Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. International Journal of Computational Intelligence Systems
  3. Article

Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE

  • Research Article
  • Open access
  • Published: 29 April 2013
  • Volume 6, pages 46–60, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

International Journal of Computational Intelligence Systems Aims and scope Submit manuscript
Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE
Download PDF
  • David P. Pancho1,
  • Jose M. Alonso1 &
  • L. Magdalena1 
  • 81 Accesses

  • 33 Citations

  • Explore all metrics

Abstract

Understand the behavior of Fuzzy Rule-based Systems (FRBSs) at inference level is a complex task that allows the designer to produce simpler and powerful systems. The fuzzy inference-grams —known as fingrams— establish a novel and mighty tool for understanding the structure and behavior of fuzzy systems. Fingrams represent FRBSs as social networks made of nodes representing fuzzy rules and edges representing the degree of interaction between pairs of rules at inference level (no edge means no significant interaction). We can analyze fingrams obtaining helpful information such as detecting potential conflicts between rules, unused rules and redundant ones. This paper introduces a new module for fingram generation and analysis included in the free software tool GUAJE. This tool aims to design, analyze and evaluate fuzzy systems with good interpretability-accuracy trade-off. In addition, GUAJE includes several intuitive and interactive tutorials to uncover the possibilities it offers. One of them generates and enhances a fuzzy system, analyzing each improvement through the use of fingrams, and lets the user reproduce the illustrative case study described in this paper.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • ELISPOT
  • Fluidics
  • Graphemics
  • Knowledge Based Systems
  • Open Source
  • Symbolic AI
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. Acampora, V. Loia, and A. V. Vasilakos, “Autonomous composition of fuzzy granules in ambient intelligence scenarios,” Human-Centric Information Processing Through Granular Modelling, Studies in Computational Intelligence, Springer, 265–287 (2009).

    Google Scholar 

  2. J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernandez, and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms for data mining problems,” Soft Computing, 13(3), 307–318 (2009).

    Google Scholar 

  3. J. M. Alonso, O. Cordón, S. Guillaume, and L. Magdalena, “Highly interpretable linguistic knowledge bases optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off,” Proc. IEEE International Conference on Fuzzy Systems, 901–906 (2007).

    Google Scholar 

  4. J. M. Alonso, O. Cordón, A. Quirin, and L. Magdalena, “Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams,” Proc. World Conference on Soft Computing, San Francisco State University, 181.1–181.8 (2011).

    Google Scholar 

  5. J. M. Alonso and L. Magdalena, “Editorial: special issue on interpretable fuzzy systems,” Information Sciences, 181(20), 4331–4339 (2011).

    Google Scholar 

  6. J. M. Alonso and L. Magdalena, “Generating understandable and accurate fuzzy rule-based systems in a Java environment,” Lecture Notes in Artificial Intelligence - Proc. 9th International Workshop on Fuzzy Logic and Applications, LNAI6857, 212–219 (2011).

    Google Scholar 

  7. J. M. Alonso and L. Magdalena, “HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers,” Soft Computing, 15(10), 1959–1980 (2011).

    Google Scholar 

  8. J. M. Alonso, L. Magdalena, and S. Guillaume, “HILK: a new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism,” International Journal of Intelligent Systems, 23(7), 761–794 (2008).

    Google Scholar 

  9. J. M. Alonso, D. P. Pancho, O. Cordón, A. Quirin, and L. Magdalena, “Social network analysis of co-fired fuzzy rules”. In R. R. Yager, A. M. Abbasov, M. Z. Reformat, and S. N. Shahbazova, editors, Soft Computing: State of the Art Theory and Novel Applications, Studies in Fuzziness and Soft Computing, Springer Berlin Heidelberg, 291, 113–128 (2013).

    Google Scholar 

  10. J. M. Alonso, D. P. Pancho, and L. Magdalena, “Enhancing the fuzzy modeling tool GUAJE with a new module for fingrams-based analysis of fuzzy rule bases,” Proc. IEEE International Conference on Fuzzy Systems, 1082–1089 (2012).

    Google Scholar 

  11. I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga, P. Brox, A. A. Gersnoviez, and M. Brox, “Using Xfuzzy environment for the whole design of fuzzy systems,” Proc. IEEE International Conference on Fuzzy Systems, 517–522 (2007).

    Google Scholar 

  12. I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, and A. Ollero, “Automatic design of fuzzy controllers for car-like autonomous robots,” IEEE Transactions on Fuzzy Systems, 12(4), 447–465 (2004).

    Google Scholar 

  13. M. R. Berthold, “Mixed fuzzy rule formation,” International Journal of Approximate Reasoning, 32, 67–84 (2003).

    Google Scholar 

  14. M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel, “KNIME - the Konstanz information miner (version 2.0 and beyond),” ACM SIGKDD Explorations Newsletter, 11, 26–31 (2009).

    Google Scholar 

  15. C. Borgelt and G. González-Rodríguez, “FrIDA - a free intelligent data analysis toolbox,” Proc. IEEE International Conference on Fuzzy Systems, 1892–1896 (2007).

    Google Scholar 

  16. J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, “Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview,” In J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, editors, Interpretability issues in fuzzy modeling, Studies in Fuzziness and Soft Computing, Springer-Verlag, Heidelberg, 128, 3–22 (2003).

    Google Scholar 

  17. P. Cingolani and J. Alcala-Fdez, “jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language implementation,” Proc. IEEE International Conference on Fuzzy Systems, 1090–1097 (2012).

    Google Scholar 

  18. D. W. Dearholt and R. W. Schvaneveldt, “Properties of Pathfinder networks,” In R. Schvaneveldt, editor, Pathfinder associative networks: studies in knowledge organization, Ablex Publishing Corporation, 1–30 (1990).

    Google Scholar 

  19. P. Y. Glorennec, “Algorithmes d’apprentissage pour systemes d’inference floue (French Edition),” Editions Hermès, Paris (1999).

    Google Scholar 

  20. S. Guillaume and B. Charnomordic, “Generating an interpretable family of fuzzy partitions,” IEEE Transactions on Fuzzy Systems, 12(3), 324–335 (2004).

    Google Scholar 

  21. S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy inference systems with FisPro,” Information Sciences, 181(20), 4409–4427 (2011).

    Google Scholar 

  22. S. Guillaume and B. Charnomordic, “Fuzzy inference systems: an integrated modeling environment for collaboration between expert knowledge and data using FisPro,” Expert Systems with Applications, 39(10), 8744–8755 (2012).

    Google Scholar 

  23. H. Hellendoorn and D. Driankov, “Fuzzy model identification,” Springer-Verlag London, UK (1997).

  24. E. Hüllermeier, “Fuzzy methods in machine learning and data mining: status and prospects,” Fuzzy Sets and Systems, 156, 387–406 (2005).

    Google Scholar 

  25. H. Ichihashi, T. Shirai, K. Nagasaka, and T. Miyoshi, “Neuro-fuzzy ID3: a method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning,” Fuzzy Sets and Systems, 81, 157–167 (1996).

    Google Scholar 

  26. T. Kamada and S. Kawai, “An algorithm for drawing general undirected graphs,” Information Processing Letters, 31, 7–15 (1989).

    Google Scholar 

  27. E. H. Mamdani, “Application of Fuzzy Logic to approximate reasoning using linguistic systems,” IEEE Transactions on Computers, 26(12), 1182–1191 (1977).

    Google Scholar 

  28. F. J. Moreno-Velo, A. Barriga, S. Sánchez-Solano,and I. Baturone, “XFSML: an XML-based modeling language for fuzzy systems,” Proc. IEEE International Conference on Fuzzy Systems, 1146–1153 (2012).

  29. F. Moya-Anegón, B. Vargas-Quesada, V. Herrero-Solana, Z. Chinchilla-Rodríguez, E. Corera-Álvarez, and F. Muñoz-Fernández, “A new technique for building maps of large scientific domains based on the cocitation of classes and categories,” Scientometrics, 61, 129–145 (2004).

    Google Scholar 

  30. D. P. Pancho, J. M. Alonso, O. Cordón, A. Quirin, and L. Magdalena, “Fingrams: Visual representations of fuzzy rule-based inference for expert analysis of comprehensibility,” IEEE Transactions on Fuzzy Systems, 21(6), doi:10.1109/TFUZZ.2013.2245130 (2013).

  31. J. R. Quinlan, “Induction of decision trees,” Machine Learning, 1, 81–106 (1986).

    Google Scholar 

  32. A. Quirin, O. Cordón, J. Santamaría, B. Vargas-Quesada, and F. Moya-Anegón, “A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time,” Information Processing and Management, 44, 1611–1623 (2008).

    Google Scholar 

  33. E. H. Ruspini, “A new approach to clustering,” Information and Control, 15(1), 22–32 (1969).

    Google Scholar 

  34. F. J. Solis and R. J. B. Wets, “Minimization by random search techniques,” Mathematics of Operations Research, 6(1), 19–30 (1981).

    Google Scholar 

  35. B. Vargas-Quesada and F. Moya-Anegón, “Visualizing the structure of science,” Springer-Verlag (2007).

    Google Scholar 

  36. L. A. Zadeh, “Fuzzy sets,” Information and Control, 8, 338–353 (1965).

  37. L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man and Cybernetics, 3, 28–44 (1973).

    Google Scholar 

  38. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning,” Parts I, II, and III. Information Sciences, 8, 8, 9, 199–249, 301–357, 43–80 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. European Centre for Soft Computing, Edificio de Investigación, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Asturias, Spain

    David P. Pancho, Jose M. Alonso & L. Magdalena

Authors
  1. David P. Pancho
    View author publications

    Search author on:PubMed Google Scholar

  2. Jose M. Alonso
    View author publications

    Search author on:PubMed Google Scholar

  3. L. Magdalena
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to David P. Pancho.

Rights and permissions

This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Reprints and permissions

About this article

Cite this article

Pancho, D.P., Alonso, J.M. & Magdalena, L. Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE. Int J Comput Intell Syst 6 (Suppl 1), 46–60 (2013). https://doi.org/10.1080/18756891.2013.818189

Download citation

  • Received: 19 December 2012

  • Accepted: 07 March 2013

  • Published: 29 April 2013

  • Issue Date: January 2013

  • DOI: https://doi.org/10.1080/18756891.2013.818189

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Interpretability-accuracy trade-off
  • fuzzy modeling
  • fingrams
  • GUAJE
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature