Abstract
In the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show that the proposed algorithms are suitable for solving very large scaled problems in short computational times.
Article PDF
Avoid common mistakes on your manuscript.
References
E. Eiben and J. Smith, Introduction to Evolutionary Computing (Springer-Verlag, New York, 2003). ISBN: 3-540-40184-9.
J. Kennedy, R. C. Eberhart and Y. Shi, Swarm intelligence, 1st edn. (Morgan Kaufmann, San Francisco, CA, 2001). ISBN: 1558605959.
S. Khuri and T. Chiu, Heuristic Algorithms for the Terminal Assignment Problem, in Proc. ACM Symposium on Applied Computing (ACM, New York, 1997), pp. 247–251. ISBN:0-89791-850-9.
S. Salcedo-Sanz and X. Yao, A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem, IEEE Transaction On Systems, Man and Cybernetics, 34(6) (2004) 2343–2353. DOI: 10.1109/TSMCB.2004.836471.
X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz, Hybrid evolutionary approaches to terminal assignment in communications networks, in Recent Advances in Memetic Algorithms and related search technologies (Springer, Berlin / Heidelberg, 2005), pp. 129–159. DOI: 10.1007/3-540-32363-5_7.
G. H. M. Kapantow, Solving concentrator location and terminal assignment problems using simulated annealing, Masters thesis (Concordia University, Canada, 1996).
Y. Xu, S. Salcedo-Sanz and X. Yao, Non-standard cost terminal assignment problems using tabu search approach, in IEEE Congress on Evolutionary Computation (IEEE, Portland, Oregon, USA, 2004), vol. 2, pp. 2302–2306. DOI: 10.1109/CEC.2004.1331184.
E. Bernardino, Minimización de Interferencias y Asignación de Terminales en Telecomunicaciones utilizando Métodos Heurísticos, Diploma de Estudios Avanzados (Universidad de Extremadura, Spain, 2007).
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Tabu Search vs Hybrid Genetic Algorithm to solve the terminal assignment problem, in IADIS International Conference Applied Computing (IADIS, 2008), pp. 404–409. ISBN: 978-972-8924-56-0.
F. Abuali, D. Schoenefeld and R. Wainwright, Terminal assignment in a Communications Network Using Genetic Algorithms, in Proc. 22nd Annual ACM Computer Science Conference (ACM, New York, 1994), pp. 74–81. DOI: 10.1145/197530.197559.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm, in International Symposium on Distributed Computing and Artificial Intelligence (Springer, Berlin / Heidelberg, 2008), vol. 50, pp. 225–234. DOI: 10.1007/978-3-540-85863-8_27.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Genetic Algorithm with Multiple Operators for Solving the Terminal Assignment Problem, in New Challenges in Applied Intelligence Technologies, Studies in Computational Intelligence, eds. N.T. Nguyen, R. Katarzyniak (Springer, Berlin / Heidelberg, 2008), pp. 279–288. DOI: 10.1007/978-3-540-79355-7_27.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Differential Evolution Algorithm for solving the Terminal assignment problem, in Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living (Springer, Berlin / Heidelberg, 2009), vol. 5518, pp. 179–186. DOI: 10.1007/978-3-642-02481-8_25.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Differential Evolution Algorithm with a multiple strategy for solving the Terminal assignment problem, in Artificial Intelligence: Theories, Models and Applications, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), pp. 303–308. DOI: 10.1007/978-3-642-12842-4_34.
B. A. Julstrom, Evolutionary codings and operators for the terminal assignment problem, in Proc. 11th Annual conference on Genetic and evolutionary computation (ACM, New York, 2009) pp. 1805–1806. DOI: 10.1145/1569901.1570171.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Scatter Search Algorithm to assign terminals to concentrators, in Proc. IEEE Congress on Evolutionary Computation (IEEE Computer Society, Los Alamitos, CA, USA, 2010), pp. 329–336. ISBN: 978-1-4244-6909-3.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Discrete Differential Evolution Algorithm for solving the Terminal Assignment Problem, in Parallel Problem Solving from Nature – PPSN XI, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), vol. 6239, Part II, pp. 229–239. DOI: 10.1007/978-3-642-15871-1_24.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Hybrid Population-Based Incremental Learning to assign terminals to concentrators, in International Conference on Evolutionary Computation (INSTIC, Portugal, 2010). ISBN: 978-989-8425-31-7.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment Problem, in International Conference on Evolutionary Computation (INSTIC, Portugal, 2009), pp. 144–151. ISBN: 978-989-674-014-6.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Using the Bees Algorithm to assign terminals to concentrators, in Trends in Applied Intelligent Systems, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), pp. 267–276. DOI: 10.1007/978-3-642-13025-0_29.
H. R. Lourenço, O. Martin and T. Stutzle, Iterated local search, in Handbook of Metaheuristics, eds. F. Glover and G. Kochenberger (Kluwer Academic Publishers, 2003), pp. 321–353. ISBN: 1402072635.
T. A. Feo and M. G. C. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, 8(1989) 67–71. DOI: 10.1016/0167-6377(89)90002-3.
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science J. , 220(4598) (1983) 671–680. DOI: 10.1126/science.220.4598.671.
V. Cerny, A Thermodynamical Approach to the Travelling Salesman Problem: an efficient Simulation Algorithm. J. Optimization Theory and Applications, Springer, 45(1) (1985) 41–51. DOI: 10.1007/BF00940812.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of State Calculations by Fast Computing Machines, J. Chemical Physics, 21(6) (1953) 1087–1092. DOI: 10.1063/1.1699114.
F. Glover, Future paths for Integer Programming and Links to Artificial Intelligence, Computers and Operations Research, 13(5) (1986) 533–549. DOI: 10.1016/0305-0548(86)90048-1.
F. Glover and M. Laguna, Tabu Search (Kluwer Academic Publishers, 1997). ISBN: 0-7923-8187-4.
M. Atiqullah and S. Rao, Reliability optimization of communication networks using simulated annealing, Microelectronics and Reliability, 33(1993) 1303–1319. DOI: 10.1016/0026-2714(93)90132-I .
S. Pierre, M. A. Hyppolite, J. M. Bourjolly and O. Dioume, Topological design of computer communication networks using simulated annealing, Engineering Applications of Artificial Intelligence, 8(1995) 61–69. DOI: 10.1016/0952-1976(94)00041-K.
Z. Zhang and X. Ke, Solving terminal allocation problem using simulated annealing arithmetic, Wseas Transactions on Systems, 7(12) (2008) 1412–1422. http://portal.acm.org/citation.cfm?id=1503532.1503537.
F. Glover, M. Lee and J. Ryan, Least-cost network topology design for a new service: and application of a tabu search, Annals of Operations Research, 33(1991) 351–362. DOI: 10.1007/BF02073940.
S. J. Koh and C. Y. Lee, A tabu search for the survivable fiber optic communication network design, Computers and Industrial Engineering, 28(1995) 689–700. DOI: 10.1016/0360-8352(95)00036-Z .
C. P. Low, An Efficient Algorithm for the Minimum Cost Min-Max Load Terminal Assignment Problem, IEEE Communications Letters, 9(11) (2005) 1012–1014. DOI: 10.1109/LCOMM.2005.11011.
J. H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, 1975). ISBN: 0-262-08213-6.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1 edn. (Addison-Wesley, Boston, 1989). ISBN: 0201157675.
R. Storn and K. Price, Differential Evolution: a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012 (ICSI, 1995)
R. Storn and K. Price, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optimization, 11(1997) 341–359. DOI: 10.1023/A:1008202821328.
K. Price, R. Storn and J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series (Springer-Verlag, Berlin, 2005). ISBN: 3-540-20950-6.
Differential Evolution Website, http://www.icsi.berkeley.edu/~storn/code.html
F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences, 8(1) (1977), pp. 156–166. DOI: 10.1111/j.1540-5915.1977.tb01074.x.
M. Laguna, Scatter search, in Handbook of Applied Optimization, eds. P. M. Pardalos and M. G. C. Resende (Oxford University, 2002), pp. 183–193. ISBN: 978-0-19-512594-8.
Q-K. Pan, M. F. Tasgetiren, Y-C. Liang, A discrete differential evolution algorithm for the permutation flowshop scheduling problem, J. Computers & Industrial Engineering, 55(4) (2008) 795-816. DOI: 10.1016/j.cie.2008.03.003.
S. Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-95-163 (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1994).
S. Salcedo-Sanz, J. A. Portilla-Figueras, F. García-Vázquez and S. Jiménez-Fernández, Solving terminal assignment problems with groups encoding: the wedding banquet problem, Engineering Applications of Artificial Intelligence, 19(2006) 569–578. DOI: 10.1016/j.engappai.2005.10.003.
M. Dorigo, V. Maniezzo and A. Colorni, Positive feedback as a search strategy, Technical Report 91-016 (Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, 1991).
M. Dorigo, V. Maniezzo and A. Colorni, The ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, 26(1996) 29–41. DOI: 10.1109/3477.484436.
M. Dorigo, Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale (Optimisation, learning and natural algorithms), Doctoral dissertation (Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, 1991).
L. M. Gambardella, E. D. Taillard and M. Dorigo, Ant colonies for the quadratic assignment problem, J. Operational Research Society, 50(2) (1999) 167–176. DOI: 10.1057/palgrave.jors.2600676.
Ant Colony Optimization Website, http://iridia.ulb.ac.be/dorigo/ACO/ACO.html
D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim and M. Zaidi, The Bees Algorithm, Technical Note, Manufacturing Engineering Centre (Cardiff University, UK, 2005).
A. Baykasoğlu, L. Özbakır and P. Tapkan, Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem, in Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, eds. Felix T.S. Chan and Manoj Kumar Tiwari (I-Tech Education and Publishing, Vienna, Austria, 2007), pp. 113–144. ISBN: 978-3-902613-09-7.
D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence, J. Artificial Intelligence Review 31(1, 4) (2009) 61–85. DOI: 10.1007/s10462-009-9127-4.
A. Bernardino, E. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving ring loading problems using Bio-inspired algorithms, Journal of Network and Computer Applications, 34(2) (2011) 668–685. DOI: 10.1016/j.jnca.2010.11.003.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving large-scale SONET Network Design Problems using Bee-inspired Algorithms, Optical Switching and Networking, 9(2) (2012) 97–117. DOI: 10.1016/j.osn.2011.11.001.
E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Swarm optimisation algorithms applied to large balanced communication networks, Journal of Network and Computer Applications, (2012). DOI: 10.1016/j.jnca.2012.04.005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
About this article
Cite this article
Bernardino, E.M., Bernardino, A.M., Sánchez-Pérez, J.M. et al. Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks. Int J Comput Intell Syst 5, 745–761 (2012). https://doi.org/10.1080/18756891.2012.718157
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1080/18756891.2012.718157