New Cytotoxic Norditerpenes from the Australian Nudibranchs Goniobranchus Splendidus and Goniobranchus Daphne
Yuichiro Hirayama A E , Peter L. Katavic B , Andrew M. White B , Gregory K. Pierens C , Lynette K. Lambert C , Anne E. Winters D , Hideo Kigoshi A , Masaki Kita A F and Mary J. Garson B FA Department of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan.
B School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
C Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld 4072, Australia.
D School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
E Current address: Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
F Corresponding authors. Email: [email protected]; [email protected]
Australian Journal of Chemistry 69(2) 136-144 https://doi.org/10.1071/CH15203
Submitted: 21 April 2015 Accepted: 10 July 2015 Published: 27 August 2015
Abstract
This study reports the isolation and characterisation of six new metabolites with ‘gracilin’-type carbon skeletons and of aplytandiene-3 from the Australian nudibranch Goniobranchus splendidus. The structure of gracilin G is revised, and the C-6 configuration deduced by comparison of calculated 3JC/H values with values measured using the EXSIDE pulse sequence. A lactone isolated from Goniobranchus daphne contains a rearranged spongionellin-type skeleton. Screening of selected metabolites revealed significant cytotoxicity against a HeLa S3 cell line by five of the new terpenes.
References
[1] See p. 72 in N. Coleman, 1001 Nudibranchs: Catalogue of Indo-Pacific Sea Slugs 2001 (Neville Coleman’s Underwater Geographic Pty Ltd: Springwood).[2] R. A. Keyzers, P. T. Northcote, M. T. Davies-Coleman, Nat. Prod. Rep. 2006, 23, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyrtL0%3D&md5=38376ee9eb2613ef14b43c7cae272857CAS | 16572231PubMed |
[3] M. L. Schnermann, C. M. Beaudry, A. V. Egorova, R. S. Polsichuk, C. Sütterlin, L. E. Overman, Proc. Natl. Acad. Sci. USA 2010, 107, 6158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslyntbw%3D&md5=b4304025c5d9e0ea4c0ad8a3a52c5f48CAS |
[4] T. P. Brady, E. K. Wallace, S. H. Kim, G. Guizzunti, V. Malhotra, E. A. Theodorakis, Bioorg. Med. Chem. Lett. 2004, 14, 5035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Ohtb8%3D&md5=0c4ab662b64da69e501a827d14a35253CAS | 15380194PubMed |
[5] T. P. Brady, S. H. Kim, K. Wen, E. K. Theodorakis, Angew. Chem. Int. Ed. 2004, 43, 739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKqsb0%3D&md5=c43583e9298ddbb066d55bd07dd60d99CAS |
[6] W. Rungprom, W. Chavasiri, U. Kokpul, A. Kotze, M. J. Garson, Mar. Drugs 2004, 2, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptValuro%3D&md5=a5dec8572ef28fdd1503c3ba1b5a4b42CAS |
[7] S. A. Morris, E. J. Dumdei, E. D. de Silva, R. J. Andersen, Can. J. Chem. 1991, 69, 768.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvV2nt74%3D&md5=462b55c4c0fb49201fd3b506becb3810CAS |
[8] A. Rueda, A. Losada, R. Fernández, C. Cabañas, L. F. Garcia-Fernández, F. Reyes, C. Cuevas, Lett. Drug Des. Discov. 2006, 3, 753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2qsLjM&md5=2b5f63e4b402e92f775651ecffd45cb4CAS |
[9] M. E. Rateb, W. E. Houssen, M. Schumacher, W. T. A. Harrison, M. Diederich, R. Ebel, M. Jaspars, J. Nat. Prod. 2009, 72, 1471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVOnsLY%3D&md5=f9062a1e1d1aa4d1c3f34ad73a595331CAS | 19601607PubMed |
[10] M. Leiros, E. Alonso, M. E. Rateb, W. E. Houssen, R. Ebel, M. Jaspars, A. Alfonso, L. M. Botana, Neuropharmacology 2015, 93, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1Olu7g%3D&md5=2ac5f698568fd23e9b1c8a68a7622455CAS | 25724081PubMed |
[11] B. M. Potts, D. J. Faulkner, R. S. Jacobs, J. Nat. Prod. 1992, 55, 1701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjsVOqsg%3D%3D&md5=aeb170fce37bf50a22f88d2fb4b971c3CAS |
[12] K. W. L. Yong, A. A. Salim, M. J. Garson, Tetrahedron 2008, 64, 6733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1KqtLk%3D&md5=d5ecd1d05ad9a43c876ed059e05e78baCAS |
[13] L. K. Suciati, M. J. Lambert, Garson, Aust. J. Chem. 2011, 64, 489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCrsL8%3D&md5=e6fda76f674b03190f711bbf085f696dCAS |
[14] P. L. Katavic, P. Jumaryatno, J. N. A. Hooper, J. T. Blanchfield, M. J. Garson, Aust. J. Chem. 2012, 65, 531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1yrsbw%3D&md5=2f1d5193712a116df5a16d74580bf675CAS |
[15] L. Mayol, V. Piccialli, D. Sica, Tetrahedron Lett. 1985, 26, 1357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFyltrg%3D&md5=bbf81abed7dabfb5ec041cf580bc74b6CAS |
[16] L. Mayol, V. Piccialli, D. Sica, J. Nat. Prod. 1986, 49, 823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFegtbw%3D&md5=6e5e13f340e1967f11e4a3becf0d8e69CAS |
[17] P. Karuso, B. W. Skelton, W. C. Taylor, A. H. White, Aust. J. Chem. 1984, 37, 1081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVOlt7s%3D&md5=56bc3e46ac81933b543fe12c90956b77CAS |
[18] S. K. Graham, M. J. Garson, P. V. Bernhardt, J. Chem. Crystallogr. 2010, 40, 468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Cit7g%3D&md5=eae9e8869efc7af6bf0f1220059c9c4bCAS |
[19] M. R. Kernan, R. C. Cambie, P. R. Bergquist, J. Nat. Prod. 1990, 53, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2isb4%3D&md5=a7de7671bdb9597ee617999a4aedd559CAS |
[20] P. Karuso, W. C. Taylor, Aust. J. Chem. 1986, 39, 1629.
| 1:CAS:528:DyaL2sXjtVahug%3D%3D&md5=de61f897abc5aca1ad032ad7ca792385CAS |
[21] P. Karuso, P. R. Bergquist, R. C. Cambie, J. S. Buckleton, G. R. Clark, C. E. F. Rickard, Aust. J. Chem. 1986, 39, 1643.
| 1:CAS:528:DyaL2sXjtVahuw%3D%3D&md5=230e8fde7167920b9bd2797c03919115CAS |
[22] F. J. Schmitz, J. S. Chang, M. B. Hossain, D. van der Helm, J. Org. Chem. 1985, 50, 2862.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1ynurg%3D&md5=23bbb6a1dbcc22b7757b8c7ef5a9412fCAS |
[23] E. J. Corey, M. A. Levatic, J. Am. Chem. Soc. 1995, 117, 9616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFOktL4%3D&md5=4afd316e17e36b9d59ecd09f1a4c69c5CAS |
[24] MacroModel, version 10.0 2013 (Schrödinger, LLC: New York, NY).
[25] Jaguar, version 8.0 2013 (Schrödinger, LLC: New York, NY).
[26] R. Aydin, H. Günther, Magn. Reson. Chem. 1990, 28, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlWhu7Y%3D&md5=20caa9fd0fe4c1b32dc003ea42d26ba1CAS |
[27] V. V. Krishnamurthy, J. Magn. Reson. 1996, 121, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1ektrw%3D&md5=b5ba06b2bd896112aa45d983c39f4e75CAS |
[28] R. Puliti, A. Fontana, G. Cimino, Acta Crystallogr. 1993, C49, 1373.
| 1:CAS:528:DyaK3sXmslWnsLg%3D&md5=125b375f42141073ed30a612a04fe62bCAS |
[29] A. Poiner, W. C. Taylor, Aust. J. Chem. 1990, 43, 1713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFWnuw%3D%3D&md5=20502fe7fef9d3e8145b229368eb3fd2CAS |
[30] J. E. Hochlowski, D. J. Faulkner, G. K. Matsumoto, J. Clardy, J. Org. Chem. 1983, 48, 1141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsVSrs70%3D&md5=ac522b7a97936802d211a8d284ed20c1CAS |
[31] T. F. Molinski, D. J. Faulkner, H. Cun-heng, G. D. Van Duyne, J. Clardy, J. Org. Chem. 1986, 51, 4564.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. C. Bobzin, D. J. Faulkner, J. Org. Chem. 1989, 54, 5727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt12hu78%3D&md5=f2a5a04f572900eabb203cf010c82ac4CAS |
[33] I. W. Mudianta, A. M. White, M. J. Garson, Nat. Prod. Commun. 2015, in press
| 26197502PubMed |
[34] T. Bally, P. R. Rablen, J. Org. Chem. 2011, 76, 4818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Ghu70%3D&md5=277f8838e5dd1fd6477d9e86bdae6668CAS | 21574622PubMed |