Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Photonic Sensors
  3. Article

Heart Rate Monitoring Sensor Based on Singlemode-Multimode-Singlemode Fiber

  • Regular
  • Open access
  • Published: 26 November 2019
  • Volume 10, pages 186–193, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Photonic Sensors Aims and scope Submit manuscript
Heart Rate Monitoring Sensor Based on Singlemode-Multimode-Singlemode Fiber
Download PDF
  • Ninik Irawati1,2,
  • Agus Muhamad Hatta1,
  • Yoseph Gita Yhun Yhuwana3 &
  • …
  • Sekartedjo1 
  • 1491 Accesses

  • 13 Citations

  • Explore all metrics

Abstract

The singlemode-multimode-singlemode (SMS) fiber structure for a heart rate monitoring is proposed and developed. An artificial electrocardiogram (ECG) signal is used to simulate the heart pulse at different rates ranging from 50 beats per minute (bpm) to 200 bpm. The SMS fiber structure is placed at the center of a loudspeaker and it senses the vibration of the pulse. The vibration of the pulse signal applied to the SMS fiber structure changes the intensity of the optical output power. The proposed sensor shows a linear frequency of the heart rate sensing range that matches well with the relevant heart rate from the artificial ECG. This work shows the capability of the SMS fiber structure monitoring the heart rate frequencies for a long term, high stability realization, and reproducibility, and being suitable for the observation in hospitals as well as in other environments.

Article PDF

Download to read the full article text

Similar content being viewed by others

Heart Rate Estimation Using the EVM Method, the FFT and MUSIC Algorithms Under Different Conditions

Chapter © 2022

Microcontroller-Based Heart Rate Monitor

Chapter © 2022

Design and Validation of Wearable Smartphone Based Wireless Cardiac Activity Monitoring Sensor

Article 04 March 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Biomedical Devices and Instrumentation
  • Fiber Optics
  • Fibre Optics
  • Fibre Lasers
  • Optical Sensor
  • Sensors
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. N. Vukadinović, D. Vukadinović, J. Borer, M. Cowie, M. Komajda, M. Lainscak, et al., “Heart rate and its reduction in chronic heart failure and beyond,” European Journal of Heart Failure, 2017, 2017(19): 10–1230.

    Google Scholar 

  2. L. G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Medical and Biological Engineering and Computing, 1992, 1992(30): 5–533.

    Google Scholar 

  3. L. Dziuda, F. W. Skibniewski, M. Krej, and J. Lewandowski, “Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor,” IEEE Transactions on Biomedical Engineering, 2012, 2012(59): 7–1934.

    Google Scholar 

  4. Z. Chen, D. Lau, J. T. Teo, S. H. Ng, X. Yang, and P. L. Kei, “Simultaneous measurement of breathing rate and heartrate using a microbend multimode fiber optic sensor,” Journal of Biomedical Optics, 2014, 19(5): 057001.

    Article  ADS  Google Scholar 

  5. Y. Y. Yhuwana, R. Apsari, and M. Yasin, “Fiber optic sensor for heart rate detection,” Optik - International Journal for Light and Electron Optics, 2017, 134: 28–32.

    Article  Google Scholar 

  6. M. Życzkowski, B. Uzięblo-Zyczkowska, L. Dziuda, and K. Różanowski, “Using modalmetric fiber optic sensors to monitor the activity of the heart,” Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI. International Society for Optics and Photonics, San Francisco, Feb. 16, 2011, pp: 789404.

    Google Scholar 

  7. B. Selm, E. A. Gürel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric optical fiber fabrics for illumination and sensorial applications in textiles,” Journal of Intelligent Material Systems and Structures, 2010, 2010(21): 11–1061.

    Google Scholar 

  8. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, et al., “Optical fiber sensor technology,” IEEE Transactions on Microwave Theory and Techniques, 1982, 1982(30): 4–472.

    Google Scholar 

  9. S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, et al., “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sensors Journal, 2009, 2009(9): 11–1330.

    Google Scholar 

  10. E. Hanada, “The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital,” Annali-Istituto Superiore Di Sanita, 2007, 43(3): 208.

    Google Scholar 

  11. Ł. Dziuda, P. Zieliński, P. Baran, M. Krej, and L. Kopka, “A study of the relationship between the level of anxiety declared by MRI patients in the STAI questionnaire and their respiratory rate acquired by a fibre-optic sensor system,” Scientific Reports, 2019, 9(1): 4341.

    Article  ADS  Google Scholar 

  12. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure”, Journal of Lightwave Technology, 2008, 2008(26): 5–512.

    Google Scholar 

  13. A. Arifin, A. M. Hatta, M. S. Muntini, and A. Rubiyanto, “Long-range displacement sensor based on SMS fiber structure and OTDR,” Photonic Sensors, 2015, 2015(5): 2–166.

    Google Scholar 

  14. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technology Letters, 2010, 2010(23): 2–130.

    Google Scholar 

  15. A. M. Hatta, K. Indriawati, T. Bestariyan, and T. Humada, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sensors, 2013, 2013(3): 3–262.

    Google Scholar 

  16. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer-analysis and experiment,” Optics Express, 2011, 2011(19): 9–7937.

    Google Scholar 

  17. Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photonics Technology Letters, 2011, 2011(23): 11–679.

    Google Scholar 

  18. Y. Zhao, X. G. Li, F. C. Meng, and Z. Zhao, “A vibration-sensing system based on SMS fiber structure,” Sensors and Actuators A: Physical, 2014, 214: 163–167.

    Article  Google Scholar 

  19. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Optics Letters, 2013, 2013(38): 19–3765.

    Article  ADS  Google Scholar 

  20. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “The use of a bent singlemode-multimode-singlemode (SMS) fiber structure for vibration sensing,” in 21st International Conference on Optical Fibre Sensors, Ottawa, May 1, 2011, pp: 77535G.

    Chapter  Google Scholar 

  21. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, et al., “Optical fiber sensors embedded into medical textiles for healthcare monitoring,” IEEE Sensors Journal, 2008, 2008(8): 7–1215.

    Google Scholar 

  22. J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, et al., “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sensors Journal, 2012, 12 (1): 246–254.

    Article  ADS  Google Scholar 

  23. J. Wo, Q. Sun, and H. Liu, “Sensitivity-enhanced fiber optic temperature sensor with strain response suppression,” Optical Fiber Technology, 2013, 2013(19): 4–289.

    Google Scholar 

  24. Y. Benchaib and M. A. Chikh, “Artificial metaplasiticity MLP results on MIT-BIH cardiac arrhythmias data base,” International Journal of Advance Research in Computer Engineering & Technology, 2013, 2013(2): 10–2665.

    Google Scholar 

  25. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fibre multimode interference bandpass filter,” Optics Letters, 2006, 2006(31): 17–2547.

    Google Scholar 

  26. K. K. Jembula, G. Srinivasulu, and K. S. Prasad, “Design of electrocardiogram (ECG) system on FPGA,” International Journal of Engineering and Science, 2013, 2013(3): 2–21.

    Google Scholar 

  27. P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “A dynamical model for generating synthetic electrocardiogram signals,” IEEE Transactions on Biomedical Engineering, 2003, 2003(50): 3–289.

    Google Scholar 

  28. P. Davey, “A new physiological method for heart rate correction of the QT interval,” Heart, 1999, 1999(82): 2–183.

    ADS  Google Scholar 

  29. P. J. Schwartz and S. Wolf, “Q-T interval as prolongation predictor of sudden death in patients with myocardial infarction,” Circulation, 1978, 1978(57): 6–1074.

    Google Scholar 

  30. L. Dziuda and F. W. Skibniewski, “A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors,” Biocybernetics and Biomedical Engineering, 2014, 34(2): 101–116.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Directorate of Research and Community Service - Ministry of Research, Technology and Higher Education, Republic of Indonesia (Grant Nos. 6/E/KPT/2019 and 954/PKS/ITS/2019).

Author information

Authors and Affiliations

  1. Department of Engineering Physics, Institute Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

    Ninik Irawati, Agus Muhamad Hatta &  Sekartedjo

  2. Aston Institute of Technologies, Aston University, Aston Express Way, Birmigham, B4 7ET, UK

    Ninik Irawati

  3. Department of Physics, Airlangga University, Surabaya, 60115, Indonesia

    Yoseph Gita Yhun Yhuwana

Authors
  1. Ninik Irawati
    View author publications

    Search author on:PubMed Google Scholar

  2. Agus Muhamad Hatta
    View author publications

    Search author on:PubMed Google Scholar

  3. Yoseph Gita Yhun Yhuwana
    View author publications

    Search author on:PubMed Google Scholar

  4. Sekartedjo
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Ninik Irawati or Agus Muhamad Hatta.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irawati, N., Hatta, A.M., Yhuwana, Y.G.Y. et al. Heart Rate Monitoring Sensor Based on Singlemode-Multimode-Singlemode Fiber. Photonic Sens 10, 186–193 (2020). https://doi.org/10.1007/s13320-019-0572-7

Download citation

  • Received: 20 May 2019

  • Revised: 14 September 2019

  • Published: 26 November 2019

  • Issue Date: June 2020

  • DOI: https://doi.org/10.1007/s13320-019-0572-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heart rate monitoring
  • fiber optic sensor
  • SMS fiber
  • singlemode-multimode-singlemode fiber
  • hear rate sensor
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature