Abstract
A new, strongly-coupled “dark” sector could be accessible to LHC searches now. These dark sectors consist of composites formed from constituents that are charged under the electroweak group and interact with the Higgs, but are neutral under Standard Model color. In these scenarios, the most promising target is the dark meson sector, consisting of dark vector-mesons as well as dark pions. In this paper we study dark meson production and decay at the LHC in theories that preserve a global SU(2) dark flavor symmetry. Dark pions — like the pions of QCD — can be pair-produced through resonant dark vector meson production, pp → ρD → πDπD, and decay in one of two distinct ways: “gaugephobic”, when \( {\pi}_D\to f{\overline{f}}^{\prime } \) generally dominates; or “gaugephilic”, when πD → W + h, Z + h dominates once kinematically open. Unlike QCD, the decay π 0D → γγ is virtually absent due to the dark flavor symmetry. We recast a vast set of existing LHC searches to determine the current constraints on (and future opportunities for) dark meson production and decay. When \( {m}_{\rho_D} \) is slightly heavier than \( 2{m}_{\pi_D} \) and ρ ±,0D kinetically mixes with the weak gauge bosons, the 8 TeV same-sign lepton search strategy sets the best bound, \( {m}_{\pi_D} \) > 500 GeV. Yet, when only the ρ 0D kinetically mixes with hypercharge, we find the strongest LHC bound is \( {m}_{\pi_D} \) > 130 GeV, that is only slightly better than what LEP II achieved two decades ago. We find the relative insensitivity of LHC searches, especially at 13 TeV, can be blamed mainly on their penchant for high mass objects or large missing energy. Dedicated searches would undoubtedly yield substantially improved sensitivity. We provide a GitHub page to speed the implementation of these searches in future LHC analyses. Our findings for dark meson production and decay provide a strong motivation for model-independent searches of the form pp → A → B + C → SM SM + SM SM where the theoretical prejudice is for SM to be a 3rd generation quark or lepton, W, Z, or h.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
E.H. Simmons, Phenomenology of a technicolor model with heavy scalar doublet, Nucl. Phys.B 312 (1989) 253 [INSPIRE].
S. Samuel, Bosonic technicolor, Nucl. Phys.B 347 (1990) 625 [INSPIRE].
M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett.B 243 (1990) 250 [INSPIRE].
A. Kagan and S. Samuel, The family mass hierarchy problem in bosonic technicolor, Phys. Lett.B 252 (1990) 605 [INSPIRE].
A. Kagan and S. Samuel, Renormalization group aspects of bosonic technicolor, Phys. Lett.B 270 (1991) 37 [INSPIRE].
C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys.B 397 (1993) 591 [hep-ph/9207273] [INSPIRE].
C.D. Carone and H. Georgi, Technicolor with a massless scalar doublet, Phys. Rev.D 49 (1994) 1427 [hep-ph/9308205] [INSPIRE].
B.A. Dobrescu and J. Terning, Negative contributions to S in an effective field theory, Phys. Lett.B 416 (1998) 129 [hep-ph/9709297] [INSPIRE].
M. Antola, M. Heikinheimo, F. Sannino and K. Tuominen, Unnatural origin of fermion masses for technicolor, JHEP03 (2010) 050 [arXiv:0910.3681] [INSPIRE].
A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor, Phys. Rev. Lett.108 (2012) 041802 [arXiv:1106.3346] [INSPIRE].
A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: models and phenomenology, Phys. Rev.D 85 (2012) 015018 [arXiv:1106.4815] [INSPIRE].
T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP12 (2011) 069 [arXiv:1107.4697] [INSPIRE].
J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced electroweak symmetry breaking and supersymmetric naturalness, Phys. Rev.D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].
S. Chang, J. Galloway, M. Luty, E. Salvioni and Y. Tsai, Phenomenology of induced electroweak symmetry breaking, JHEP03 (2015) 017 [arXiv:1411.6023] [INSPIRE].
H. Beauchesne, K. Earl and T. Grégoire, The spontaneous ℤ2breaking twin Higgs, JHEP01 (2016) 130 [arXiv:1510.06069] [INSPIRE].
R. Harnik, K. Howe and J. Kearney, Tadpole-induced electroweak symmetry breaking and PNGB Higgs models, JHEP03 (2017) 111 [arXiv:1603.03772] [INSPIRE].
T. Alanne, M.T. Frandsen and D. Buarque Franzosi, Testing a dynamical origin of standard model fermion masses, Phys. Rev.D 94 (2016) 071703 [arXiv:1607.01440] [INSPIRE].
J. Galloway, A.L. Kagan and A. Martin, A UV complete partially composite-PNGB Higgs, Phys. Rev.D 95 (2017) 035038 [arXiv:1609.05883] [INSPIRE].
A. Agugliaro et al., UV complete composite Higgs models, Phys. Rev.D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].
D. Barducci, S. De Curtis, M. Redi and A. Tesi, An almost elementary Higgs: theory and practice, JHEP08 (2018) 017 [arXiv:1805.12578] [INSPIRE].
B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J.C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
O. Antipin and M. Redi, The half-composite two Higgs doublet model and the relaxion, JHEP12 (2015) 031 [arXiv:1508.01112] [INSPIRE].
B. Batell, M.A. Fedderke and L.-T. Wang, Relaxation of the composite Higgs little hierarchy, JHEP12 (2017) 139 [arXiv:1705.09666] [INSPIRE].
S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett.165B (1985) 55 [INSPIRE].
R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys.B 329 (1990) 445 [INSPIRE].
S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett.B 241 (1990) 387 [INSPIRE].
S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev.D 44 (1991) 3062 [INSPIRE].
D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett.68 (1992) 741 [INSPIRE].
R.S. Chivukula, A.G. Cohen, M.E. Luke and M.J. Savage, A comment on the strong interactions of color-neutral technibaryons, Phys. Lett.B 298 (1993) 380 [hep-ph/9210274] [INSPIRE].
J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett.B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].
M. Yu. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev.D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].
T.A. Ryttov and F. Sannino, Ultra minimal technicolor and its dark matter TIMP, Phys. Rev.D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].
T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett.B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].
Y. Bai and R.J. Hill, Weakly interacting stable pions, Phys. Rev.D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].
R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors, Phys. Rev.D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].
M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP07 (2012) 015 [arXiv:1204.2808] [INSPIRE].
M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev.D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].
S. Bhattacharya, B. Melić and J. Wudka, Pionic dark matter, JHEP02 (2014) 115 [arXiv:1307.2647] [INSPIRE].
D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP07 (2014) 107 [arXiv:1404.7419] [INSPIRE].
A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental composite higgs dynamics on the lattice: SU(2) with two flavors, JHEP07 (2014) 116 [arXiv:1404.2794] [INSPIRE].
R. Pasechnik, V. Beylin, V. Kuksa and G. Vereshkov, Composite scalar dark matter from vector-like SU(2) confinement, Int. J. Mod. Phys.A 31 (2016) 1650036 [arXiv:1407.2392] [INSPIRE].
O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and dark matter scales from strong interactions, JHEP01 (2015) 157 [arXiv:1410.1817] [INSPIRE].
Y. Hochberg et al., Model for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett.115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
A. Carmona and M. Chala, Composite dark sectors, JHEP06 (2015) 105 [arXiv:1504.00332] [INSPIRE].
H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z ′-portal, Phys. Lett.B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].
Y. Hochberg, E. Kuflik and H. Murayama, SIMP spectroscopy, JHEP05 (2016) 090 [arXiv:1512.07917] [INSPIRE].
S. Bruggisser, F. Riva and A. Urbano, Strongly interacting light dark matter, SciPost Phys.3 (2017) 017 [arXiv:1607.02474] [INSPIRE].
Y. Wu, T. Ma, B. Zhang and G. Cacciapaglia, Composite dark matter and Higgs, JHEP11 (2017) 058 [arXiv:1703.06903] [INSPIRE].
H. Davoudiasl, P.P. Giardino, E.T. Neil and E. Rinaldi, Unified scenario for composite right-handed neutrinos and dark matter, Phys. Rev.D 96 (2017) 115003 [arXiv:1709.01082] [INSPIRE].
A. Berlin et al., Cosmology and accelerator tests of strongly interacting dark matter, Phys. Rev.D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].
S.-M. Choi, H.M. Lee, P. Ko and A. Natale, Resolving phenomenological problems with strongly-interacting-massive-particle models with dark vector resonances, Phys. Rev.D 98 (2018) 015034 [arXiv:1801.07726] [INSPIRE].
Y. Hochberg et al., Strongly interacting massive particles through the axion portal, Phys. Rev.D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].
D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett.B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].
G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, Phys. Rev.D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].
M. Lisanti and J.G. Wacker, Parity violation in composite inelastic dark matter models, Phys. Rev.D 82 (2010) 055023 [arXiv:0911.4483] [INSPIRE].
D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP06 (2010) 113 [arXiv:1003.4729] [INSPIRE].
M. Geller et al., Dark quarkonium formation in the early universe, JHEP06 (2018) 135 [arXiv:1802.07720] [INSPIRE].
S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev.D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev.D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
J. Mardon, Y. Nomura and J. Thaler, Cosmic signals from the hidden sector, Phys. Rev.D 80 (2009) 035013 [arXiv:0905.3749] [INSPIRE].
F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon.B 40 (2009) 3533 [arXiv:0911.0931] [INSPIRE].
R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay, Phys. Lett.B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].
A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev.D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].
Lattice Strong Dynamics (LSD) collaboration, Lattice calculation of composite dark matter form factors, Phys. Rev.D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone dark matter: experimental predictions from the lattice, JHEP12 (2014) 130 [arXiv:1308.4130] [INSPIRE].
J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev.D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].
Lattice Strong Dynamics (LSD) collaboration, Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev.D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
G. Krnjaic and K. Sigurdson, Big Bang darkleosynthesis, Phys. Lett.B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].
W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei. I: Cosmology and indirect detection, Phys. Rev.D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].
W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei. II: Nuclear spectroscopy in two-color QCD, Phys. Rev.D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
J. Brod, J. Drobnak, A.L. Kagan, E. Stamou and J. Zupan, Stealth QCD-like strong interactions and the \( t\overline{t} \)asymmetry, Phys. Rev.D 91 (2015) 095009 [arXiv:1407.8188] [INSPIRE].
M. Asano and R. Kitano, Partially composite dark matter, JHEP09 (2014) 171 [arXiv:1406.6374] [INSPIRE].
T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, Phys. Rev.D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].
T. Appelquist et al., Detecting stealth dark matter directly through electromagnetic polarizability, Phys. Rev. Lett.115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].
V. Drach, A. Hietanen, C. Pica, J. Rantaharju and F. Sannino, Template composite dark matter: SU(2) gauge theory with 2 fundamental flavours, PoS(LATTICE 2015)234 [arXiv:1511.04370] [INSPIRE].
S. Fichet, Shining light on polarizable dark particles, JHEP04 (2017) 088 [arXiv:1609.01762] [INSPIRE].
R.T. Co, K. Harigaya and Y. Nomura, Chiral dark sector, Phys. Rev. Lett.118 (2017) 101801 [arXiv:1610.03848] [INSPIRE].
K.R. Dienes, F. Huang, S. Su and B. Thomas, Dynamical dark matter from strongly-coupled dark sectors, Phys. Rev.D 95 (2017) 043526 [arXiv:1610.04112] [INSPIRE].
H. Ishida, S. Matsuzaki and Y. Yamaguchi, Bosonic-seesaw portal dark matter, PTEP2017 (2017) 103B01 [arXiv:1610.07137] [INSPIRE].
A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from one-flavor SU(2) gauge theory, PoS(LATTICE 2016)227 [arXiv:1610.10068] [INSPIRE].
S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric dark matter and the hadronic spectra of hidden QCD, Phys. Rev.D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].
J.M. Berryman, A. de Gouvêa, K.J. Kelly and Y. Zhang, Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector, Phys. Rev.D 96 (2017) 075010 [arXiv:1706.02722] [INSPIRE].
A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark matter as a weakly coupled dark baryon, JHEP10 (2017) 210 [arXiv:1707.05380] [INSPIRE].
A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from strong dynamics: the minimal theory of dark baryons, JHEP12 (2018) 118 [arXiv:1809.09117] [INSPIRE].
G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys.A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].
C. Kilic, T. Okui and R. Sundrum, Vectorlike confinement at the LHC, JHEP02 (2010) 018 [arXiv:0906.0577] [INSPIRE].
C. Kilic and T. Okui, The LHC phenomenology of vectorlike confinement, JHEP04 (2010) 128 [arXiv:1001.4526] [INSPIRE].
R. Harnik, G.D. Kribs and A. Martin, Quirks at the Tevatron and beyond, Phys. Rev.D 84 (2011) 035029 [arXiv:1106.2569] [INSPIRE].
R. Fok and G.D. Kribs, Chiral quirkonium decays, Phys. Rev.D 84 (2011) 035001 [arXiv:1106.3101] [INSPIRE].
Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev.D 89 (2014) 063522 [arXiv:1306.4676] [INSPIRE].
Z. Chacko, D. Curtin and C.B. Verhaaren, A quirky probe of neutral naturalness, Phys. Rev.D 94 (2016) 011504 [arXiv:1512.05782] [INSPIRE].
K. Agashe, P. Du, S. Hong and R. Sundrum, Flavor universal resonances and warped gravity, JHEP01 (2017) 016 [arXiv:1608.00526] [INSPIRE].
S. Matsuzaki, K. Nishiwaki and R. Watanabe, Phenomenology of flavorful composite vector bosons in light of B anomalies, JHEP08 (2017) 145 [arXiv:1706.01463] [INSPIRE].
P. Draper, J. Kozaczuk and J.-H. Yu, Theta in new QCD-like sectors, Phys. Rev.D 98 (2018) 015028 [arXiv:1803.00015] [INSPIRE].
D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing vectors into scalars at high energy lepton colliders, JHEP11 (2018) 144 [arXiv:1807.04743] [INSPIRE].
P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP05 (2015) 059 [arXiv:1502.05409] [INSPIRE].
T. Cohen, M. Lisanti and H.K. Lou, Semivisible jets: dark matter undercover at the LHC, Phys. Rev. Lett.115 (2015) 171804 [arXiv:1503.00009] [INSPIRE].
M. Freytsis, S. Knapen, D.J. Robinson and Y. Tsai, Gamma-rays from dark showers with twin Higgs models, JHEP05 (2016) 018 [arXiv:1601.07556] [INSPIRE].
M. Kim, H.-S. Lee, M. Park and M. Zhang, Examining the origin of dark matter mass at colliders, Phys. Rev.D 98 (2018) 055027 [arXiv:1612.02850] [INSPIRE].
T. Cohen, M. Lisanti, H.K. Lou and S. Mishra-Sharma, LHC searches for dark sector showers, JHEP11 (2017) 196 [arXiv:1707.05326] [INSPIRE].
H. Beauchesne, E. Bertuzzo, G. Grilli Di Cortona and Z. Tabrizi, Collider phenomenology of hidden valley mediators of spin 0 or 1/2 with semivisible jets, JHEP08 (2018) 030 [arXiv:1712.07160] [INSPIRE].
S. Renner and P. Schwaller, A flavoured dark sector, JHEP08 (2018) 052 [arXiv:1803.08080] [INSPIRE].
R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP06 (2017) 119 [Erratum ibid.10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
O. Buchmueller et al., Simplified models for displaced dark matter signatures, JHEP09 (2017) 076 [arXiv:1704.06515] [INSPIRE].
N. Daci et al., Simplified SIMPs and the LHC, JHEP11 (2015) 108 [arXiv:1503.05505] [INSPIRE].
Y. Hochberg, E. Kuflik and H. Murayama, Dark spectroscopy at lepton colliders, Phys. Rev.D 97 (2018) 055030 [arXiv:1706.05008] [INSPIRE].
T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP07 (2008) 008 [arXiv:0712.2041] [INSPIRE].
J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP11 (2009) 065 [arXiv:0805.4642] [INSPIRE].
R. Harnik and T. Wizansky, Signals of new physics in the underlying event, Phys. Rev.D 80 (2009) 075015 [arXiv:0810.3948] [INSPIRE].
S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering soft bombs at the LHC, JHEP08 (2017) 076 [arXiv:1612.00850] [INSPIRE].
A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, Searching for confining hidden valleys at LHCb, ATLAS and CMS, Phys. Rev.D 97 (2018) 095033 [arXiv:1708.05389] [INSPIRE].
G.D. Kribs, A. Martin and T. Tong, Effective theories of dark mesons with custodial symmetry, arXiv:1809.10183 [INSPIRE].
V. Beylin, M. Bezuglov, V. Kuksa and N. Volchanskiy, An analysis of a minimal vectorlike extension of the Standard Model, Adv. High Energy Phys.2017 (2017) 1765340 [arXiv:1611.06006] [INSPIRE].
G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys.B 321 (1989) 311 [INSPIRE].
G. Ecker et al., Chiral Lagrangians for massive spin 1 fields, Phys. Lett.B 223 (1989) 425 [INSPIRE].
E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys.B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].
A. Freitas and P. Schwaller, Multi-photon signals from composite models at LHC, JHEP01 (2011) 022 [arXiv:1010.2528] [INSPIRE].
Y. Bai and B.A. Dobrescu, Heavy octets and Tevatron signals with three or four b jets, JHEP07 (2011) 100 [arXiv:1012.5814] [INSPIRE].
. Alexander et al., Dark sectors 2016 workshop: community report, arXiv:1608.08632 [FERMILAB-CONF-16-421].
L. Lee, C. Ohm, A. Soffer and T.-T. Yu, Collider searches for long-lived particles beyond the standard model, Prog. Part. Nucl. Phys.106 (2019) 210 [arXiv:1810.12602] [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys.80 (2000) 1 [INSPIRE].
A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb −1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2017-027 (2017).
ALEPH, DELPHI, L3, OPAL, LEP Electroweak collaboration, Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept.532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
CDF collaboration, Study of top-quark production and decays involving a τ lepton at CDF and limits on a charged-Higgs boson contribution, Phys. Rev.D 89 (2014) 091101 [arXiv:1402.6728] [INSPIRE].
ATLAS collaboration, Measurements of the top quark branching ratios into channels with leptons and quarks with the ATLAS detector, Phys. Rev.D 92 (2015) 072005 [arXiv:1506.05074] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
D0 collaboration, An improved determination of the width of the top quark, Phys. Rev.D 85 (2012) 091104 [arXiv:1201.4156] [INSPIRE].
CMS collaboration, Measurement of the ratio \( \mathrm{\mathcal{B}} \)(t → Wb)/ \( \mathrm{\mathcal{B}} \)(t → Wq) in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett.B 736 (2014) 33 [arXiv:1404.2292] [INSPIRE].
ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state using 14.7 fb −1of pp collision data recorded at \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, ATLAS-CONF-2016-088 (2016).
ATLAS collaboration, Search for charged Higgs bosons in the H ± → tb decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016).
ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
Z. Liu and B. Tweedie, The fate of long-lived superparticles with hadronic decays after LHC Run 1, JHEP06 (2015) 042 [arXiv:1503.05923] [INSPIRE].
J.A. Evans and J. Shelton, Long-lived staus and displaced leptons at the LHC, JHEP04 (2016) 056 [arXiv:1601.01326] [INSPIRE].
D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case, arXiv:1806.07396 [INSPIRE].
J. Liu, Z. Liu and L.-T. Wang, Enhancing long-lived particles searches at the LHC with precision timing information, Phys. Rev. Lett.122 (2019) 131801 [arXiv:1805.05957] [INSPIRE].
R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with τ leptons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-093 (2016).
ATLAS collaboration, Search for new phenomena in events with three or more charged leptons in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP08 (2015) 138 [arXiv:1411.2921] [INSPIRE].
ATLAS collaboration, Measurement of the τ lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at \( \sqrt{s} \) = 13 TeV, ATLAS-CONF-2017-029 (2017).
CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev.D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb −1of proton-proton collisions at \( \sqrt{s} \) = 8 TeV., ATLAS-CONF-2013-007 (2013).
ATLAS collaboration, Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb −1of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, JHEP09 (2017) 084 [arXiv:1706.03731] [INSPIRE].
ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Lett.B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
ATLAS collaboration, A search for \( t\overline{t} \)resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
CMS collaboration, Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett.B 739 (2014) 229 [arXiv:1408.0806] [INSPIRE].
ATLAS collaboration, Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP06 (2018) 107 [arXiv:1711.01901] [INSPIRE].
CMS collaboration, Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks, Phys. Lett.B 768 (2017) 137 [arXiv:1610.08066] [INSPIRE].
CMS collaboration, Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 778 (2018) 101 [arXiv:1707.02909] [INSPIRE].
CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP01 (2018) 097 [arXiv:1710.00159] [INSPIRE].
CMS collaboration, Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state, Phys. Lett.B 771 (2017) 80 [arXiv:1612.00999] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1809.10184
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kribs, G.D., Martin, A., Ostdiek, B. et al. Dark mesons at the LHC. J. High Energ. Phys. 2019, 133 (2019). https://doi.org/10.1007/JHEP07(2019)133
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2019)133