One of the main challenges in Environmental sciences is the identification and chemical evolution of polluting traces (e.g, cadmium or antimony) in soil, which requires long acquistion times for accurate measurements at synchrotron facilities. In this context, the potential of a new generation multi-element germanium detectors to identify traces at 0.1-1 ppm in a reasonable time has been studied using Allpix Squared framework [1]. This code has been customized to include the three dimensional electric and weighting field maps generated by COMSOL Multiphysics software, and several features to model the sample environment at SOLEIL synchrotron and the signal response of a germanium detector equipped with a Digital Pulse Processor (DPP). The full simulation chain has been validated by experimental data from SAMBA beamline of SOLEIL synchrotron. This work presents a first estimation of the detection limit to cadmium traces in a soil sample for a future multi-element germanium detector, using this simulation chain.