Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. International Journal of Computational Intelligence Systems
  3. Article

Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

  • Research Article
  • Open access
  • Published: 01 August 2012
  • Volume 5, pages 745–761, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

International Journal of Computational Intelligence Systems Aims and scope Submit manuscript
Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks
Download PDF
  • Eugénia Moreira Bernardino1,
  • Anabela Moreira Bernardino1,
  • Juan Manuel Sánchez-Pérez2,
  • Juan Antonio Gómez-Pulido2 &
  • …
  • Miguel Ángel Vega-Rodríguez2 
  • 51 Accesses

  • Explore all metrics

Abstract

In the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show that the proposed algorithms are suitable for solving very large scaled problems in short computational times.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Computational Intelligence
  • Computer Engineering and Networks
  • Computer Science
  • Learning algorithms
  • Optimization
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E. Eiben and J. Smith, Introduction to Evolutionary Computing (Springer-Verlag, New York, 2003). ISBN: 3-540-40184-9.

    Google Scholar 

  2. J. Kennedy, R. C. Eberhart and Y. Shi, Swarm intelligence, 1st edn. (Morgan Kaufmann, San Francisco, CA, 2001). ISBN: 1558605959.

    Google Scholar 

  3. S. Khuri and T. Chiu, Heuristic Algorithms for the Terminal Assignment Problem, in Proc. ACM Symposium on Applied Computing (ACM, New York, 1997), pp. 247–251. ISBN:0-89791-850-9.

  4. S. Salcedo-Sanz and X. Yao, A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem, IEEE Transaction On Systems, Man and Cybernetics, 34(6) (2004) 2343–2353. DOI: 10.1109/TSMCB.2004.836471.

  5. X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz, Hybrid evolutionary approaches to terminal assignment in communications networks, in Recent Advances in Memetic Algorithms and related search technologies (Springer, Berlin / Heidelberg, 2005), pp. 129–159. DOI: 10.1007/3-540-32363-5_7.

  6. G. H. M. Kapantow, Solving concentrator location and terminal assignment problems using simulated annealing, Masters thesis (Concordia University, Canada, 1996).

    Google Scholar 

  7. Y. Xu, S. Salcedo-Sanz and X. Yao, Non-standard cost terminal assignment problems using tabu search approach, in IEEE Congress on Evolutionary Computation (IEEE, Portland, Oregon, USA, 2004), vol. 2, pp. 2302–2306. DOI: 10.1109/CEC.2004.1331184.

  8. E. Bernardino, Minimización de Interferencias y Asignación de Terminales en Telecomunicaciones utilizando Métodos Heurísticos, Diploma de Estudios Avanzados (Universidad de Extremadura, Spain, 2007).

    Google Scholar 

  9. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Tabu Search vs Hybrid Genetic Algorithm to solve the terminal assignment problem, in IADIS International Conference Applied Computing (IADIS, 2008), pp. 404–409. ISBN: 978-972-8924-56-0.

    Google Scholar 

  10. F. Abuali, D. Schoenefeld and R. Wainwright, Terminal assignment in a Communications Network Using Genetic Algorithms, in Proc. 22nd Annual ACM Computer Science Conference (ACM, New York, 1994), pp. 74–81. DOI: 10.1145/197530.197559.

  11. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm, in International Symposium on Distributed Computing and Artificial Intelligence (Springer, Berlin / Heidelberg, 2008), vol. 50, pp. 225–234. DOI: 10.1007/978-3-540-85863-8_27.

  12. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Genetic Algorithm with Multiple Operators for Solving the Terminal Assignment Problem, in New Challenges in Applied Intelligence Technologies, Studies in Computational Intelligence, eds. N.T. Nguyen, R. Katarzyniak (Springer, Berlin / Heidelberg, 2008), pp. 279–288. DOI: 10.1007/978-3-540-79355-7_27.

  13. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Differential Evolution Algorithm for solving the Terminal assignment problem, in Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living (Springer, Berlin / Heidelberg, 2009), vol. 5518, pp. 179–186. DOI: 10.1007/978-3-642-02481-8_25.

  14. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Differential Evolution Algorithm with a multiple strategy for solving the Terminal assignment problem, in Artificial Intelligence: Theories, Models and Applications, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), pp. 303–308. DOI: 10.1007/978-3-642-12842-4_34.

  15. B. A. Julstrom, Evolutionary codings and operators for the terminal assignment problem, in Proc. 11th Annual conference on Genetic and evolutionary computation (ACM, New York, 2009) pp. 1805–1806. DOI: 10.1145/1569901.1570171.

  16. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Scatter Search Algorithm to assign terminals to concentrators, in Proc. IEEE Congress on Evolutionary Computation (IEEE Computer Society, Los Alamitos, CA, USA, 2010), pp. 329–336. ISBN: 978-1-4244-6909-3.

    Google Scholar 

  17. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Discrete Differential Evolution Algorithm for solving the Terminal Assignment Problem, in Parallel Problem Solving from Nature – PPSN XI, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), vol. 6239, Part II, pp. 229–239. DOI: 10.1007/978-3-642-15871-1_24.

  18. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Hybrid Population-Based Incremental Learning to assign terminals to concentrators, in International Conference on Evolutionary Computation (INSTIC, Portugal, 2010). ISBN: 978-989-8425-31-7.

    Google Scholar 

  19. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment Problem, in International Conference on Evolutionary Computation (INSTIC, Portugal, 2009), pp. 144–151. ISBN: 978-989-674-014-6.

    Google Scholar 

  20. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Using the Bees Algorithm to assign terminals to concentrators, in Trends in Applied Intelligent Systems, Lecture Notes in Computer Science (Springer, Berlin / Heidelberg, 2010), pp. 267–276. DOI: 10.1007/978-3-642-13025-0_29.

  21. H. R. Lourenço, O. Martin and T. Stutzle, Iterated local search, in Handbook of Metaheuristics, eds. F. Glover and G. Kochenberger (Kluwer Academic Publishers, 2003), pp. 321–353. ISBN: 1402072635.

    Google Scholar 

  22. T. A. Feo and M. G. C. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, 8(1989) 67–71. DOI: 10.1016/0167-6377(89)90002-3.

  23. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science J. , 220(4598) (1983) 671–680. DOI: 10.1126/science.220.4598.671.

  24. V. Cerny, A Thermodynamical Approach to the Travelling Salesman Problem: an efficient Simulation Algorithm. J. Optimization Theory and Applications, Springer, 45(1) (1985) 41–51. DOI: 10.1007/BF00940812.

  25. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of State Calculations by Fast Computing Machines, J. Chemical Physics, 21(6) (1953) 1087–1092. DOI: 10.1063/1.1699114.

  26. F. Glover, Future paths for Integer Programming and Links to Artificial Intelligence, Computers and Operations Research, 13(5) (1986) 533–549. DOI: 10.1016/0305-0548(86)90048-1.

  27. F. Glover and M. Laguna, Tabu Search (Kluwer Academic Publishers, 1997). ISBN: 0-7923-8187-4.

  28. M. Atiqullah and S. Rao, Reliability optimization of communication networks using simulated annealing, Microelectronics and Reliability, 33(1993) 1303–1319. DOI: 10.1016/0026-2714(93)90132-I .

  29. S. Pierre, M. A. Hyppolite, J. M. Bourjolly and O. Dioume, Topological design of computer communication networks using simulated annealing, Engineering Applications of Artificial Intelligence, 8(1995) 61–69. DOI: 10.1016/0952-1976(94)00041-K.

  30. Z. Zhang and X. Ke, Solving terminal allocation problem using simulated annealing arithmetic, Wseas Transactions on Systems, 7(12) (2008) 1412–1422. http://portal.acm.org/citation.cfm?id=1503532.1503537.

    Google Scholar 

  31. F. Glover, M. Lee and J. Ryan, Least-cost network topology design for a new service: and application of a tabu search, Annals of Operations Research, 33(1991) 351–362. DOI: 10.1007/BF02073940.

  32. S. J. Koh and C. Y. Lee, A tabu search for the survivable fiber optic communication network design, Computers and Industrial Engineering, 28(1995) 689–700. DOI: 10.1016/0360-8352(95)00036-Z .

  33. C. P. Low, An Efficient Algorithm for the Minimum Cost Min-Max Load Terminal Assignment Problem, IEEE Communications Letters, 9(11) (2005) 1012–1014. DOI: 10.1109/LCOMM.2005.11011.

  34. J. H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, 1975). ISBN: 0-262-08213-6.

  35. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1 edn. (Addison-Wesley, Boston, 1989). ISBN: 0201157675.

    Google Scholar 

  36. R. Storn and K. Price, Differential Evolution: a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012 (ICSI, 1995)

    Google Scholar 

  37. R. Storn and K. Price, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optimization, 11(1997) 341–359. DOI: 10.1023/A:1008202821328.

  38. K. Price, R. Storn and J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series (Springer-Verlag, Berlin, 2005). ISBN: 3-540-20950-6.

    Google Scholar 

  39. Differential Evolution Website, http://www.icsi.berkeley.edu/~storn/code.html

  40. F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences, 8(1) (1977), pp. 156–166. DOI: 10.1111/j.1540-5915.1977.tb01074.x.

  41. M. Laguna, Scatter search, in Handbook of Applied Optimization, eds. P. M. Pardalos and M. G. C. Resende (Oxford University, 2002), pp. 183–193. ISBN: 978-0-19-512594-8.

    Google Scholar 

  42. Q-K. Pan, M. F. Tasgetiren, Y-C. Liang, A discrete differential evolution algorithm for the permutation flowshop scheduling problem, J. Computers & Industrial Engineering, 55(4) (2008) 795-816. DOI: 10.1016/j.cie.2008.03.003.

  43. S. Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-95-163 (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1994).

    Google Scholar 

  44. S. Salcedo-Sanz, J. A. Portilla-Figueras, F. García-Vázquez and S. Jiménez-Fernández, Solving terminal assignment problems with groups encoding: the wedding banquet problem, Engineering Applications of Artificial Intelligence, 19(2006) 569–578. DOI: 10.1016/j.engappai.2005.10.003.

  45. M. Dorigo, V. Maniezzo and A. Colorni, Positive feedback as a search strategy, Technical Report 91-016 (Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, 1991).

    Google Scholar 

  46. M. Dorigo, V. Maniezzo and A. Colorni, The ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, 26(1996) 29–41. DOI: 10.1109/3477.484436.

  47. M. Dorigo, Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale (Optimisation, learning and natural algorithms), Doctoral dissertation (Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, 1991).

    Google Scholar 

  48. L. M. Gambardella, E. D. Taillard and M. Dorigo, Ant colonies for the quadratic assignment problem, J. Operational Research Society, 50(2) (1999) 167–176. DOI: 10.1057/palgrave.jors.2600676.

  49. Ant Colony Optimization Website, http://iridia.ulb.ac.be/dorigo/ACO/ACO.html

  50. D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim and M. Zaidi, The Bees Algorithm, Technical Note, Manufacturing Engineering Centre (Cardiff University, UK, 2005).

    Google Scholar 

  51. A. Baykasoğlu, L. Özbakır and P. Tapkan, Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem, in Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, eds. Felix T.S. Chan and Manoj Kumar Tiwari (I-Tech Education and Publishing, Vienna, Austria, 2007), pp. 113–144. ISBN: 978-3-902613-09-7.

    Google Scholar 

  52. D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence, J. Artificial Intelligence Review 31(1, 4) (2009) 61–85. DOI: 10.1007/s10462-009-9127-4.

  53. A. Bernardino, E. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving ring loading problems using Bio-inspired algorithms, Journal of Network and Computer Applications, 34(2) (2011) 668–685. DOI: 10.1016/j.jnca.2010.11.003.

  54. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Solving large-scale SONET Network Design Problems using Bee-inspired Algorithms, Optical Switching and Networking, 9(2) (2012) 97–117. DOI: 10.1016/j.osn.2011.11.001.

  55. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M. Vega-Rodríguez and J. Gómez-Pulido, Swarm optimisation algorithms applied to large balanced communication networks, Journal of Network and Computer Applications, (2012). DOI: 10.1016/j.jnca.2012.04.005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Research Center for Informatics and Communications, Department of Computer Science, School of Technology and Management, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal

    Eugénia Moreira Bernardino & Anabela Moreira Bernardino

  2. Department of Technologies of Computers and Communications, Polytechnic School, University of Extremadura, 10071, Cáceres, Spain

    Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido & Miguel Ángel Vega-Rodríguez

Authors
  1. Eugénia Moreira Bernardino
    View author publications

    Search author on:PubMed Google Scholar

  2. Anabela Moreira Bernardino
    View author publications

    Search author on:PubMed Google Scholar

  3. Juan Manuel Sánchez-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  4. Juan Antonio Gómez-Pulido
    View author publications

    Search author on:PubMed Google Scholar

  5. Miguel Ángel Vega-Rodríguez
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Eugénia Moreira Bernardino.

Rights and permissions

This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Reprints and permissions

About this article

Cite this article

Bernardino, E.M., Bernardino, A.M., Sánchez-Pérez, J.M. et al. Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks. Int J Comput Intell Syst 5, 745–761 (2012). https://doi.org/10.1080/18756891.2012.718157

Download citation

  • Received: 06 June 2011

  • Accepted: 06 June 2012

  • Published: 01 August 2012

  • Issue Date: August 2012

  • DOI: https://doi.org/10.1080/18756891.2012.718157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Evolutionary Algorithms
  • Swarm Intelligence
  • Terminal Assignment Problem
  • Genetic algorithm with a new swarm mutation operator
  • Queen-bee Evolutionary Algorithm
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature