Photosynthetica 2018, 56(3):953-961 | DOI: 10.1007/s11099-018-0766-z

Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors

H. M. Kalaji1,2, A. Rastogi3,4,*, M. �iv��k4, M. Brestic4, A. Daszkowska-Golec5, K. Sitko6, K. Y. Alsharafa7, R. Lotfi8, P. Stypi�ski9, I. A. Samborska10, M. D. Cetner10
1 Institute of Technology and Life Sciences (ITP), Raszyn, Poland
2 White Hill Company, Bia�ystok, Poland
3 Department of Meteorology, Poznan University of Life Sciences, Poznan, Poland
4 Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
5 Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
6 Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
7 Department of Biological Science, Faculty of Science, Mutah University, Mutah, Jordan
8 Dryland Agricultural Research Institute, Agricultural Research Education & Extension Organization, Maragheh, Iran
9 Department of Agronomy, Warsaw University of Life Sciences, Warsaw, Poland
10 Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Science - SGGW, Warsaw, Poland

The study examined photosynthetic efficiency of two barley landraces (cvs. Arabi Abiad and Arabi Aswad) through a prompt fluorescence technique under influence of 14 different abiotic stress factors. The difference in the behavior of photosynthetic parameters under the same stress factor in-between cv. Arabi Abiad and cv. Arabi Aswad indicated different mechanisms of tolerance and strategies for the conversion of light energy into chemical energy for both the landraces. This study confirmed the suitability of some chlorophyll fluorescence parameters as reliable biomarkers for screening the plants at the level of photosynthetic apparatus.

Additional key words: chlorophyll a fluorescence; JIP test; photosystem II

Received: May 31, 2017; Accepted: August 25, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kalaji, H.M., Rastogi, A., �iv��k, M., Brestic, M., Daszkowska-Golec, A., Sitko, K., ... Cetner, M.D. (2018). Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica,�56(3),�953-961. doi:�10.1007/s11099-018-0766-z
Download citation

References

  1. Bolhàr-Nordenkampf H.R., �quist G.: Chlorophyll fluorescence as a tool in photosynthesis research.-In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H. R. et al. (ed.): Photosynthesis and production in a changing environment: a field and laboratory manual. Pp. 193-206. Chapman & Hall, London 1993. Go to original source...
  2. Brestic M., �iv��k M., Kalaji H.M. et al.: Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.-Plant Physiol Bioch. 57: 93-105, 2012. Go to original source...
  3. Cascio C., Schaub M., Novak K. et al.: Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions.-Environ. Exp. Bot. 68: 188-197, 2010. Go to original source...
  4. Dai Y., Shen Z., Liu Y. et al.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg.-Environ. Exp. Bot. 65: 177-182, 2009. Go to original source...
  5. Dayan F.E., Zaccaro M.L.M.: Chlorophyll fluorescence as a marker for herbicide mechanisms of action.-Pestic. Biochem. Phys. 102: 189-197, 2012. Go to original source...
  6. Desotgiu R., Bussotti F., Faoro F. et al.: Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone.-Sci. World J. 10: 512-527, 2010. Go to original source...
  7. Devi S.R., Prasad M.N.V.: Influence of ferulic acid on photo synthesis of maize: analysis of CO2 assimilation, electron transport activities, fluorescence emission and photophosphorylation.-Photosynthetica 32: 117-127, 1996.
  8. Fracheboud Y., Leipner J.: The application of chlorophyll fluorescence to study light, temperature, and drought stress.-In: De-Ell J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125-150, Kluwer Acad. Publ. Dordrecht 2003. Go to original source...
  9. G�rel F., �zt�rk Z. N., U�arli C., Rosellini D.: Barley genes as tools to confer abiotic stress tolerance in crops.-Front. Plant Sci. 7: 1137, 2016. Go to original source...
  10. Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants Without Soil, California. California Agricultural Experiment Station, Circular 347. Pp. 1-32. Univ. of California, Berkeley 1950.
  11. Horv�th G., Droppa M., Oravecz A. et al.: Formation of the photosynthetic apparatus during greening of cadmiumpoisoned barley leaves.-Planta 199: 238-243, 1996. Go to original source...
  12. Kalaji H.M., Bosa K., Ko�cielniak J., Hossain Z.: Chlorophyll a fluorescence-A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.).-OMICS 15: 925-934, 2011a. Go to original source...
  13. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley.-J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  14. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces.-Environ. Exp. Bot. 73: 64-72, 2011b. Go to original source...
  15. Kalaji H.M., Guo P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs.-In: S�nchez A., Guti�rrez S.J. (ed.): Photochemistry Research Progress. Pp. 439-463. Nova Sci. Publ. Inc., New York 2008.
  16. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.-Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  17. Kalaji H.M., �oboda T.: Photosystem II of barley seedlings under cadmium and lead stress.-Plant Soil Environ. 53: 511-516, 2007. Go to original source...
  18. Kalaji H.M., Pietkiewicz S.: Some physiological indices to be exploited as a crucial tool in plant breeding.-Plant Breed. Seeds Sci. 49: 19-39, 2004.
  19. Kang Y., Khan S., Ma X.: Climate change impacts on crop yield, crop water productivity and food security-A review.-Prog. Nat. Sci. 19: 1665-1674, 2009. Go to original source...
  20. Kaur B., Kaur G., Asthir B.: Biochemical aspects of nitrogen use efficiency: An overview.-J. Plant Nutr. 40: 506-523, 2017. Go to original source...
  21. Kautsky H., Hirsch A.: [New attempts to assimilate carbonic acid.]-Naturwissenschaften 19: 96, 1931. [In German] Go to original source...
  22. Krupa Z., Baszynski T.: Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions: a review.-Acta Physiol. Plant. 17: 177-190, 1995.
  23. Kuckenberg J., Tartachnyk I., Noga G.: Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves.-Precis. Agric. 10: 34-44, 2009. Go to original source...
  24. Lootens P., Ruttink T., Rohde A. et al.: High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.-Plant Methods 12: 32, 2016. Go to original source...
  25. Mathur S., Jajoo A., Mehta P., Bharti S.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).-Plant Biol. 13: 1-6, 2011. Go to original source...
  26. Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant.-Photosynthetica 54: 185-192, 2016. Go to original source...
  27. Maxwell K., Johnson N.G.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  28. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves.-Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  29. Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides.-Fresen J. Anal. Chem. 354: 299-305, 1996. Go to original source...
  30. Morales F., Abad�a A., Abad�a J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves.-Plant Physiol. 97: 886-893, 1991. Go to original source...
  31. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.-J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  32. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering.-Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  33. Roschina V., Melnikowa E.V.: Microspectrofluorometry: a new technique to study pollen allelopathy.-Allelopathy J. 3: 51-58, 1996.
  34. Santelia D., Lawson T.: Rethinking guard cell metabolism.-Plant Physiol. 172: 1371-1392, 2016. Go to original source...
  35. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.-In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin 1994. Go to original source...
  36. Sharma P., Dubey R.: Lead toxicity in plants.-Braz. J. Plant Physiol. 17: 35-52, 2005. Go to original source...
  37. Siedlecka A., Krupa Z., Samuelsson G. et al.: Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction.-Plant Physiol. Bioch. 35: 951-957 1997.
  38. Spiller S., Terry N.: Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units.-Plant Physiol. 65: 121-125, 1980. Go to original source...
  39. Srivastava A., Guisse B., Greppin H., Strasser R.J.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP.-BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
  40. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescent transient as a tool to characterize and screen photosynthetic samples.-In: Yunus M., Pathre, U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
  41. Strasser R.J., Tsimilli-Michael M., Dangre D., Rai M.: Biophysical phenomics reveals functional building blocks of plants system biology: acase study for evaluation of the impast of Mycorrhization with Piriformospora indica.-In: Varma A., Oelm�ller R. (ed.): Advanced Techniques in Soil Biology. Pp. 319-338. Springer, Berlin 2004. Go to original source...
  42. Surpin M., Larkin R.M., Chory J.: Signal transduction between the chloroplast and the nucleus.-Plant Cell 14S: S327-S338, 2002. Go to original source...
  43. Terry N., Huston R.P.: Effects of calcium on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.-Plant Physiol. 55: 923-927, 1975. Go to original source...
  44. Terry N.: Effects of sulfur on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.-Plant Physiol. 57: 477-479, 1976. Go to original source...
  45. Tiwari A., Jajoo A., Bharti S.: Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes.-Photoch. Photobio. Sci. 7: 485-491, 2008. Go to original source...
  46. Tomar R.S., Jajoo A.: Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).-Ecotoxicol. Environ. Safe. 109: 110-115, 2014. Go to original source...
  47. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants.-In: Varma A. (ed.): Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics (3rd edition). Pp. 679-703. Springer, Berlin-Heidelberg 2008. Go to original source...
  48. Walter A., Liebisch F., Hund A.: Plant phenotyping: from bean weighing to image analysis.-Plant Methods 11: 14, 2015. Go to original source...
  49. �iv��k M., Brestic M., Kunderlikova K. et al.: Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise?-J. Photoch. Photobio. B 152: 318-324, 2015. Go to original source...
  50. �iv��k M., Bre�ti� M., Ol�ovska K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L.-Plant Soil Environ. 54: 133-139, 2008. Go to original source...
  51. �iv��k M., Ol�ovsk� K., Slamka P. et al.: Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency.-Plant Soil Environ. 60: 210-215, 2014. Go to original source...