Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

A posteriori error estimates for wave maps into spheres

  • Open access
  • Published: 17 July 2023
  • Volume 49, article number 54, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
A posteriori error estimates for wave maps into spheres
Download PDF
  • Jan Giesselmann1,
  • Elena Mäder-Baumdicker2 &
  • David Jakob Stonner2 
  • 412 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

We provide a posteriori error estimates in the energy norm for temporal semi-discretisations of wave maps into spheres that are based on the angular momentum formulation. Our analysis is based on novel weak–strong stability estimates which we combine with suitable reconstructions of the numerical solution. We present time-adaptive numerical simulations based on the a posteriori error estimators for solutions involving blow-up.

Article PDF

Download to read the full article text

Similar content being viewed by others

Quantization of Time-Like Energy for Wave Maps into Spheres

Article Open access 14 October 2016

A conservative penalisation strategy for the semi-implicit time discretisation of the incompressible elastodynamics equation

Article Open access 19 December 2018

Design and Investigation of a Novel Point Absorber on Performance Optimization Mechanism for Wave Energy Converter in Heave Mode

Article 28 March 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Approximations and Expansions
  • Numerical Analysis
  • Partial Differential Equations
  • Partial Differential Equations on Manifolds
  • Probabilistic Methods, Simulation and Stochastic Differential Equations
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Aitchison, I.J.R., Hey, A.J.G.: Gauge theories in particle physics: Volume I: From Relativistic Quantum Mechanics to QED, 3rd edn. Graduate Student Series in Physics

  2. Carroll, S.M.: Spacetime and geometry: an introduction to general relativity. Cambridge University Press, Cambridge (2019) https://doi.org/10.1017/9781108770385

  3. Shatah, J., Struwe, M.: Geometric wave equations, vol. 2, p. 153. New York University, Courant Institute of Mathematical Sciences, New York, NY (1998)

  4. Tataru, D.: The wave maps equation. Bull. Amer. Math. Soc. (N.S.) 41(2), 185–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Krieger, J.: Global regularity and singularity development for wave maps. In: Surveys in differential geometry. Vol. XII. Geometric flows. Survey Differential Geometry, vol. 12, pp. 167–201. International Press

  6. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \(O(3)\)\(\sigma \)-model. Ann. Math. (2) 172(1), 187–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geba, D.-A., Grillakis, M.G.: An introduction to the theory of wave maps and related geometric problems, p. 477. World Scientific, Hackensack, NJ (2017)

    MATH  Google Scholar 

  8. Bartels, S.: Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47(5), 3486–3506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartels, S.: Projection-free approximation of geometrically constrained partial differential equations. Math. Comp. 85(299), 1033–1049 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartels, S., Feng, X., Prohl, A.: Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46(1), 61–87 (2007)

  11. Bartels, S., Lubich, C., Prohl, A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp. 78(267), 1269–1292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bizoń, P., Chmaj, T., Tabor, Z.A.: Formation of singularities for equivariant (2+1)-dimensional wave maps into the 2-sphere. Nonlinearity 14(5), 1041–1053 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, D., Verdier, O.: Multisymplectic discretization of wave map equations. SIAM J. Sci. Comput. 38(2), 953–972 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kycia, R.A.: On similarity in the evolution of semilinear wave and Klein-Gordon equations: numerical surveys. J. Math. Phys. 53(2), 023703–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bartels, S.: Fast and accurate finite element approximation of wave maps into spheres. ESAIM Math. Model. Numer. Anal. 49(2), 551–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karper, T.K., Weber, F.: A new angular momentum method for computing wave maps into spheres. SIAM J. Numer. Anal. 52(4), 2073–2091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Ancona, P., Georgiev, V.: On the continuity of the solution operator to the wave map system. Comm. Pure Appl. Math. 57(3), 357–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Georgoulis, E.H., Lakkis, O., Makridakis, C.G., Virtanen, J.M.: A posteriori error estimates for leap-frog and cosine methods for second order evolution problems. SIAM J. Numer. Anal. 54(1), 120–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kyza, I., Makridakis, C.: Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations. SIAM J. Numer. Anal. 49(1), 405–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Georgoulis, E.H., Lakkis, O., Makridakis, C.: A posteriori \(L^\infty (L^2)\)-error bounds for finite element approximations to the wave equation. IMA J. Numer. Anal. 33(4), 1245–1264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15(6), 1357–1411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bartels, S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43(1), 220–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dedner, A., Giesselmann, J., Pryer, T., Ryan, J.K.: Residual estimates for post-processors in elliptic problems. J. Sci. Comput. 88(2), 28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bernardi, C., Süli, E.: Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15(2), 199–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Adjerid, S.: A posteriori finite element error estimation for second-order hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 191(41–42), 4699–4719 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bangerth, W., Rannacher, R.: Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9(2), 575–591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Süli, E.: A posteriori error analysis and global error control for adaptive finite volume approximations of hyperbolic problems. In: Numerical Analysis 1995 (Dundee, 1995). Pitman Res. Notes Math. Ser., 344, 169–190. Longman, Harlow (1996)

  28. Cangiani, A., Georgoulis, E.H., Kyza, I., Metcalfe, S.: Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. 38(6), 3833–3856 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, S., Struwe, M.: Global existence of wave maps in 1+2 dimensions with finite energy data. Topol. Methods Nonlinear Anal. 7(2), 245–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Struwe, M.: Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality. Comm. Pure Appl. Math. 52(9), 1179–1188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Widmayer, K.: Non-uniqueness of weak solutions to the wave map problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(3), 519–532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, Y.: Uniqueness of weak solutions of 1 + 1 dimensional wave maps. Math. Z. 232(4), 707–719 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shatah, J., Tahvildar-Zadeh, A.S.: On the Cauchy problem for equivariant wave maps. Comm. Pure Appl. Math. 47(5), 719–754 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freire, A., Müller, S., Struwe, M.: Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15(6), 725–754 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mizuguchi, M., Tanaka, K., Sekine, K., Oishi, S.: Estimation of Sobolev embedding constant on a domain dividable into bounded convex domains. J. Inequal. Appl. 2017, 18 (2017). https://doi.org/10.1186/s13660-017-1571-0, Id/No 299

  36. Dragomir, S.S.: Some Gronwall type inequalities and applications, p. 193. Nova Science Publishers, Hauppauge, NY (2003)

    MATH  Google Scholar 

  37. Makridakis, C.: Space and time reconstructions in a posteriori analysis of evolution problems. In: ESAIM Proceedings. \([\)Journées D’Analyse Fonctionnelle et Numérique en L’honneur De Michel Crouzeix\(]\). ESAIM Proceeding vol. 21, pp. 31–44. EDP Science Les Ulis (2007)

  38. Akrivis, G., Makridakis, C., Nochetto, R.H.: A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp. 75(254), 511–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL. J.G. thanks the German Research Foundation (DFG) for the support of the project via DFG grant GI 1131/1-1. E. M.-B. is funded by the DFG via the grant MA 7559/1-1 and appreciates the support.

Author information

Authors and Affiliations

  1. Mathematics, Technical University of Darmstadt, Dolivostr. 15, 64293, Darmstadt, Hesse, Germany

    Jan Giesselmann

  2. Mathematics, Technical University of Darmstadt, Schlossgartenstr. 7, 64289, Darmstadt, Hesse, Germany

    Elena Mäder-Baumdicker & David Jakob Stonner

Authors
  1. Jan Giesselmann
    View author publications

    Search author on:PubMed Google Scholar

  2. Elena Mäder-Baumdicker
    View author publications

    Search author on:PubMed Google Scholar

  3. David Jakob Stonner
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jan Giesselmann.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Ilaria Perugia

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David Jakob Stonner and Elena Mäder-Baumdicker contributed equally to this work.

Appendix

Appendix

This appendix is devoted to the proof of Lemma 2. Here, each quantity that is defined continuously in time is to be understood as its restriction to \((t_n,t_{n+1})\). Let us begin by giving explicit formulae for certain parts of \(r_u\) and \(r_\omega \). The first such expressions make explicit the difference between some piecewise quadratic, globally continuous function and its piecewise linear interpolations:

$$\begin{aligned} \begin{aligned} u^*(t) - \widehat{u}(t)&= \frac{1}{2} \frac{(t-t_n)(t_{n+1}-t)}{t_{n+1}-t_n} \left( u^{n+1} \times \omega ^{n+1} - u^n \times \omega ^n\right) ,\\ \tilde{w}(t) - \widehat{\omega }(t)&= \frac{1}{2} \frac{(t-t_n)(t_{n+1}-t)}{t_{n+1}-t_n} \left( \Delta u^{n+1} \times u^{n+1} - \Delta u^n \times u^n\right) ,\\ \widehat{u}(t) \times \widehat{w}(t) - I_1(\widehat{u} \times \widehat{w})(t)&= - \frac{(t-t_n)(t_{n+1}-t)}{(t_{n+1}-t_n)^2} (u^{n+1} - u^n) \times (\omega ^{n+1} - \omega ^n). \end{aligned} \end{aligned}$$
(53)

1.1 Controlling \(|\widehat{u}|\), \(|u^*|\)

Let us now study how far away \(\widehat{u}, u^*\) are from maps into the sphere: If \(u^{n+1}-u^n\) is sufficiently small, a geometric argument implies

$$\begin{aligned} \Big \vert 1-|\widehat{u}\vert \Big \vert \le |u^{n+1}-u^n|^2= (A^u)^2, \ \Big \vert 1-|u^* |\Big \vert \le \Big \vert 1- |\widehat{u}|\Big \vert + \Big \vert \widehat{u} - u^*\Big \vert \le (A^u)^2 + \tau _n B^u \end{aligned}$$

and, therefore,

$$\begin{aligned} \Big |\tilde{u}- u^*\Big \vert = \Big |\tilde{u}\Big (1-\Big \vert u^*\Big |\Big )\Big |\le |u^{n+1}-u^n|^2= (A^u)^2+ \tau _n B^u. \end{aligned}$$
(54)

Thus, the conditions in Lemma 2 imply

$$\begin{aligned} \frac{3}{4} \le |\widehat{u}|\le \frac{5}{4} , \qquad \frac{1}{2} \le |u^* |\le \frac{3}{2}. \end{aligned}$$
(55)

1.2 Estimating \(r_{u,1}\)

Since \(\tilde{u}(t_n)=\widehat{u}(t_n)\) and \(\tilde{w}(t_n)=\widehat{\omega }(t_n) \) we may rewrite \(r_{u,1} \) as

$$\begin{aligned} r_{u,1} = \tilde{u} \times (\tilde{w}- \widehat{\omega }) + (\tilde{u}- u^*) \times \widehat{\omega }+ ( u^*- \widehat{u}) \times \widehat{\omega }+ \widehat{u} \times \widehat{w} - I_1(\widehat{u} \times \widehat{w}) \end{aligned}$$
(56)

such that

$$\begin{aligned} \begin{aligned}&\Big \vert r_{u,1} \Big \vert \le \tau _n (\Delta \tilde{u}^{n+1} \times \tilde{u}^{n+1} - \Delta \tilde{u}^{n} \times \tilde{u}^{n} ) 2 |u^{n+1} - u^n|\, |\omega ^{n+1} - \omega ^n|\\&\ + \max \{|\omega ^n|,|\omega ^{n+1}|\} \left[ |u^{n+1}-u^n|^2+ |t_{n+1}-t_n|\ |u^{n+1} \times \omega ^{n+1} - u^n \times \omega ^n|\right] \, . \end{aligned} \end{aligned}$$
(57)

This proves (44).

We obtain (45) by applying the product rule to (56) since \(|\widehat{u}(t,x)|\le 1\). We also use the fact that \(\nabla \tilde{u}\) is the projection of \(\nabla u^*\) onto the tangent space of the sphere, so that, provided \(|u^{n+1}-u^n|< 1/2\) holds, we have the point-wise estimate

$$\begin{aligned} |\nabla \tilde{u}|\le 2 |\nabla u^*|. \end{aligned}$$
(58)

1.3 Estimating \(r_{u,3}\)

The key to estimating \(r_{u,3}\) is to control \(\partial _t u^* \cdot u^*\). We notice that

$$\begin{aligned} \partial _t u^* \cdot u^* = (I_1[\widehat{u} \times \widehat{\omega }] + a_u) \cdot (\widehat{u} + (u^* - \widehat{u})) \end{aligned}$$
(59)

and, thus,

$$\begin{aligned} \vert \partial _t u^* \cdot u^* \vert \le \vert I_1[\widehat{u} \times \widehat{\omega }]\cdot \widehat{u} \vert + A^u A^\omega (1 + \tau _n B^u) + C^\omega \tau _n B^u \end{aligned}$$
(60)

so that it remains to understand \(I_1[\widehat{u} \times \widehat{\omega }]\cdot \widehat{u}\). Using orthogonality, we obtain

$$\begin{aligned} \begin{aligned} I_1[\widehat{u} \times \widehat{\omega }]\cdot \widehat{u}&= [ \ell _n^0(t) u^n\times \omega ^n + \ell _n^1(t) u^{n+1}\times \omega ^{n+1} ] \cdot [ \ell _n^0(t) u^n + \ell _n^1(t) u^{n+1} ] \\&= \ell _n^0(t) \ell _n^1(t) [ u^{n+1} \cdot (u^n\times \omega ^n ) + u^{n} \cdot (u^{n+1}\times \omega ^{n+1} )]\\&= \ell _n^0(t) \ell _n^1(t)\det (u^{n+1},u^n,\omega ^{n+1}-\omega ^n)\\&= \ell _n^0(t) \ell _n^1(t)\det (u^{n+1}-u^n,u^n,\omega ^{n+1}-\omega ^n). \end{aligned} \end{aligned}$$
(61)

We insert (61) into (59) and obtain

$$\begin{aligned} \vert \partial _t u^* \cdot u^* \vert \le A^u A^\omega (2 + \tau _n B^u) + C^\omega \tau _n B^u\,. \end{aligned}$$
(62)

Moreover, due to (55) we arrive at

$$\begin{aligned} \left| 1 - \frac{1}{|u^* |} \right| = \left| 1 - \frac{1}{|\widehat{u}\vert } - \frac{ \vert u^* \vert - \vert \widehat{u}\vert }{ \vert u^* \vert \vert \widehat{u}\vert }\right| \le \frac{4}{3} (A^u)^2 +\frac{8}{3} \tau _n B^u \end{aligned}$$
(63)

Using (63) and (62) we obtain:

$$\begin{aligned} \vert r_{u,3}\vert \le (C^\omega + \frac{1}{4} A^u A^\omega ) \left( \frac{4}{3} (A^u)^2 +\frac{8}{3} \tau _n B^u\right) + 4 A^u A^\omega (2 + \tau _n B^u) +4 C^\omega \tau _n B^u. \end{aligned}$$
(64)

Let us note that for

$$\begin{aligned} \begin{aligned} \nabla r_{u,3}&= \nabla \partial _t u^* \left( 1 - \frac{1}{|u^* |}\right) + \nabla (I_1[\widehat{u}\times \widehat{\omega }] \cdot \widehat{u}) + \nabla a_u \cdot u^* \\&\qquad +a_u \cdot \nabla u^* + \nabla (I_1[\widehat{u}\times \widehat{\omega }] \cdot (u^* - \widehat{u})) + \partial _t u^* \nabla \left( 1 - \frac{1}{|u^* |}\right) \end{aligned} \end{aligned}$$
(65)

we have suitable bounds for all terms on the right hand side of (65) except for \(\nabla \left( 1 - \frac{1}{|u^* |}\right) \), e.g., \(\nabla (I_1[\widehat{u}\times \widehat{\omega }] \cdot \widehat{u})\) can be estimated by applying the product rule to (61). As a first step towards estimating for \(\nabla \left( 1 - \frac{1}{|u^* |}\right) = - \frac{u^* \cdot \nabla u^*}{|u^* |^3}\), we compute

$$\begin{aligned} \begin{aligned} |u^* |^3\partial _{x_j}\! \left( 1 - \frac{1}{|u^* |}\right)&= \partial _{x_j} \widehat{u} \cdot \widehat{u} + \partial _{x_j} (u^* - \widehat{u}) \cdot \widehat{u} \\&\qquad \qquad + \partial _{x_j} \widehat{u}\cdot \! (u^* - \widehat{u}) + \partial _{x_j} (u^*- \widehat{u})\cdot (u^* - \widehat{u}). \end{aligned} \end{aligned}$$
(66)

We recall \(\vert u^n\vert =1\), which implies \(\partial _{x_j} u^n \cdot u^n=0\), for all n, so that

$$\begin{aligned} \begin{aligned} \partial _{x_j} \widehat{u} \cdot \widehat{u}&= \partial _{x_j} (\ell _n^0 (t) u^n + \ell _n^1 (t) u^{n+1}) \cdot (\ell _n^0 (t) u^n + \ell _n^1 (t) u^{n+1})\\&= \ell _n^0 (t)\ell _n^1(t) ( \partial _{x_j} u^n \cdot u^{n+1} + \partial _{x_j} u^{n+1} \cdot u^{n} )\\&= - \ell _n^0 (t)\ell _n^1(t) \partial _{x_j} ( u^{n+1} - u^n )\cdot ( u^{n+1} - u^n ). \end{aligned} \end{aligned}$$
(67)

We insert (67) into (66) and obtain

$$\begin{aligned} \left| \nabla \left( 1 - \frac{1}{|u^* |}\right) \right| \le 8[ A^u_x A^u + \tau _n B^u_x + C^u_x \tau _n B^u + \tau _n^2 B^u_x B^u] \end{aligned}$$
(68)

Thus, we obtain

$$\begin{aligned} \begin{aligned} \vert \nabla r_{u,3}\vert&\le \left( C^u_x C^\omega + C^\omega _x + \frac{1}{4} A^u_x A^\omega +\frac{1}{4} A^u A^\omega _x\right) \left( \frac{4}{3} (A^u)^2 +\frac{8}{3} \tau _n B^u\right) \\&\quad + \frac{3}{2} A^u_x A^\omega +2 A^u C^u_x A^\omega + \frac{3}{2} A^u A^\omega _x + \left( C^u_x C^\omega + C^\omega _x \right) \tau _n B^u + C^\omega \tau _n B^u_x\\&\quad + 8\left( C^\omega + \frac{1}{4} A^u A^\omega \right) \left( A^u_x A^u + \tau _n B^u_x + C^u_x \tau _n B^u + \tau _n^2 B^u_x B^u\right) . \end{aligned} \end{aligned}$$
(69)

This completes providing bounds for the different components of \(r_u\) and \(\nabla r_u\).

1.4 Estimating \(r_\omega \)

Obviously, \(\vert r_{\omega ,2}\vert = \vert a^\omega \vert \le \frac{1}{4} A^u A^u_{xx}\) and

$$\begin{aligned} \begin{aligned} r_{\omega ,1}&= (\Delta \tilde{u}- \Delta u^*)\times \tilde{u}+ (\Delta u^* - \Delta \widehat{u})\times \tilde{u}+ \Delta \widehat{u} \times (\tilde{u}- u^*) \\&\qquad \qquad + \Delta \widehat{u} \times (u^*-\widehat{u}) + \Delta \widehat{u} \times \widehat{u} - I_1[\Delta \widehat{u} \times \widehat{u}]. \end{aligned} \end{aligned}$$
(70)

We insert (54) and (53) into (70) and obtain

$$\begin{aligned} \vert r_{\omega ,1}\vert \le \vert (\Delta \tilde{u}- \Delta u^*) \vert + \tau _n B^u + C^u_{xx} (A^u)^2 + C^u_{xx}\tau _n B^u + A^u_{xx} A^u\,, \end{aligned}$$
(71)

where we have used that

$$\begin{aligned} \Delta \widehat{u} \times \widehat{u} - I_1[\Delta \widehat{u} \times \widehat{u}] =- \ell ^0_n(t)\ell ^1_n(t) (\Delta u^{n+1}-\Delta u^n) \times (u^{n+1} - u^n). \end{aligned}$$

It remains to provide an estimate for \(|\Delta \tilde{u}- \Delta u^*\vert \). We note that \(u^*=\tilde{u}|u^* |\) and, thus,

$$\begin{aligned} \Delta (\tilde{u}- u^*) = \Delta u^* \left( 1 - \frac{1}{|u^* |} \right) - \frac{\sum _j \partial _{x_j} \tilde{u}\cdot \partial _{x_j} |u^* |}{ |u^* |} - \frac{ \tilde{u}\Delta |u^* |}{ |u^* |}, \end{aligned}$$
(72)

so that

$$\begin{aligned} \begin{aligned} \vert \Delta (\tilde{u}- u^*) \vert&\le ( C^u_{xx}+ \tau _n B^u_{xx}) \left( \frac{4}{3} (A^u)^2+ \frac{8}{3} \tau _n B^u\right) + |\nabla \tilde{u}\vert \frac{\vert u^* \cdot \nabla u^*\vert }{ \vert u^*|^2 } + \frac{ |\Delta |u^* |\, \vert }{ |u^* |}\\&\le ( C^u_{xx}+ \tau _n B^u_{xx}) \left( \frac{4}{3} (A^u)^2+ \frac{8}{3} \tau _n B^u\right) \\&+(C^u_x + \tau _n B^u_x)2[ A^u_x A^u + \tau _n B^u_x + C^u_x \tau _n B^u + \tau _n^2 B^u_x B^u] + \frac{ |\Delta |u^* |\, \vert }{ |u^* |} \end{aligned} \end{aligned}$$
(73)

where we have used (68). Orthogonality \(\partial _{x_j} u^n \perp u^n\) for all j and all n implies

$$\begin{aligned} \Delta |u^* |= - \ell _n^0 (t)\ell _n^1(t)[(u^{n+1} -u^n)\cdot \partial _{x_j}^2 (u^{n+1} -u^n) + |\partial _{x_j} (u^{n+1} -u^n)|^2] . \end{aligned}$$
(74)

Inserting (74) into (73) implies

$$\begin{aligned} \begin{aligned} \vert \Delta (\tilde{u}- u^*) \vert&\le ( C^u_{xx}+ \tau _n B^u_{xx}) \left( \frac{4}{3} (A^u)^2+ \frac{8}{3} \tau _n B^u\right) + A^u_{xx} A^u + (A^u_x)^2\\&\quad +(C^u_x + \tau _n B^u_x)2[ A^u_x A^u + \tau _n B^u_x + C^u_x \tau _n B^u + \tau _n^2 B^u_x B^u] \end{aligned} \end{aligned}$$
(75)

Inserting (75) into (71) completes the bound for \(r_\omega \).

1.5 Estimating \(r_g\)

We note that orthogonality \(u^n \perp \omega ^n\) implies

$$\begin{aligned} \begin{aligned} \tilde{u}\cdot \tilde{w}&= \tilde{u}\cdot (\tilde{w}- \widehat{\omega }) - (\tilde{u}- \widehat{u})\cdot \widehat{\omega }+ \widehat{u} \cdot \widehat{\omega }\\&= \tilde{u}\cdot (\tilde{w}- \widehat{\omega }) - (\tilde{u}- \widehat{u})\cdot \widehat{\omega }- \ell _n^0 (t)\ell _n^1(t)(u^{n+1} -u^n)\cdot (\omega ^{n+1} -\omega ^n) \end{aligned} \end{aligned}$$
(76)

so that

$$\begin{aligned} \vert \tilde{u}\cdot \tilde{w}\vert \le \tau _n B^\omega + C^\omega ( (A^u)^2 + \tau _n B^u) + A^u A^\omega . \end{aligned}$$
(77)

Thus, using the definition of \(r_g\)

$$\begin{aligned} \vert r_g \vert&\le (C^\omega + \tau _n B^\omega )) [\tau _n B^\omega + C^\omega ( (A^u)^2 + \tau _n B^u) + A^u A^\omega ] \\&\qquad \qquad + [\tau _n B^\omega + C^\omega ( (A^u)^2 + \tau _n B^u) + A^u A^\omega ]^2. \end{aligned}$$

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giesselmann, J., Mäder-Baumdicker, E. & Stonner, D.J. A posteriori error estimates for wave maps into spheres. Adv Comput Math 49, 54 (2023). https://doi.org/10.1007/s10444-023-10051-1

Download citation

  • Received: 11 April 2022

  • Accepted: 23 May 2023

  • Published: 17 July 2023

  • DOI: https://doi.org/10.1007/s10444-023-10051-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Wave maps
  • Weak–strong stability
  • A posteriori error estimates
  • Blow-up

Mathematics Subject Classification (2010)

  • 65M16
  • 35L71
  • 35B44
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature