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Abstract.

Biological neurons communicate with each other using two broad cate-
gories of spike event coding: rate-based and temporal. Rate-based coding
communicates analog information on a continuous scale through the in-
tensity of bursts of spikes while temporal coding relies on the timing of
spike events. It has been shown that temporal coding has higher infor-
mation capacity than rate based coding, but is much more challenging
to model due to difficulties estimating spike-time statistics. In this pa-
per we demonstrate how history dependent NMDA-modulated ‘resonant’
synapses organised in ‘functional synaptic clusters’ provide a robust mech-
anism for decoding temporally structured spike trains.

1 Introduction

Spiking neural networks (SNNs) are biologically inspired event driven models
that are gaining much attention in the Machine Learning (ML) community,
largely due to the computational efficiencies they afford compared to conven-
tional artificial neural networks (ANNs) [1, 2]. Numerous SNN models proposed
and studied in the literature use rate-based coding, despite the fact that tem-
poral coding is capable of representing a wider spectrum of information types
such as categorical information, which can be represented by the relative order
of specific sequences of inter-spike intervals (ISIs) that make up the sequence [3].

Decoding time structured spike trains, however, remains challenging, par-
ticularly with respect to the problem of overlapping spikes carrying different
timings arriving at the same neuron. Current state-of-the-art in synaptic adap-
tation requires that spikes are synchronous (i.e. phase-locked to a ‘reference’
spike train of constant period) otherwise there can be no way of preventing
a fortuitous timing overlap corresponding to an encoded pattern. This paper
presents a new asynchronous learning mechanism based on the statistics of ISI
timing sensitivities in synapses to address the decoding challenge.

Recent experimental evidence strongly suggests that certain classes of bio-
logical synapses are (short-term) history dependent [4], responding to the short-
term temporal features of incoming presynaptic spike trains. A growing body
of research [5, 6] indicates the potential importance of N-methyl D-aspartate
(NMDA) synaptic receptors in the mediation of timing-dependent learning. Our
methodology aims to simulate these NMDA mechanisms at a functional level
(as opposed to an accurate biophysical level) in order to create synapses that
differentially adapt to particular ISIs.
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Using such ‘resonant’ synapses to decode temporal sequences of ISIs requires
local coordination between each synapse responding to a particular ISI inci-
dent on a given neuron. If a given sequence is to be decoded, multiple reso-
nant synapses must transmit in a specific order to induce a postsynaptic action
potential that signifies the successful decoding of the presynaptic spike train
(Figure 1B). Further recent experimental evidence indicates the existence of
functional synaptic clusters where nearby dendritic synapses are recruited into
self-organised groups capable of collectively generating specific transmission re-
sponses [7]. Our model will make use of this to enable the emergence of clusters
of synapses that align their axonal and dendritic time delays to respond jointly
to the specific sequences of ISIs of a given spike train (Figure 1C).

2 Methodology

We take as a starting point the NMDA synapse. NMDA kinetics, acting on
timescales on the order of tens of milliseconds, involve a magnesium block [8]
that must be ‘unblocked’ by an initial spike (action potential) to trigger eligibility
for synaptic modification mediated by Ca2+ influx, which can then be induced
by a second spike arriving during the window of the Mg2+ unblock.

We seek a reasonable computational approximation for the NMDA channel
kinetics that can be modified under the action of spike pairs to produce responses
tuned for specific ISIs, without necessarily having to model detailed biophysical
kinetics. If the hypothesis of Shouval, et al. [5], that a slow depolarising tail
in the NMDA kinetics leads to favourable conditions for backpropagating action
potentials (BPAPs) in the dendrites, and following [8] this response is in turn a
consequence of asymmetric unblocking of individual channels (localised receptor
sites), then we may consider the likelihood of unblock of a single channel as a
Bernoulli trial (random event with binary outcome) with some probability in the
range [0,1]. We aim to model the open channel probability, P (o), of the synapse.

Assuming that there are many such individual channels at a synapse and that
the overall kinetic is governed by the number of channels unblocked, the posterior
distribution P (c|o) where c is the number of open channels, will be a binomial

distribution, whose conjugate prior is the beta distribution P (o) = oa−1(1−o)b−1

B(a,b)

where B(a, b) is the Beta function B(a, b) =
∫ 1

0
ua−1(1−u)b−1du; a, b ∈ (0,∞). It

therefore seems plausible to model the channel kinetics using a beta distribution.
The mean of the distribution would represent the optimum delay in the arrival
of successive presynaptic spikes, that will facilitate synaptic transmission. If we
further postulate that the distributions two hyper-parameters α and β can be
modulated during induction of synaptic plasticity, we can introduce a mechanism
for learning of specific ISI delays.

The Beta distribution is defined over the range [0,1]. This is suitable for
defining open channel probability; however, it is convenient to use time as a
proxy variable for the open channel probability, and in this case, we need a
distribution defined over the interval (tmin, tmax) where the time bounds are a
further pair of hyper-parameters defining the timescale of the NMDA response
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Generalised Beta Distributions
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Fig. 1: The resonant synaptic concept

kinetic. For this purpose, we employed the generalised beta distribution [9]:

gBeta(x; a, b, tmin, tmax) =
(x− tmin)

a−1(tmax − x)b−1

B(a, b)(tmax − tmin)a+b−1
(1)

over the open interval specified by tmin and tmax, where B(a, b) is a beta dis-
tribution with shape parameters a and b. The mean and variance of the gener-

alized Beta distribution (Equation 1) are given by µ = tmin + a(tmax−tmin)
a+b and

σ = ab(tmax−tmin)
2

(a+b)2(a+b+1) respectively. Solving a system of two equations (µ, σ) with

two unknowns (a,b) gives the values of a and b as:

a = l(tmax−tmin)
2−σ(l+1)2

σ(1+3l+3l2+l3) ; b = al, where l = tmax−µ
µ−tmin

(2)

The values of min and max were treated as known (min=0,max=0.05).
We used Brian2 (https://briansimulator.org) to create a model for the NMDA

synapse and integrated it with a standard leaky-integrate-and-fire (LIF) model
evaluated using closed-form integration to build a very simple series of networks
that can learn to decode temporally coded spike trains between neuron pairs.
The details of the model are as follows. Neurons, as noted, use the Leaky
Integrate-and-Fire model:

τm
dV

dt
= Vr − V +

τm(Isyn + Ios)

Cm
; If (V ≥ Vt), V = Vs (3)

Synapses are modelled using the unimodal Generalised Beta Distribution
(GBD) indicated in equation 1, which approximates the experimentally observed
NMDA kinetics. Parameters of the GBD were initialised randomly per synapse.
Synaptic output was generated by Bernoulli sampling with probability equal to
the value of the GBD corresponding to the ISI since the previous spike, with
fixed current injection of 0.075 nA for a membrane capacitance of 1 nF.

Each synapse has an independent temporal delay in the range 10-20 ms
for spike arrival from the pre-synaptic neuron. These temporal delays were
adapted in batch mode to enable the transmission of multiple synapses in short-
term temporal sequences (e.g. t1, t2...tn), preserving the order of the inter-spike



intervals of the received spike train (ISI1, ISI2...ISIn). The delays between all
transmissions apart from the last one were calculated to result in an excitatory
post-synaptic potential (EPSP) below threshold but above rest for neuron (vb),
whilst the delay of the last transmission of the sequence was calculated to achieve
above above-threshold EPSP for neuron (va). Time delays were calculated using
tT = −τm log((vT −Is)/vs), where tT is the target time delay between successive
transmissions, τm is the decay constant in Equation 2, vT is the target potential
(either vb or va), and vs is the anticipated pre-transmission potential which will
be either 0 if the spike is the first transmission of the sequence, or vb following a
previous sub-threshold transmission. The initial delays were updated by a delta-
rule-like function which moves the delays a fractional step towards the target
delays. Synaptic plasticity was modelled by adapting the mean and standard
deviation of the GBD according to the statistics of the corresponding ISIs.1

3 Results

Two experiments were carried out using our model. Experiment 1 tests the
capacity of a two neuron model to selectively decode a specific time structured
spike train amongst a series of similar spike trains. Experiment 2 explores the
precision and recall of a three neuron model with jittered versions of two different
time structured spike trains.

In Experiment 1 the architecture shown in Figure 1B was used to study the
functional resonant synapse cluster’s capacity to correctly decode a specific three
spike input. The input consisted of a series of 3-spike sequences in which the
timing of the first and the third spike relative to each other were at a fixed
interval, but the timing of the second spike was varied to sweep a range of values
between the first and third spikes. One of these sequences was arbitrarily selected
as the target sequence to decode and the delays and the gBeta parameters of
the two resonant synapses were manually set to decode the target sequence.

Figure 2 presents the results of one pass through the full input sequence. As
can be seen, the model successfully decodes the target sequence (indicated with
‘*’), including slight variations thereof. Note also that later in the input there
are sequences which have ISIs that cause the synapses to transmit, but because
these intervals are not in required order, the transmissions do not result in the
erroneous firing of the output neuron.

Experiment 2 sought to evaluate the precision and recall capacity of the
synaptic adaptation mechanism of this model using a 3-neuron network, as
shown in Figure 1C. The input neuron emits noisy versions of two distinct time-
structured spike trains labelled ‘I1’ and ‘I2’. Each output neuron is connected
to the input neuron via a cluster of two resonant synapses. After learning, each
neuron should fire only and uniquely for variants of one of the patterns.

A ‘training signal’ in the form of an above-threshold input to the correspond-
ing output neuron, is used to indicate to the synaptic clusters which of the two

1Full model details are given in the supplementary material at
https://github.com/ntcrook/ESANN2023
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Fig. 2: Time series of the neurons for Experiment 1. Dashed line indicates firing
threshold. Top plot is presynaptic, bottom postsynaptic. ‘*’ = target sequence

output neurons should fire in response to a given input sequence. When a cluster
adapts to a given input sequence, it will assign each incoming ISI to the corre-
sponding resonant synapse deterministically (i.e. first ISI to synapse 1, second
to synapse 2 etc). The activated cluster will adjust the mean and variance of its
synapses’ GBD and their relative axonal delays to decode the input sequence.

The results from fifty experimental runs were collected using this network.
Each run consisted of alternating jittered versions of spike trains I1 and I2 to-
talling 700 spike train sequences. Adaptation was not activated during the first
and last 100 sequences, during which precision and recall data was collected
and averaged, but was otherwise enabled. Delays and GBD parameters of each
synapse were uniformly randomised at the start of each experimental run.

Precision Recall
Pre-training 0.481 0.183
Post-training 0.856 0.919

Table 1: Precision and Recall results from Experiment 2

The precision and recall data before and after adaptation gives a measure of
how successful the adaptation mechanisms have been in facilitating the decoding
of the two training patterns. Table 1 shows precision and recall values averaged
over the 50 experimental runs, using jittered versions of I1 and I2. These values
were calculated using counts of true positives, false positives and false negatives
of the spikes generated by each output neuron. Results demonstrate that the
proposed model for adaptive functional synaptic clusters is capable of learning
to successfully decode jittered versions of target time-structured spike trains.
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4 Conclusion

Our new ‘resonant’ synapse model introduces a simple computational method
demonstrating the viability of a timing-based approach to spiking neural com-
putation. The model is loosely based upon biology, but uses a series of approx-
imations to achieve a tractable form for large-scale networks. Our aim is to
use the learning rule integrated into the model to generate efficient networks for
real-time computing applications. It should be emphasised that this particular
model is an empirical approximation - it is not designed either to replicate exact
biophysical kinetics or to represent a causal model for how those kinetics might
arise. However, there may be useful implications for biology arising from the
parametric properties of the model. There are also interesting future theoretical
problems in information theory: our experiments revealed potential bounds on
the ISI width that corresponds to the same ‘symbol’ in the input space, and we
are interested in developing formal expressions for the representational capacity
of the overall network and information-per-spike of any given input sequence.
Although our results to date are simply a preliminary demonstration of concept,
they set the stage for a new generation of efficient, spike-based neural models.
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