paper The following article is Open access

Light detection and cosmic rejection in the ICARUS LArTPC at Fermilab

Published 20 May 2024 © 2024 The Author(s)
, , Citation A. Heggestuen on behalf of the ICARUS collaboration 2024 JINST 19 C05038 DOI 10.1088/1748-0221/19/05/C05038

1748-0221/19/05/C05038

Abstract

The ICARUS-T600 detector is a 760-ton Liquid Argon Time Projection Chamber (LArTPC) currently operating at Fermilab as the Far Detector in the Short Baseline Neutrino (SBN) program. The SBN program is composed of three LArTPCs with a central goal of testing the sterile neutrino hypothesis. After operating for 3-years in the Gran Sasso Underground Laboratory, the ICARUS detector was shipped to CERN where it was outfitted with 360 8" Photomultiplier Tubes (PMTs) for a new optical detection system. The PMT system detects fast scintillation light from charged particles interacting in the Liquid Argon, generating the trigger signal for the full detector and allows 3D reconstruction of events. Now operating at shallow depth, the detector is exposed to a high flux of cosmic rays that can fake neutrino interactions. To mitigate this effect a Cosmic Ray Tagger (CRT) and a 3-meter-thick concrete were installed. Precise timing information from both the PMT and CRT subsystems can help to identify whether an interaction originated from inside or outside of the ICARUS cryostat. This paper reviews a method for cosmogenic background reduction and timing calibration of the CRT and PMT light detection systems in ICARUS.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.