Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. International Journal of Computational Intelligence Systems
  3. Article

Clustering bipartite graphs in terms of approximate formal concepts and sub-contexts

  • Research Article
  • Open access
  • Published: 01 November 2013
  • Volume 6, pages 1125–1142, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

International Journal of Computational Intelligence Systems Aims and scope Submit manuscript
Clustering bipartite graphs in terms of approximate formal concepts and sub-contexts
Download PDF
  • Bruno Gaume1,
  • Emmanuel Navarro2 &
  • Henri Prade2 
  • 65 Accesses

  • 14 Citations

  • Explore all metrics

Abstract

The paper first offers a parallel between two approaches to conceptual clustering, namely formal concept analysis (augmented with the introduction of new operators) and bipartite graph analysis. It is shown that a formal concept (as defined in formal concept analysis) corresponds to the idea of a maximal bi-clique, while sub-contexts, which correspond to independent “conceptual worlds” that can be characterized by means of the new operators introduced, are disconnected sub-graphs in a bipartite graph. The parallel between formal concept analysis and bipartite graph analysis is further exploited by considering “approximation” methods on both sides. It leads to suggest new ideas for providing simplified views of datasets, taking also inspiration from the search for approximate itemsets in data mining (with relaxed requirements), and the detection of communities in hierarchical small worlds.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Conceptual Analysis
  • Concept Formation
  • Functional clustering
  • Graph Theory
  • Graph Theory in Probability
  • Substructural Logics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. of the 1993 ACM SIGMOD Inter. Conf. on management of data, pages 207–216, New York, 1993.

  • Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466:761–764, August 2010.

    Google Scholar 

  • R. Albert and A. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, January 2002.

    Google Scholar 

  • A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, October 1999.

    Google Scholar 

  • M. J. Barber. Modularity and community detection in bipartite networks. Phys. Rev. E, 76(6), December 2007.

  • R. Belohlavek. Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, 2002.

  • V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. of Statistical Mechanics: Theory and Experiment, 10:P10008, October 2008.

  • B. Bollobas. Modern Graph Theory. Springer, 2002.

  • L. Cerf, P.N. Mougel, and J.F. Boulicaut. Agglomerating local patterns hierarchically with alpha. In Proc. of the 18th ACM Conf. on Information and Knowledge Management, CIKM’09, pages 1753–1756, New York, 2009.

  • H. Cheng, P. S. Yu, and J. Han. Ac-close: Efficiently mining approximate closed itemsets by core pattern recovery. In Proc. of the 6th Inter. Conf. on Data Mining, ICDM’06, pages 839–844, Washington, 2006.

  • A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Phys. Rev. E, 70(6):066111, December 2004.

  • A. Davis, B. B. Gardner, and M. R. Gardner. Deep South. Chicago: The University of Chicago Press, 1941.

    Google Scholar 

  • J. C. Delvenne, S. N. Yaliraki, and M. Barahona. Stability of graph communities across time scales. Proc. of the National Academy of Sciences of the USA, 107(29):12755–12760, 2010.

    Google Scholar 

  • I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proc. of the seventh ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data mining, pages 269–274, San Francisco, 2001.

  • Y. Djouadi, D. Dubois, and H. Prade. Graduality, uncertainty and typicality in formal concept analysis. In C. Cornelis, G. Deschrijver, M. Nachtegael, S. Schockaert, and Y. Shi, editors, 35 years of Fuzzy Set Theory, pages 127–147. Springer, 2010.

  • Y. Djouadi, D. Dubois, and H. Prade. Possibility theory and formal concept analysis: Context decomposition and uncertainty handling. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, Computational Intelligence for Knowledge-Based Systems Design, Proc. 13th Inter. Conf. on Information Processing and Management of Uncertainty (IPMU 2010), Dortmund, June 28 - July 2, volume 6178 of LNAI, pages 260–269. Springer, 2010.

  • D. Dubois, F. Dupin de Saint-Cyr, and H. Prade. A possibility theoretic view of formal concept analysis. Fundamenta Informaticae, 75(1):195–213, 2007.

    Google Scholar 

  • D. Dubois and H. Prade. Possibility theory and formal concept analysis in information systems. In Proc. 13th Inter. Fuzzy Systems Association World Congress IFSA-EUSFLAT, Lisbon, July 2009.

  • D. Dubois and H. Prade. Bridging gaps between several frameworks for the idea of granulation. In Proc. IEEE Symp. on Foundations of Computational Intelligence, 3rd Symp. Series on Computational Intelligence (IEEE SSCI’11), Paris, April 11–15, 2011.

  • D. Dubois and H. Prade. Possibility theory and formal concept analysis: Characterizing independent sub-contexts. Fuzzy Sets and Systems, 2012, to appear.

  • T. S. Evans. Clique graphs and overlapping communities. J. of Statistical Mechanics: Theory and Experiment, 2010(12):P12037, 2010.

  • T. S. Evans and R. Lambiotte. Line graphs, link partitions, and overlapping communities. Phys. Rev. E, 80(1):016105, July 2009.

  • S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174, 2010.

    Google Scholar 

  • B. Ganter, G. Stumme, and R. Wille (eds.). Formal Concept Analysis: Foundations and Applications, volume 3626 of LNAI. Springer, 2005.

  • B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, 1999.

  • B. Gaume. Balades aléatoires dans les petits mondes lexicaux. I3 Information Interaction Intelligence, 4(2), 2004.

  • B. Gaume and F. Mathieu. PageRank induced topology for real-world networks. Complex Systems. (to appear).

  • B. Gaume, E. Navarro, and H. Prade. A parallel between extended formal concept analysis and bipartite graphs analysis. In E. Hüllermeier, R. Kruse, and F. Hoffmann, editors, Computational Intelligence for Knowledge-Based Systems Design, Proc. 13th Inter. Conf. on Information Processing and Management of Uncertainty (IPMU 2010), Dortmund, June 28 - July 2, volume 6178 of LNAI, pages 270–280. Springer, 2010.

  • R. Guimerà, M. Sales-Pardo, and L. N. Amaral. Module identification in bipartite and directed networks. Phys. Rev. E, 76:036102, September 2007.

  • R. Gupta, G. Fang, B. Field, M. Steinbach, and V. Kumar. Quantitative evaluation of approximate frequent pattern mining algorithms. In Proc. of the 14th ACM SIGKDD Inter. Conf. on Knowledge discovery and data mining, KDD ‘08, pages 301–309, New York, 2008.

  • T. Hu, C. Qu, C. L. Tan, S. Y. Sung, and W. Zhou. Preserving patterns in bipartite graph partitioning. In Proc. of 18th IEEE Inter. Conf. on Tools with Artificial Intelligence. ICTAI’06., pages 489–496, November 2006.

  • N. Jay, F. K., and A. Napoli. Analysis of social communities with iceberg and stability-based concept lattices. In R. Medina and S. A. Obiedkov, editors, Proc. 6th Inter. Conf. on Formal Concept Analysis (ICFCA’08), Montreal, volume 4933 of LNCS, pages 258–272. Springer, 2008.

  • B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical J., 49:291, 1970.

  • F. Klawonn. Fuzzy points, fuzzy relations and fuzzy functions. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic, pages 431–453. Physica-Verlag, Heidelberg, Germany, 2000.

  • M. Klimushkin, S. A. Obiedkov, and C. Roth. Approaches to the selection of relevant concepts in the case of noisy data. In L. Kwuida and B. Sertkaya, editors, Proc. 8th Inter. Conf. on Formal Concept Analysis (ICFCA’10), Agadir, volume 5986 of LNCS, pages 255–266. Springer, 2010.

  • S. O. Kuznetsov, S. A. Obiedkov, and C. Roth. Reducing the representation complexity of lattice-based taxonomies. In U. Priss, S. Polovina, and R. Hill, editors, Conceptual Structures: Knowledge Architectures for Smart Applications, Proc. 15th Inter. Conf. on Conceptual Structures, Sheffield, volume 4604 of LNCS, pages 241–254. Springer, 2007.

  • A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative analysis. Phys. Rev. E, 80(5):056117, November 2009.

  • M. Latapy, C. Magnien, and N. Del Vecchio. Basic notions for the analysis of large two-mode networks. Social Networks, 30(1):31–48, 2008.

    Google Scholar 

  • S. Lehmann, M. Schwartz, and Lars Kai Hansen. Biclique communities. Phys. Rev. E, 78(1):016108–9, 2008.

    Google Scholar 

  • T. Murata. Modularity for bipartite networks. In Nasrullah Memon, Jennifer Jie Jie Xu, David L. L. Hicks, and Hsinchun Chen, editors, Data Mining for Social Network Data, volume 12 of Annals of Information Systems, pages 109–123. Springer US, 2010.

  • E. Navarro, Y. Chudy, B. Gaume, G. Cabanac, and K. Pinel-Sauvagnat. Kodex ou comment organiser les résultats d’une recherche d’information par détection de communautés sur un graphe biparti ? In Proc. of CORIA, Avignon, pages 25–40, March 2011.

  • M. E. J. Newman. The structure and function of complex networks. SIAM Review 45, pages 167–256, March 2003.

  • M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74(3):036104–19, 2006.

  • Y. Okubo and M. Haraguchi. Finding Top-N pseudo formal concepts with core intents. In Proc. of the 6th Inter. Conf. on Machine Learning and Data Mining in Pattern Recognition, pages 479–493, Leipzig, Germany, 2009.

  • G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043):814–818, 2005.

    Google Scholar 

  • N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

    Google Scholar 

  • P. Pons and M. Latapy. Computing communities in large networks using random walks (long version). J. of Graph Algorithms and Applications (JGAA), 10(2):191–218, 2006.

    Google Scholar 

  • M. Porter, J. P. Onnela, and P. J. Mucha. Communities in networks. Notices of the American Mathematical Society, 56(9):1082–1097, 2009.

    Google Scholar 

  • M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proc. of the National Academy of Sciences, 105(4):1118–1123, 2008.

    Google Scholar 

  • C. Roth and P. Bourgine. Epistemic communities: Description and hierarchic categorization. Mathematical Population Studies, 12:107–130, June 2005.

    Google Scholar 

  • S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

    Google Scholar 

  • P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, Boston, 2005.

    Google Scholar 

  • D. Watts and S. Strogatz. Collective dynamics of “small-world” networks. Nature, 393:440–442, 1998.

    Google Scholar 

  • C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets in high dimensions. In Proc. of the seventh Inter. Conf. on Knowledge Discovery and Data mining, pages 194–203, 2001.

Download references

Author information

Authors and Affiliations

  1. CLLE-ERSS, Université de Toulouse II, 5, allées Antonio Machado, Toulouse, 31058 Cedex 9, France

    Bruno Gaume

  2. IRIT, Université de Toulouse III, 118 Route de Narbonne, Toulouse, 31062 Cedex 9, France

    Emmanuel Navarro & Henri Prade

Authors
  1. Bruno Gaume
    View author publications

    Search author on:PubMed Google Scholar

  2. Emmanuel Navarro
    View author publications

    Search author on:PubMed Google Scholar

  3. Henri Prade
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Bruno Gaume.

Additional information

This paper is a fully revised and expanded version of a conference paper28. In particular, Sections 4 and 5 are new.

Rights and permissions

This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Reprints and permissions

About this article

Cite this article

Gaume, B., Navarro, E. & Prade, H. Clustering bipartite graphs in terms of approximate formal concepts and sub-contexts. Int J Comput Intell Syst 6, 1125–1142 (2013). https://doi.org/10.1080/18756891.2013.819179

Download citation

  • Received: 11 April 2011

  • Accepted: 22 November 2011

  • Published: 01 November 2013

  • Issue Date: November 2013

  • DOI: https://doi.org/10.1080/18756891.2013.819179

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • formal concept analysis (FCA)
  • bipartite graph
  • small world
  • clustering
  • possibility theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature