• Open Access

Unified model for inflation, pseudo-Goldstone dark matter, neutrino mass, and baryogenesis

Rabindra N. Mohapatra and Nobuchika Okada
Phys. Rev. D 105, 035024 – Published 22 February 2022

Abstract

We present a unified theory of inflation, neutrino mass, baryogenesis, and dark matter where global lepton number symmetry and its breaking play a crucial role. The basic idea is to use a lepton number carrying a complex scalar field as the inflaton as well as the field that implements Affleck-Dine (AD) leptogenesis. Dark matter is the massive Majoron which is a pseudo-Goldstone boson, resulting from the spontaneous breaking of lepton number symmetry supplemented by explicit lepton number violation needed to implement AD leptogenesis. The magnitude of the resulting nB/s in the model is related to the mass of the pseudo-Goldstone dark matter, connecting two apparently disconnected cosmological observations. An inverse seesaw mechanism with lepton number breaking at low scale is crucial to prevent washout of the lepton asymmetry during the universe’s evolution. The model seems to provide an economical solution to several puzzles of the standard model of particle physics and cosmology in one stroke.

  • Figure
  • Received 10 December 2021
  • Accepted 7 February 2022

DOI:https://doi.org/10.1103/PhysRevD.105.035024

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Rabindra N. Mohapatra1 and Nobuchika Okada2

  • 1Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
  • 2Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 105, Iss. 3 — 1 February 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×