Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Mathematics in Computer Science
  3. Article

Using Machine Learning to Improve Cylindrical Algebraic Decomposition

  • Open access
  • Published: 03 April 2019
  • Volume 13, pages 461–488, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Mathematics in Computer Science Aims and scope Submit manuscript
Using Machine Learning to Improve Cylindrical Algebraic Decomposition
Download PDF
  • Zongyan Huang1,
  • Matthew England2,
  • David J. Wilson3,
  • James Bridge1,
  • James H. Davenport3 &
  • …
  • Lawrence C. Paulson1 
  • 1182 Accesses

  • 28 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, best known as a procedure to enable Quantifier Elimination over real-closed fields. However, it has a worst case complexity doubly exponential in the size of the input, which is often encountered in practice. It has been observed that for many problems a change in algorithm settings or problem formulation can cause huge differences in runtime costs, changing problem instances from intractable to easy. A number of heuristics have been developed to help with such choices, but the complicated nature of the geometric relationships involved means these are imperfect and can sometimes make poor choices. We investigate the use of machine learning (specifically support vector machines) to make such choices instead. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we apply it in two case studies: the first to select between heuristics for choosing a CAD variable ordering; the second to identify when a CAD problem instance would benefit from Gröbner Basis preconditioning. These appear to be the first such applications of machine learning to Symbolic Computation. We demonstrate in both cases that the machine learned choice outperforms human developed heuristics.

Article PDF

Download to read the full article text

Similar content being viewed by others

Machine Learning to Improve Cylindrical Algebraic Decomposition in Maple

Chapter © 2020

Comparing Machine Learning Models to Choose the Variable Ordering for Cylindrical Algebraic Decomposition

Chapter © 2019

Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural Networks

Chapter © 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Computational Geometry
  • Computer-Aided Engineering (CAD, CAE) and Design
  • Computational Intelligence
  • Machine Learning
  • Symbolic AI
  • Symbolic and Algebraic Manipulation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Ábrahám, E., Abbott, J., Becker, B., Bigatti, A.M., Brain, M., Buchberger, B., Cimatti, A., Davenport, J.H., England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening, D., Seiler, W.M., Sturm, T.: \({{\sf SC}}^2\): satisfiability checking meets symbolic computation. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds.) Intelligent Computer Mathematics: Proceedings CICM 2016, volume 9791 of Lecture Notes in Computer Science, pp. 28–43. Springer (2016)

  2. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pp. 1–8. ACM (2014)

  4. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)

    Google Scholar 

  6. Basu, S., Pollack, R., Roy, M.E.: Algorithms in Real Algebraic Geometry. Volume 10 of Algorithms and Computations in Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Böge, W., Gebauer, R., Kredel, H.: Gröbner bases using SAC2. In: Caviness, B.F. (ed.) EUROCAL ’85, Volume 204 of Lecture Notes in Computer Science, pp. 272–274. Springer, Berlin (1985)

    Google Scholar 

  8. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pp. 144–152. ACM (1992)

  9. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing web search engines. In: AAAI Workshop on Internet Based Information Systems, pp. 1–8 (1996)

  10. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, Volume 8660 of Lecture Notes in Computer Science, pp. 44–58. Springer, Berlin (2014)

    Google Scholar 

  11. Bradford, R., Davenport, J.H., England, M., Errami, H., Gerdt, V., Grigoriev, D., Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber, A.: A case study on the parametric occurrence of multiple steady states. In: Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pp. 45–52. ACM (2017)

  12. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pp. 125–132. ACM (2013)

  13. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symb. Comput. 76, 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulations for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Intelligent Computer Mathematics, Volume 7961 of Lecture Notes in Computer Science, pp. 19–34. Springer, Berlin (2013)

    Google Scholar 

  15. Bridge, J.P.: Machine learning and automated theorem proving. Technical Report UCAM-CL-TR-792, University of Cambridge, Computer Laboratory (2010)

  16. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving. J. Autom. Reason. 1–32 (2014)

  17. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32(5), 447–465 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

    MATH  Google Scholar 

  19. Brown, C.W.: Companion to the tutorial: cylindrical algebraic decomposition. Presented at ISSAC ’04 (2004). http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

  20. Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: Proceedings of the 2015 International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pp. 85–92. ACM (2015)

  21. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC ’07, pp. 54–60. ACM (2007)

  22. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. J. Symb. Comput. 41, 1157–1173 (2006)

    MATH  Google Scholar 

  23. Brown, C.W., Kosta, M.: Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Comput. 70, 14–48 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Buchberger, B.: Bruno Buchberger’s Ph.D. thesis (1965): an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006)

    MATH  Google Scholar 

  25. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases. Technical report, 91-06. RISC, Johannes Kepler University (1991)

  26. Byun, H., Lee, S.: A survey on pattern recognition applications of support vector machines. Int. J. Pattern Recognit. Artif. Intell. 17(03), 459–486 (2003)

    Google Scholar 

  27. Carette, J.: Understanding expression simplification. In: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC ’04, pp. 72–79. ACM (2004)

  28. Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Berlin (1998)

    Google Scholar 

  29. Charalampakis, A.E., Chatzigiannelis, I.: Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition. Arch. Appl. Mech. 88(1), 39–49 (2018)

    Google Scholar 

  30. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathematics, pp. 199–221. Springer, Berlin (2014)

    Google Scholar 

  31. Chen, C., Moreno Maza, M.: Real quantifier elimination in the RegularChains library. In: Hong, H., Yap, C. (eds.) Mathematical Software—ICMS 2014, Volume 8592 of Lecture Notes in Computer Science, pp. 283–290. Springer, Heidelberg (2014)

    Google Scholar 

  32. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. Journal of Symbolic Computation 75, 74–93 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC ’09, pp. 95–102. ACM (2009)

  34. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages, pp. 134–183. Springer (reprinted in the collection [28]) (1975)

  35. Collins, G.E.: The SAC-2 computer algebra system. In: Caviness, B.F. (ed.) EUROCAL ’85, Volume 204 of Lecture Notes in Computer Science, pp. 34–35. Springer, Berlin (1985)

    Google Scholar 

  36. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328 (1991)

    MathSciNet  MATH  Google Scholar 

  37. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  38. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’12, pp. 83–88. IEEE (2012)

  39. Davenport, J.H., England, M.: Need polynomial systems be doubly exponential? In: Greuel, G.M., Koch, T., Paule, P., Sommese, A. (eds.) Mathematical Software—Proceedings of ICMS 2016, Volume 9725 of Lecture Notes in Computer Science, pp. 157–164. Springer, Berlin (2016)

    Google Scholar 

  40. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC ’04, pp. 111–118. ACM (2004)

  42. England, M.: Machine Learning for Mathematical Software. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) Mathematical Software—ICMS 2018, Volume 10931 of Lecture Notes in Computer Science, pp. 165–174. Springer, Heidelberg (2018)

    Google Scholar 

  43. England, M., Bradford, R., Chen, C., Davenport, J.H., Moreno Maza, M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics, Volume 8543 of Lecture Notes in Artificial Intelligence, pp. 45–60. Springer, Berlin (2014)

    Google Scholar 

  44. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational constraints in cylindrical algebraic decomposition. In: Proceedings of the 2015 International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pp. 165–172. ACM (2015)

  45. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Understanding branch cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Intelligent Computer Mathematics, Volume 7961 of Lecture Notes in Computer Science, pp. 136–151. Springer, Berlin (2013)

    Google Scholar 

  46. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Hong, H., Yap, C. (eds.) Mathematical Software—ICMS 2014, Volume 8592 of Lecture Notes in Computer Science, pp. 450–457. Springer, Heidelberg (2014)

    Google Scholar 

  47. England, M., Davenport, J.H.: The complexity of cylindrical algebraic decomposition with respect to polynomial degree. In: Gerdt, V.P., Koepf, W., Werner, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing: 18th International Workshop, CASC 2016, Volume 9890 of Lecture Notes in Computer Science, pp. 172–192. Springer (2016)

  48. England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing (CASC), Volume 10490 of Lecture Notes in Computer Science, pp. 93–108. Springer, Berlin (2017)

    Google Scholar 

  49. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains library to build cylindrical algebraic decompositions by projecting and lifting. In: Hong, H., Yap, C. (eds.) Mathematical Software—ICMS 2014, Volume 8592 of Lecture Notes in Computer Science, pp. 458–465. Springer, Berlin (2014)

    Google Scholar 

  50. Erascu, M., Hong, H.: Real quantifier elimination for the synthesis of optimal numerical algorithms (case study: square root computation). J. Symb. Comput. 75, 110–126 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J. Comput. Phys. 291, 279–302 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC ’02, pp. 75–83. ACM (2002)

  53. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Uncertainty in AI, pp. 1022–1027. http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171 (1993)

  54. Forsyth, R., Rada, R.: Machine Learning: Applications in Expert Systems and Information Retrieval. Halsted Press, New York (1986)

    Google Scholar 

  55. Graebe, H.G., Nareike, A., Johanning, S.: The SymbolicData project: towards a computer algebra social network. In: England, M., Davenport, J.H., Kohlhase, A., Kohlhase, M., Libbrecht, P., Neuper, W., Quaresma, P., Sexton, A.P., Sojka, P., Urban, J., Watt, S.M. (eds.) Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress Track at CICM, Number 1186 in CEUR Workshop Proceedings (2014)

  56. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  57. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Google Scholar 

  58. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 359–366. Morgan Kaufmann Publishers Inc. (2000)

  59. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003)

    Google Scholar 

  60. Han, J., Dai, L., Xia, B.: Constructing fewer open cells by gcd computation in CAD projection. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pp. 240–247. ACM (2014)

  61. Heinle, A., Levandovskyy, V.: The SDEval benchmarking toolkit. ACM Commun. Comput. Algebra 49(1), 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’90, pp. 261–264. ACM (1990)

  63. Hong, H.: Comparison of several decision algorithms for the existential theory of the reals. Technical report, RISC, Linz (1991)

  64. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    MATH  Google Scholar 

  65. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (2003)

  66. Huang, Z., England, M., Davenport, J.H., Paulson, L.: Using machine learning to decide when to precondition cylindrical algebraic decomposition with Groebner bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC ’16), pp. 45–52. IEEE (2016)

  67. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics, Volume 8543 of Lecture Notes in Artificial Intelligence, pp. 92–107. Springer, Berlin (2014)

    Google Scholar 

  68. Huang, Z., Paulson, L.: An application of machine learning to RCF decision procedures. In: 20th Automated Reasoning Workshop, University of Dundee, UK, ARW ’13 (2013)

  69. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC ’09, pp. 55–64 (2009)

  70. Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  71. Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, pp. 377–384. ACM (2005)

  72. Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning: 6th International Joint Conference (IJCAR), Volume 7364 of Lecture Notes in Computer Science, pp. 339–354. Springer (2012)

  73. Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders for real quantifier elimination of non-prenex formulas. In: Kotsireas, S.I., Rump, M.S., Yap, K.C. (eds.) Mathematical Aspects of Computer and Information Sciences (MACIS ’15), Volume 9582 of Lecture Notes in Computer Science, pp. 236–251. Springer, Berlin (2016)

    Google Scholar 

  74. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 405(2), 442–451 (1975)

    Google Scholar 

  75. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

    MathSciNet  MATH  Google Scholar 

  76. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 242–268. Springer, Berlin (1998)

    Google Scholar 

  77. McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC ’99, pp. 145–149. ACM (1999)

  78. McCallum, S., Hong, H.: On using Lazard’s projection in CAD construction. J. Symb. Comput. 72, 65–81 (2016)

    MathSciNet  MATH  Google Scholar 

  79. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  80. Mulligan, C.B.: Automated economic reasoning with quantifier elimination. Working Paper 22922, National Bureau of Economic Research (2016)

  81. Patel, B.R., Kaushik, K.R.: A survey on decision tree algorithm for classification. Int. J. Eng. Dev. Res. 2, 1–5 (2014)

    Google Scholar 

  82. Paulson, L.C.: Metitarski: past and future. In: Beringer, L., Felty, A. (eds.) Interactive Theorem Proving, Volume 7406 of Lecture Notes in Computer Science, pp. 1–10. Springer, Berlin (2012)

    Google Scholar 

  83. Platzer, A., Quesel, J.D.: KeYmaera: a hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, Volume 5195 of Lecture Notes in Computer Science, pp. 171–178. Springer, Berlin (2008)

    Google Scholar 

  84. Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) Automated Deduction (CADE-22), Volume 5663 of Lecture Notes in Computer Science, pp. 485–501. Springer, Berlin (2009)

    Google Scholar 

  85. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C (2nd Ed.): The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  86. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  87. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Google Scholar 

  88. Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel methods in computational biology. MIT Press, Cambridge (2004)

    Google Scholar 

  89. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    MathSciNet  Google Scholar 

  90. Shannon, Claude E.: A mathematical theory of communication. Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    MathSciNet  Google Scholar 

  91. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  92. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning perspective. Auton. Robot. 8(3), 345–383 (2000)

    Google Scholar 

  93. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)

    MathSciNet  MATH  Google Scholar 

  94. Strzeboński, A.: Cylindrical algebraic decomposition using local projections. J. Symb. Comput. 76, 36–64 (2016)

    MathSciNet  MATH  Google Scholar 

  95. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, CA (reprinted in the collection [28]) (1948)

  96. Vapnik, V.N., Chervonenkis, A.Y.: A note on one class of perceptrons. Autom. Remote Control 25(1), 821–837 (1964)

    MATH  Google Scholar 

  97. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-decompositions. Math. Comput. Sci. 8, 263–288 (2014)

    MathSciNet  MATH  Google Scholar 

  98. Wilson, D., Davenport, J.H., England, M., Bradford, R.: A “piano movers” problem reformulated. In: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’13, pp. 53–60. IEEE (2013)

  99. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution of cells by dimension in a cylindrical algebraic decomposition. In: 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’14, pp. 53–60. IEEE (2014)

  100. Wilson, D.J., Bradford, R.J., Davenport, J.H.: A repository for CAD examples. ACM Commun. Comput. Algebra 46(3), 67–69 (2012)

    MATH  Google Scholar 

  101. Wilson, D.J., Bradford, R.J., Davenport, J.H.: Speeding up cylindrical algebraic decomposition by Gröbner bases. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) Intelligent Computer Mathematics, Volume 7362 of Lecture Notes in Computer Science, pp. 280–294. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC Grant EP/J003247/1; the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 712689 (SC\(^2\)); and the China Scholarship Council (CSC). The authors acknowledge both the anonymous referees of the present paper, and those of [66, 67], whose comments also helped improve this article.

Author information

Authors and Affiliations

  1. Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD, UK

    Zongyan Huang, James Bridge & Lawrence C. Paulson

  2. Faculty of Engineering, Environment and Computing, Coventry University, Coventry, CV1 2JH, UK

    Matthew England

  3. Department of Computer Science, University of Bath, Bath, BA2 7AY, UK

    David J. Wilson & James H. Davenport

Authors
  1. Zongyan Huang
    View author publications

    Search author on:PubMed Google Scholar

  2. Matthew England
    View author publications

    Search author on:PubMed Google Scholar

  3. David J. Wilson
    View author publications

    Search author on:PubMed Google Scholar

  4. James Bridge
    View author publications

    Search author on:PubMed Google Scholar

  5. James H. Davenport
    View author publications

    Search author on:PubMed Google Scholar

  6. Lawrence C. Paulson
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Matthew England.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., England, M., Wilson, D.J. et al. Using Machine Learning to Improve Cylindrical Algebraic Decomposition. Math.Comput.Sci. 13, 461–488 (2019). https://doi.org/10.1007/s11786-019-00394-8

Download citation

  • Received: 31 January 2017

  • Revised: 07 May 2018

  • Accepted: 25 February 2019

  • Published: 03 April 2019

  • Issue Date: December 2019

  • DOI: https://doi.org/10.1007/s11786-019-00394-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Symbolic Computation
  • Computer Algebra
  • Machine Learning
  • Support Vector Machine
  • Cylindrical Algebraic Decomposition
  • Gröbner Basis
  • Parameter Selection

Mathematics Subject Classification

  • 68W30 (Symbolic Computation and Algebraic Computation)
  • 68T05 (Learning and Adaptive Systems)

Profiles

  1. Matthew England View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Mathematics in Computational Logic

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature