21 July 2016 Face liveness detection using shearlet-based feature descriptors
Lai-Man Po, Yuming Li, Fang Yuan, Litong Feng
Author Affiliations +
Funded by: City University of Hong Kong
Abstract
Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.
© 2016 SPIE and IS&T 1017-9909/2016/$25.00 © 2016 SPIE and IS&T
Lai-Man Po, Yuming Li, Fang Yuan, and Litong Feng "Face liveness detection using shearlet-based feature descriptors," Journal of Electronic Imaging 25(4), 043014 (21 July 2016). https://doi.org/10.1117/1.JEI.25.4.043014
Published: 21 July 2016
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Facial recognition systems

Databases

Video

Biometrics

Feature extraction

Detection and tracking algorithms

Image quality

RELATED CONTENT


Back to Top