Abstract
The performance of single and multielement Geiger-mode avalanche photodiode (GM-APD) devices are investigated as a function of the detector’s reset or dead time. The theoretical results, developed herein, capture the effects of both quantum fluctuations and speckle noise and are shown to agree with Monte Carlo simulation measurements. First, a theory for the mean response or count rate to an arbitrary input flux is developed. The probability that the GM-APD is armed is shown to be the ratio of this mean response to the input flux. This arm probability, , is then utilized to derive the signal photon detection efficiency (SPDE), which is the fraction of signal photons that are detected. The SPDE is a function of the input flux, the arm probability, and the dead time. When the dead time is zero, GM-APDs behave linearly, is unity, and the SPDE theory is simplified to the detector’s effective quantum efficiency. When the dead time is long compared to the acquisition gate time, the theory converges to previously published “infinite” dead-time theories. The SPDE theory is then applied to develop other key ladar performance metrics, e.g., signal-to-noise ratio and detection statistics. The GM-APD detection statistics are shown to converge to that of a linear photon counting device when the combined signal and noise flux is much less than the reset rate. For higher flux levels, the SPDE degrades, due to a decreased arm probability, and the detection probability degrades relative to that of a linear device.
© 2009 Optical Society of America
Full Article | PDF ArticleMore Like This
Adam B. Milstein, Leaf A. Jiang, Jane X. Luu, Eric L. Hines, and Kenneth I. Schultz
Appl. Opt. 47(2) 296-311 (2008)
Xin Zhou, Jianfeng Sun, Peng Jiang, Di Liu, and Qi Wang
Appl. Opt. 57(10) 2667-2674 (2018)
Zhijian Li, Jiancheng Lai, Chunyong Wang, Wei Yan, and Zhenhua Li
Appl. Opt. 56(23) 6680-6687 (2017)