Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

Joint spectral radius and ternary hermite subdivision

  • Open access
  • Published: 23 March 2021
  • Volume 47, article number 25, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
Joint spectral radius and ternary hermite subdivision
Download PDF
  • M. Charina1,
  • C. Conti  ORCID: orcid.org/0000-0001-6878-77842,
  • T. Mejstrik1 &
  • …
  • J.-L. Merrien3 
  • 491 Accesses

  • 11 Citations

  • Explore all metrics

Abstract

In this paper we construct a family of ternary interpolatory Hermite subdivision schemes of order 1 with small support and \({\mathscr{H}}\mathcal {C}^{2}\)-smoothness. Indeed, leaving the binary domain, it is possible to derive interpolatory Hermite subdivision schemes with higher regularity than the existing binary examples. The family of schemes we construct is a two-parameter family whose \({\mathscr{H}}\mathcal {C}^{2}\)-smoothness is guaranteed whenever the parameters are chosen from a certain polygonal region. The construction of this new family is inspired by the geometric insight into the ternary interpolatory scalar three-point subdivision scheme by Hassan and Dodgson. The smoothness of our new family of Hermite schemes is proven by means of joint spectral radius techniques.

Article PDF

Download to read the full article text

Similar content being viewed by others

Shape Preserving Hermite Subdivision Scheme Constructed from Quadratic Polynomial

Article 30 October 2021

Clothoid fitting and geometric Hermite subdivision

Article Open access 26 June 2021

Multivariate Generalized Hermite Subdivision Schemes

Article 14 February 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algebraic Geometry
  • Computational Mathematics and Numerical Analysis
  • Fourier Analysis
  • Linear Algebra
  • Multilinear Algebra
  • Tiling
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Cabrelli, C.A., Heil, C., Molter, U.M.: Self-similarity and multiwavelets in higher dimensions. Memoirs Amer. Math. Soc. 170(807) (2004)

  2. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Memoirs Amer. Math. Soc. 93(453) (1991)

  3. Charina, M.: Vector multivariate subdivision schemes: Comparison of spectral methods for their regularity analysis. Appl. Comp. Harm. Anal. 32, 86–108 (2012)

    Article  MathSciNet  Google Scholar 

  4. Charina, M., Conti, C., Guglielmi, N., Protasov, V.Y.: Limits of level and parameter dependent subdivision schemes: a matrix approach. Appl. Math. Comput. 271, 20–27 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Charina, M., Conti, C., Sauer, T.: Regularity of multivariate vector subdivision schemes. Numer. Alg. 39, 97–113 (2005)

    Article  MathSciNet  Google Scholar 

  6. Charina, M., Mejstrik, T.: Multiple multivariate subdivision schemes: Matrix and operator approaches. J. Comput. Appl. Math. 349, 279–291 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, D.R., Jia, R.Q., Riemenschneider, S.D.: Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comp. Harm. Anal. 12, 128–149 (2002)

    Article  MathSciNet  Google Scholar 

  8. Cohen, A., Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis. SIAM J. Math. Anal. 27, 1745–1769 (1996)

    Article  MathSciNet  Google Scholar 

  9. Conti, C., Cotronei, M., Sauer, T.: Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42, 1055–1079 (2016)

    Article  MathSciNet  Google Scholar 

  10. Conti, C., Hüning, S.: An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349, 302–315 (2019)

    Article  MathSciNet  Google Scholar 

  11. Conti, C., Merrien, J.L., Romani, L.: Dual Hermite subdivision schemes of de Rham-type. BIT Numer. Math. 54, 955–977 (2014)

    Article  MathSciNet  Google Scholar 

  12. Conti, C., Zimmermann, G.: Interpolatory Rank-1 vector subdivision schemes. CAGD 21, 341–351 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansions. Const. Approx. 13, 293–328 (1997)

    Article  MathSciNet  Google Scholar 

  14. Daubechies, I., Lagarias, J.: Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1031–1079 (1992)

    Article  MathSciNet  Google Scholar 

  15. Dubuc, S., Merrien, J.L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29, 219–245 (2009)

    Article  MathSciNet  Google Scholar 

  16. Dyn, N. In: Light, W. (ed.) : Subdivision schemes in Computer-Aided Geometric Design, Advances in Numerical Analysis II Wavelets, Subdivision Algorithms and Radial Basis Functions, pp 36–104. Clarendon Press, Oxford (1992)

  17. Dyn, N., Levin, D.: Analysis of Hermite-interpolatory subdivision schemes. In: Dubuc, S., Deslauriers, G. (eds.) Spline Functions and the Theory of Wavelets, Amer. Math. Soc., Providence R. I., pp 105–113 (1999)

  18. Dyn, N., Moosmüller, C.: Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39, 579–606 (2019)

    Article  MathSciNet  Google Scholar 

  19. Guglielmi, N., Protasov, V.Y.: Exact computation of joint spectral characteristics of matrices. Found. Comput. Math. 13, 37–97 (2013)

    Article  MathSciNet  Google Scholar 

  20. Guglielmi, N., Protasov, V. Y. u.: Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions. SIAM J. Matrix Anal. Appl. 37, 18–52 (2016)

    Article  MathSciNet  Google Scholar 

  21. Han, B., Overton, M., Yu, T.P.: Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comput. 25, 643–656 (2003)

    Article  MathSciNet  Google Scholar 

  22. Hassan, M.F. , Dodgson, N.A., Cohen, A., Merrien, J.L., Schumaker, L.L. : Ternary and three-point univariate subdivision schemes. In: Curve and Surface Fitting: Saint-Malo 2002, pp 199–208. Nashboro Press (2003)

  23. Hassan, M.F., Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M.A.: An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aided Geom. Des. 19, 1–18 (2002)

    Article  Google Scholar 

  24. Jeong, B., Yoon, J.: Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349, 452–469 (2019)

    Article  MathSciNet  Google Scholar 

  25. Jia, R.Q., Riemenschneider, S.D., Zhou, D.X.: Vector subdivision schemes and multiple wavelets. Math. Comp. 67, 1533–1563 (1998)

    Article  MathSciNet  Google Scholar 

  26. Merrien, J.L.: A family of Hermite interpolants by bisection algorithms. Numer. Alg. 2, 187–200 (1992)

    Article  MathSciNet  Google Scholar 

  27. Merrien, J.L., Sauer, T.: From Hermite to stationary subdivision schemes in one or several variables. Adv. Comput. Math. 36, 547–579 (2012)

    Article  MathSciNet  Google Scholar 

  28. Merrien, J.L., Sauer, T.: Extended hermite subdivision schemes. J. Comput. Appl. Math. 317, 343–362 (2017)

    Article  MathSciNet  Google Scholar 

  29. Merrien, J.L., Sauer, T.: Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142, 167–203 (2019)

    Article  MathSciNet  Google Scholar 

  30. Mejstrik, T.: t-toolboxes, MATLAB Central File Exchange, mathworks.com/matlabcentral/ fileexchange/70449

  31. Mejstrik, T.: Algorithm 1011: Improved invariant polytope algorithm and applications. ACM Trans. Math. Softw. 46(3), 26 (2020). Article 29. https://doi-org.uaccess.univie.ac.at/10.1145/3408891

    Article  MathSciNet  Google Scholar 

  32. Moosmüler, C., Hüning, S., Conti, C.: Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA journal of Numerical Analysis, https://doi.org/10.1093/imanum/draa047, Published: 27 August 2020 (2020)

  33. Rota, G.C., Strang, G.: A note on the joint spectral radius. Kon. Nederl. Acad. Wet. Proc. 63, 379–381 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank ‘Vienna Scientific Cluster’ (VSC) for providing computational resources. The authors thank the referees for their carefully reading of the paper and for the constructive comments and suggestions.

Funding

Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement. Costanza Conti received partial support from INdAM-GNCS. Maria Charina and Thomas Mejstrik were sponsored by the Austrian Science Foundation (FWF) grant P33352-N.

Author information

Authors and Affiliations

  1. Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090, Wien, Austria

    M. Charina & T. Mejstrik

  2. DIEF, Università di Firenze, Viale Morgagni 40/44, 50134, Firenze, Italy

    C. Conti

  3. Univ. Rennes, INSA Rennes, CNRS, IARMAR-UMR 6625, F-35000, Rennes, France

    J.-L. Merrien

Authors
  1. M. Charina
    View author publications

    Search author on:PubMed Google Scholar

  2. C. Conti
    View author publications

    Search author on:PubMed Google Scholar

  3. T. Mejstrik
    View author publications

    Search author on:PubMed Google Scholar

  4. J.-L. Merrien
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to C. Conti.

Additional information

Communicated by: Larry L. Schumaker

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the interested reader, we provide the details of our MATLAB routines via MATLAB exchange, see t-toolboxes [30]. For completeness, we provide here the transition matrices \(\left \{T_{\varepsilon }^{{\boldsymbol {A}}}|_{V_{2}^{{\boldsymbol {A}}}} : \varepsilon \in \{0,1,2\}\right \}\)

$$ \begin{array}{c} \frac{1}{729} \left( \begin{array}{ccccccc} 64\mu + 243 & 96\mu + 108 & 180-96\mu & -112\mu-144 & -80\mu-72 \\ 64\lambda-128\mu-480 & -96\lambda-192\mu-57 & 192\mu-360 & 224\mu-224\lambda + 462 & 96\lambda + 160\mu-6 \\ 128\lambda-60 & 192\lambda-30 & -192\lambda-33 & 39-224\lambda & 21-160\lambda \\ 16\mu + 99 & 72\mu + 81 & 90-48\mu & 0 & -64\mu-63 \\ -112\mu-369 & 9-120\mu & 144\mu-270 & 224\mu + 423 & 96\mu-54 \end{array}\right),\\ \frac{1}{729} \left( \begin{array}{ccccccc} -96\mu-135 & -48\mu-54 & 96\mu + 108 & 0 & -64\mu-90 \\ 192\mu-192\lambda + 576 & 192\lambda + 96\mu + 222 & -96\lambda-192\mu-57 & 32\lambda & 128\mu-416\lambda + 240 \\ 36-192\lambda & 15-96\lambda & 192\lambda-30 & 0 & 24-128\lambda \\ 0 & -72\mu-81 & 72\mu + 81 & -8\mu-18 & 72\mu + 81 \\ 192\mu + 540 & 24\mu + 171 & 9-120\mu & -8\mu-9 & 200\mu + 252 \end{array}\right),\\ \frac{1}{729} \left( \begin{array}{ccccccc} 32\mu + 45 & 0 & -48\mu-54 & 0 & 0 \\ 128\lambda-64\mu-132 & -192\lambda-33 & 192\lambda + 96\mu + 222 & 32\lambda-9 & 224\lambda + 33 \\ 64\lambda-12 & 0 & 15-96\lambda & 0 & 0 \\ -16\mu-99 & 48\mu-90 & -72\mu-81 & -8\mu-9 & 72-56\mu \\ -80\mu-171 & 48\mu-90 & 24\mu + 171 & -8\mu-18 & 81-56\mu \end{array}\right). \end{array} $$
(1)

Similarly we obtain \(\left \{T_{\varepsilon }^{{\boldsymbol {B}}}|_{V_{0}^{{\boldsymbol {B}}}} : \varepsilon \in \{0,1,2\}\right \}\) given by (to be scaled by 1/243)

$$ \begin{array}{c} \left( \begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 423 - 32\mu & 96\mu - 180 & -27 & - 96\mu - 108 & 48\mu + 54 & 16\mu + 9 & 96\mu + 135 \\ 64\lambda + 32\mu + 138 & - 192\lambda - 33 & - 144\mu - 195 & 192\lambda + 48\mu + 24 & - 96\lambda - 96\mu - 93 & - 32\lambda - 64\mu - 87 & 176\mu - 192\lambda + 270 \\ 12 - 64\lambda & 0 & 288\lambda - 51 & 15 - 96\lambda & 192\lambda - 30 & 128\lambda - 24 & 63 - 352\lambda \\ 64\mu + 72 & 0 & - 288\mu - 792 & 96\mu + 252 & - 192\mu - 72 & - 128\mu - 459 & 352\mu + 882 \\ 450 & 96\mu - 180 & - 144\mu - 630 & 90 - 48\mu & 90 - 48\mu & - 48\mu - 360 & 272\mu + 783 \end{array}\right),\\ \left( \begin{array}{ccccccc} - 16\mu - 9 & 48\mu + 54 & 0 & 0 & 0 & 0 & 0 \\ 32\lambda - 16\mu - 12 & 48\mu - 96\lambda + 69 & 0 & 0 & 0 & 0 & 0 \\ 112\mu & 48\mu + 342 & 423 - 32\mu & 96\mu - 180 & - 96\mu - 108 & 16\mu + 324 & - 32\mu - 360 \\ - 320\lambda - 32\mu - 90 & 192\lambda + 96\mu + 222 & 64\lambda + 32\mu + 138 & - 192\lambda - 33 & 192\lambda + 48\mu + 24 & 32\mu - 32\lambda + 117 & 64\lambda - 32\mu - 126 \\ 0 & 0 & 12 - 64\lambda & 0 & 15 - 96\lambda & 12 - 64\lambda & 64\lambda - 12 \\ 32\mu + 180 & - 96\mu - 252 & 64\mu + 72 & 0 & 96\mu + 252 & 64\mu + 81 & - 64\mu - 72 \\ 144\mu + 180 & 90 - 48\mu & 450 & 96\mu - 180 & 90 - 48\mu & 48\mu + 360 & - 64\mu - 387 \end{array}\right),\\ \left( \begin{array}{ccccccc} -27 & - 96\mu - 108 & - 16\mu - 9 & 48\mu + 54 & 0 & - 48\mu - 54 & 48\mu + 54 \\ -33 & 192\lambda - 96\mu - 138 & 32\lambda - 16\mu - 12 & 48\mu - 96\lambda + 69 & 0 & 96\lambda - 48\mu - 69 & 48\mu - 96\lambda + 69 \\ - 144\mu - 1098 & 18 - 240\mu & 112\mu & 48\mu + 342 & 96\mu - 180 & - 96\mu - 261 & 80\mu + 243 \\ 288\lambda - 519 & - 96\lambda - 192\mu - 57 & - 320\lambda - 32\mu - 90 & 192\lambda + 96\mu + 222 & - 192\lambda - 33 & - 96\lambda - 96\mu - 210 & 128\lambda + 96\mu + 210 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 468 & 192\mu + 72 & 32\mu + 180 & - 96\mu - 252 & 0 & 96\mu + 261 & - 96\mu - 270 \\ - 144\mu - 630 & 90 - 48\mu & 144\mu + 180 & 90 - 48\mu & 96\mu - 180 & 0 & - 16\mu - 27 \end{array}\right). \end{array} $$
(2)

The mask B derived using the Taylor operator approach is given by (to be scaled by 1/243)

$$ \begin{array}{ll} {\boldsymbol{B}}(-5) = \left( \begin{array}{cc} - 16\mu - 9 & 32\lambda - 16\mu - 12 \\ 48\mu + 54 & 48\mu - 96\lambda + 69 \end{array}\right), & {\boldsymbol{B}}(-4) = \left( \begin{array}{cc} - 32\mu - 45& 64\lambda - 32\mu - 57 \\ 0& 0 \end{array}\right),\\ {\boldsymbol{B}}(-3) = \left( \begin{array}{cc} 342 - 80\mu & 160\lambda - 80\mu + 414 \\ 48\mu - 234 & 48\mu - 96\lambda - 282 \end{array}\right), & {\boldsymbol{B}}(-2) = \left( \begin{array}{cc} 16\mu + 747 & 819 - 16\mu - 128\lambda \\ 48\mu - 234 & 192\lambda + 144\mu - 138 \end{array}\right), \\ {\boldsymbol{B}}(-1) = \left( \begin{array}{cc} 108 - 32\mu & - 128\lambda - 96\mu - 327 \\ 0 & 243 \end{array}\right), & {\boldsymbol{B}}(0) = \left( \begin{array}{cc} - 80\mu - 99& - 320\lambda - 240\mu - 387\\ 48\mu + 54& 192\lambda + 144\mu + 150 \end{array}\right), \\ {\boldsymbol{B}}(1) = \left( \begin{array}{cc} 32\mu + 45 & 160\lambda + 96\mu + 261 \\ 0 & - 96\lambda - 48 \end{array}\right), & {\boldsymbol{B}}(2) = \left( \begin{array}{cc} 0 & 64\lambda + 24 \\ 0 & 0 \end{array}\right), \\ {\boldsymbol{B}}(3) = \left( \begin{array}{cc} 0 & 160\lambda - 27 \\ 0 & 15 - 96\lambda \end{array}\right), &{\boldsymbol{B}}(4) = \left( \begin{array}{cc} 0 & 12 - 64\lambda\\ 0 & 0 \end{array}\right). \end{array} $$
(3)

Last, we provide the computation of the entries (see (??)) of \(\tilde {\boldsymbol {B}}^{*}_{+}(z)= \left (\begin {array}{rrr}\tilde b_{00}(z)& \tilde b_{01}(z)& \tilde b_{02}(z)\\ \tilde b_{10}(z)& \tilde b_{11}(z)& \tilde b_{12}(z)\\ \tilde b_{20}(z)& \tilde b_{21}(z)& \tilde b_{22}(z)\\ \end {array} \right ):\)

$$ \begin{array}{ll} \tilde b_{00}(z)&=\frac{80\mu {z^{6}}+99{z^{6}}-32\mu {z^{5}}-45{z^{5}}+16\mu {z^{4}}-126{z^{4}}+112\mu {z^{3}}+279{z^{3}}-32\mu {z^{2}}+108{z^{2}}+16\mu z+9z+32\mu+45}{81{z^{2}}}\\ \tilde b_{01}(z)&= -\frac{320\mu {z^{6}}+640\lambda {z^{6}}+315{z^{6}}-128\mu {z^{5}}-256\lambda {z^{5}}-51{z^{5}}+64\mu {z^{4}}+128\lambda {z^{4}}-273{z^{4}}}{324{z^{2}}}\\ &\quad -\frac{128\mu {z^{3}}-384l {z^{3}}+483{z^{3}}+256\lambda {z^{2}}+177{z^{2}}-128\lambda z+39z-256\lambda+48}{324{z^{2}}}\\ \tilde b_{02}(z)&= \frac{z \left( 160\mu {z^{3}}+640\lambda {z^{3}}+117{z^{3}}-64\mu {z^{2}}-256\lambda {z^{2}}+39{z^{2}}+32\mu z+128\lambda z-21z+64\mu+256\lambda+42\right) }{324}\\ \tilde b_{10}(z)&=\frac{2\left( z-1\right) \left( z+1\right) \left( 8\mu {z^{4}}+9{z^{4}}-8\mu {z^{3}}-9{z^{3}}+16\mu {z^{2}}-30{z^{2}}-8\mu z-9z+8\mu+9\right) }{27{z^{2}}} \\ \tilde b_{11}(z)&= -\frac{\left( z-1\right) \left( 32\mu {z^{5}}+64\lambda {z^{5}}+35{z^{5}}+36{z^{4}}+32\mu {z^{3}}+64\lambda {z^{3}}-43{z^{3}}-64\lambda {z^{2}}-68{z^{2}}-9z-64\lambda+10\right) }{54{z^{2}}} \\ \tilde b_{12}(z)&= \frac{z \left( 16\mu {z^{3}}+64\lambda {z^{3}}+17{z^{3}}-16\mu {z^{2}}-64\lambda {z^{2}}+19{z^{2}}+16\mu z+64\lambda z-z-16\mu-64\lambda-8\right) }{54}\\ \tilde b_{20}(z)&=0\qquad \tilde b_{21}(z)=-\frac{\left( z-1\right) \left( z+1\right) {{\left( {z^{2}}+z+1\right) }^{2}}}{6{z^{2}}}, \quad \tilde b_{22}(z)= \frac{z \left( z+1\right) \left( {z^{2}}+z+1\right) }{6}. \end{array} $$
(4)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charina, M., Conti, C., Mejstrik, T. et al. Joint spectral radius and ternary hermite subdivision. Adv Comput Math 47, 25 (2021). https://doi.org/10.1007/s10444-021-09854-x

Download citation

  • Received: 20 May 2020

  • Accepted: 19 February 2021

  • Published: 23 March 2021

  • DOI: https://doi.org/10.1007/s10444-021-09854-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hermite subdivision
  • Hermite interpolation
  • Joint spectral radius
  • Taylor operator

Mathematics Subject Classification (2010)

  • MSC 41A60
  • MSC 65D15
  • 13P05
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature