure 1(b). GPT3.5 not only found the global minimum,

634

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

TSP
LLM Run ACO GA SA

GPT 3.5
Initial 425.212 ± 14.26 (550) 379.71 ± 16.85 (550) 398.28 ± 28.91 (2000)
Feedback 422.718 ± 14.65 (550) 379.948 ± 16.81 (550) 400.415 ± 25.1 (3000)

GPT 4
Initial 422.226 ± 14.12 (750) 386.01 ± 14.47 (1500) 407.203 ± 31.61 (2000)
Feedback 423.346 ± 14.61 (500) 359.97 ± 17.16 (1140) 407.951 ± 32.69 (2000)

Gemini
Initial 440.241 ± 15.58 (150) 398.193 ± 17.44 (150) 411.658 ± 28.38 (1500)
Feedback 451.979 ± 16.08 (75) 412.138 ± 16.59 (134) 406.618 ± 27.73 (1725)

Mistral AI
Initial 427.52 ± 16.07 (300) 375.811 ± 17.53 (300) 397.762 ± 26.1 (3000)
Feedback 422.708 ± 15.92 (600) 401.038 ± 12.8 (200) 391.805 ± 23.6 (5000)

default Initial 415.719 ± 13.01 (1000) 397.779 ± 10.3 (1000) 478.315 ± 29.95 (1500)

GCP
PSO GA SA

GPT 3.5
Initial 0.403 ± 0.04 (400) 0.375 ± 0.05 (500) 0.157 ± 0.24 (3000)
Feedback 0.078 ± 0.08 (300) 0.593 ± 0.03 (500) 0 ± 0.31 (4500)

GPT 4
Initial 0.438 ± 0.04 (150) 0.364 ± 0.05 (300) 0.835 ± 0.02 (2750)
Feedback 0.473 ± 0.04 (120) 0.364 ± 0.03 (450) 0.845 ± 0.02 (2800)

Gemini
Initial 0.44 ± 0.04 (150) 0.387 ± 0.06 (300) 0.283 ± 0.2 (1000)
Feedback 0.333 ± 0.06 (120) 0.515 ± 0.04 (300) 0.578 ± 0.1 (1150)

Mistral AI
Initial 0.336 ± 0.03 (1000) 0.394 ± 0.09 (300) 0.902 ± 0.01 (550)
Feedback 0.276 ± 0.03 (714) 0.385 ± 0.09 (150) 0.942 ± 0 (1000)

default Initial 0.056 ± 0.04 (1000) 0.364 ± 0.04 (1000) 0.819 ± 0.03 (1500)

Table 2: Results of conducted experiments. Global Optimum values are averaged
over 100 runs of each setup, reported with a standard deviation. For population-
based algorithms (ACO, GA, PSO), the number of fitness function evaluations
remains constant. Figures in brackets reflect the amount of epochs each setup
was run for.

but its feedback run converged faster than the initial one would. What is more,
Gemini outperformed the default run, which in this scenario has a gentle conver-
gence curve. Analysis of convergence curves suggests that increasing the number
of epochs for Gemini-based runs would yield the fastest convergence. Notable
improvement can also be observed in GPT3.5-based runs of the PSO algorithm,
with the average Global Optimum of 0.403 and 0.078 in initial and feedback runs
correspondingly.

5 Conclusions

Results obtained throughout experiments gave evidence to support the hypoth-
esis that Large Language Models are capable of tuning metaheuristicsâ parame-
ters. It proves their ability to reason and draw meaningful conclusions based on
information delivered by prompts. These models, regardless of the provider, ex-
hibit abilities not only to outperform default algorithm setups but also to adapt
to obtained results and adjust parameter values where needed. Moreover, it was
observed that there is no single model that outperforms other LLMs.

635

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

In terms of prompt engineering - achieved results demonstrate that LLMs
do not require detailed information regarding problems being solved. There
is no need to feed the exact data via prompts to get practical suggestions for
parameter changes.

With the intention of deeper exploration of a presented idea, one could extend
this research to include other LLMs, run more feedback rounds and experiment
with more benchmark instances, or even train one’s own Large Language Model
aimed to tune MHAs parameters. It is a new field of research worth further study.
The findings of our paper can open up a still-growing field of MHAs to everyone
by reducing the knowledge required to consciously use them by involving LLMs
in the process.

References

[1] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models, 2023.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, 2019.

[3] Kanchan Rajwar, Kusum Deep, and Swagatam Das. An exhaustive review of the meta-
heuristic algorithms for search and optimization: taxonomy, applications, and open chal-
lenges. Artificial Intelligence Review, 56, 04 2023.

[4] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms
yields powerful prompt optimizers. In The Twelfth International Conference on Learning
Representations, 2024.

[5] Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan.
Prompt optimization in multi-step tasks (promst): Integrating human feedback and pref-
erence alignment, 2024.

[6] Michal Pluhacek, Anezka Kazikova, Tomas Kadavy, Adam Viktorin, and Roman Senkerik.
Leveraging large language models for the generation of novel metaheuristic optimization
algorithms. In Proceedings of the Companion Conference on Genetic and Evolutionary
Computation, GECCO ’23 Companion, page 1812â1820, New York, NY, USA, 2023.
Association for Computing Machinery.

[7] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language
models as evolutionary optimizers, 2023.

[8] Xingyu Wu, Sheng hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary
computation in the era of large language model: Survey and roadmap, 2024.

[9] Absalom Ezugwu, Amit Shukla, Rahul Nath, Ayo Akinyelu, Ovre Agushaka, Haruna
Chiroma, and Pranab Muhuri. Metaheuristics: a comprehensive overview and classiication
along with bibliometric analysis. Artificial Intelligence Review, 54:1–79, 03 2021.

[10] John Burkardt. TSP Data for the Traveling Salesperson Problem.
https://people.sc.fsu.edu/ jburkardt/datasets/tsp/tsp.html. Accessed: 2024-03-01.

[11] Michael Trick. Michael Trick’s Operations Research Page.
https://mat.gsia.cmu.edu/COLOR/. Accessed: 2024-03-20.

[12] Nguyen Van Thieu and Seyedali Mirjalili. Mealpy: An open-source library for latest
meta-heuristic algorithms in python. Journal of Systems Architecture, 2023.

636

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Friday
	ES2024-209-4

