Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21090034-7    https://doi.org/10.11896/cldb.21090034
  无机非金属及其复合材料 |
硅灰对再生混凝土界面过渡区的影响
高嵩1,2, 班顺莉1, 郭嘉1, 邹传学3, 宫尧尧1
1 青岛理工大学土木工程学院,山东 青岛 266033
2 青岛理工大学,蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033
3 青建集团股份有限公司,山东 青岛 266033
Effect of Silica Fume on Interfacial Transition Zone of Recycled Concrete
GAO Song1,2, BAN Shunli1, GUO Jia1, ZOU Chuanxue3, GONG Yaoyao1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
2 Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, Shandong, China
3 Qing Jian Group Co., Ltd., Qingdao 266033, Shandong, China
下载:  全 文 ( PDF ) ( 14466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善再生混凝土的力学和耐久性能,以硅灰为增强材料对再生混凝土进行改良。研究了硅灰对再生混凝土3 d、28 d、90 d抗压强度和28 d、90 d抗氯离子渗透性能的影响。结合扫描电镜、显微硬度等微观观测手段,分析了28 d再生混凝土试样微观结构和性能变化。采用压汞法测试了再生混凝土的孔结构参数,探究硅灰对再生混凝土孔隙性能的影响。结果表明:硅灰可以提升再生混凝土的抗氯离子渗透性能,随掺量的增加提升效果先增后减;掺入硅灰可以改善再生混凝土多重界面过渡区结构,增加界面过渡区(ITZ)显微硬度,降低孔隙率。再生混凝土内部存在较多有害孔隙,硅灰可以细化孔隙结构,降低孔隙率,掺量为6%时效果最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高嵩
班顺莉
郭嘉
邹传学
宫尧尧
关键词:  再生混凝土  硅灰  抗压强度  显微硬度  界面过渡区  孔结构    
Abstract: In order to improve recycled concrete's mechanical properties and durability, silica fume was used as a reinforcing material. The influence of silica fume on the compressive strength at 3 days, 28 days, and 90 days and the ability to resist chloride ion penetration at 28 and 90 days for the recycled concrete were investigated. The microstructure of recycled concrete at 28 days was analyzed by micro-testing equipment such as scanning electron microscopy, microhardness tester. The Mercury Intrusion Porosimetry was used to investigate pore structure parameters and analyze the effect of silica fume on the pore properties. The results show that silica fume is beneficial to improve the ability to resist chloride ion penetration for recycled concrete, and the strengthening effect increases first and then decreases with the increasing of silica fume dosage. Silica fume improves the structure of multiple interfacial transition zones for recycled concrete, increasing ITZ microhardness and reducing ITZ porosity. There are many harmful pores in recycled concrete, silica fume refines the pore structure and reduces the porosity of the recycled concrete, the improvement effect is the best at the dosage of 6%.
Key words:  recycled concrete    silica fume    compressive strength    microhardness    interface transition zone    pore structure
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51978353)
通讯作者:  高嵩,通信作者,博士,教授,青岛理工大学土木工程材料实验室主任,建材教研室教师。2005年4月毕业于Stellenbosch University,获得工学硕士学位,2013年毕业于青岛理工大学,获得博士学位。主要从事建筑材料耐久性研究,新型复合材料的制备、性能研究,工矿业固体废弃物资源化利用研究等工作。主持国家自然科学基金和国家自然基金重点基金联合项目子课题等多项研究基金,出版专著3部,发表论文40余篇。   
引用本文:    
高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
GAO Song, BAN Shunli, GUO Jia, ZOU Chuanxue, GONG Yaoyao. Effect of Silica Fume on Interfacial Transition Zone of Recycled Concrete. Materials Reports, 2023, 37(11): 21090034-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090034  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21090034
1 Li H, Guo Q J, Wang J B, et al. Materials Reports, 2020, 34(13), 13050 (in Chinese).
李恒, 郭庆军, 王家滨, 等. 材料导报, 2020, 34(13), 13050.
2 Li Y, Yang X B, Lou P, et al. Construction and Building Materials, 2021, 287.
3 Sun D S, Li Z Y, Liu K W, et al. Materials Reports, 2021, 35(11), 11027 (in Chinese).
孙道胜, 李泽英, 刘开伟, 等.材料导报, 2021, 35(11), 11027.
4 Xie J, Zhang H, Duan L, et al. Construction and Building Materials, 2020, 256(30), 119393.
5 Fang G H, Zhang M Z. Cement and Concrete Research, 2020, 129, 105963.
6 Bao J Z, Dong X X, Chi S P, et al. Cement and Concrete Research, 2020, 136, 106175.
7 Zeng J J, Fan Z H, Wang S N. Journal of Wuhan University of Technology, 2014, 36 (6), 115 (in Chinese).
曾俊杰, 范志宏, 王胜年. 武汉理工大学学报, 2014, 36 (6), 115.
8 Zhang X, Zhang H, Zhang X L, et al. Journal of Building Materials, 2019, 22(4), 626 (in Chinese).
张雄, 张恒, 张晓乐, 等. 建筑材料学报, 2019, 22(4), 626.
9 Yu Q, Zeng J J, Fan Z H. Bulletin of the Chinese Ceramic Society, 2014, 33(12), 3134 (in Chinese).
余强, 曾俊杰, 范志宏.硅酸盐通报, 2014, 33(12), 3134.
10 Xuan D X, Shui Z H, Wu S P. Construction and Building Materials, 2009, 23 (7), 2631.
11 Nili M, Ehsani A. Materials and Design, 2015,75, 174.
12 Lizarazo-Marriaga J, Higuera C, Claisse P. Construction and Building Materials, 2014,52, 9.
13 Xu W B, Shui Z H, Ma J T, et al. Bulletin of the Chinese Ceramic Society, 2011, 30 (1), 7 (in Chinese).
徐文冰, 水中和, 马军涛, 等. 硅酸盐通报, 2011, 30(1), 7.
14 Yue G B, Ma Z M, Liu M, et al. Construction and Building Materials, 2019, 245 (10), 118419.
15 Wong H S, Head M K, Buenfeld N R. Cement and Concrete Research, 2005, 36 (6), 1083.
16 Gao Y, Schutter G D, Ye G, et al. Construction and Building Materials, 2013, 38 (1), 1051.
17 Li H, Wang J B, Guo Q J, et al. Bulletin of the Chinese Ceramic Society, 2020, 39 (8), 2608 (in Chinese).
李恒, 王家滨, 郭庆军,等. 硅酸盐通报, 2020, 39 (8), 2608.
18 Wang Z X, Li Q Y, Cao Y B, et al. Bulletin of the Chinese Ceramic Society, 2017, 36 (2), 443 (in Chinese).
王忠星, 李秋义, 曹瑜斌,等. 2017, 36 (2), 443.
19 Gao Y, Schutter G D, Ye G.Cement and Concrete Research, 2013 ,52, 149.
20 Duan P, Shui Z H, Chen W, et al. Construction and Building Materials, 2013, 44 (7), 1.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[3] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[4] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[5] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[6] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[7] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[8] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[11] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[12] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[13] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[14] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[15] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed