Abstract
The idea that dark matter forms part of a larger dark sector is very intriguing, given the high degree of complexity of the visible sector. In this paper, we discuss lepton jets as a promising signature of an extended dark sector. As a simple toy model, we consider an \( \mathcal{O} \) DM fermion coupled to a new U(1)′ gauge boson (dark photon) with a mass of order GeV and kinetically mixed with the Standard Model photon. Dark matter production at the LHC in this model is typically accompanied by collinear radiation of dark photons whose decay products can form lepton jets. We analyze the dynamics of collinear dark photon emission both analytically and numerically. In particular, we derive the dark photon energy spectrum using recursive analytic expressions, using Monte Carlo simulations in Pythia, and using an inverse Mellin transform to obtain the spectrum from its moments. In the second part of the paper, we simulate the expected lepton jet signatures from radiating dark matter at the LHC, carefully taking into account the various dark photon decay modes and allowing for both prompt and displaced decays. Using these simulations, we recast two existing ATLAS lepton jet searches to significantly restrict the parameter space of extended dark sector models, and we compute the expected sensitivity of future LHC searches.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e±, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B 813 (2009) 1 [arXiv:0809.2409] [INSPIRE].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].
W. Altmannshofer, P.J. Fox, R. Harnik, G.D. Kribs and N. Raj, Dark matter signals in dilepton production at hadron colliders, Phys. Rev. D 91 (2015) 115006 [arXiv:1411.6743] [INSPIRE].
R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev. D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].
M. Vogelsberger et al., Properties of galaxies reproduced by a hydrodynamic simulation, Nature 509 (2014) 177 [arXiv:1405.1418] [INSPIRE].
T. Sawala et al., Local group galaxies emerge from the dark, arXiv:1412.2748 [INSPIRE].
R. Massey et al., The behaviour of dark matter associated with 4 bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, arXiv:1504.06576 [INSPIRE].
B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
ATLAS collaboration, A search for prompt lepton-jets in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 299 [arXiv:1212.5409] [INSPIRE].
ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 088 [arXiv:1409.0746] [INSPIRE].
N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].
A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [INSPIRE].
Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103 (2009) 051801 [arXiv:0902.0006] [INSPIRE].
M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].
Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].
T. Han et al., Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].
A. Falkowski, J.T. Ruderman, T. Volansky and J. Zupan, Discovering Higgs decays to lepton jets at hadron colliders, Phys. Rev. Lett. 105 (2010) 241801 [arXiv:1007.3496] [INSPIRE].
D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, arXiv:1504.01385 [INSPIRE].
M. Autran, K. Bauer, T. Lin and D. Whiteson, Mono-Z′: searches for dark matter in events with a resonance and missing transverse energy, arXiv:1504.01386 [INSPIRE].
Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z′ jet, arXiv:1504.01395 [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].
P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP 05 (2015) 059 [arXiv:1502.05409] [INSPIRE].
T. Cohen, M. Lisanti and H.K. Lou, Semi-visible jets: dark matter undercover at the LHC, arXiv:1503.00009 [INSPIRE].
Y. Bai and A. Rajaraman, Dark matter jets at the LHC, arXiv:1109.6009 [INSPIRE].
ATLAS collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1504.03634 [INSPIRE].
T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
L. Carloni and T. Sjöstrand, Visible effects of invisible hidden valley radiation, JHEP 09 (2010) 105 [arXiv:1006.2911] [INSPIRE].
L. Carloni, J. Rathsman and T. Sjöstrand, Discerning secluded sector gauge structures, JHEP 04 (2011) 091 [arXiv:1102.3795] [INSPIRE].
ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1502.01518 [INSPIRE].
CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
J. Liu, N. Weiner and W. Xue, Signals of a light dark force in the galactic center, arXiv:1412.1485 [INSPIRE].
J.-M. Zheng et al., Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE].
H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating dark matter at the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].
R.T. D’Agnolo and J.T. Ruderman, Forbidden dark matter, arXiv:1505.07107 [INSPIRE].
K. Petraki, L. Pearce and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light massive dark photon, JCAP 07 (2014) 039 [arXiv:1403.1077] [INSPIRE].
SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].
S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
M.R. Whalley, A compilation of data on hadronic total cross sections in e+e− interactions, J. Phys. G 29 (2003) A1.
Hepdata on-line data review, http://hepdata.cedar.ac.uk/review/rsig/.
T. Plehn, Lectures on LHC physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].
P. Ciafaloni et al., Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].
S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
A.B. Arbuzov, Nonsinglet splitting functions in QED, Phys. Lett. B 470 (1999) 252 [hep-ph/9908361] [INSPIRE].
G. Arfken and H. Weber, Mathematical methods for physicists, Elsevier Academic Press (2008).
J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex fourier series, Math. Comput. 19 (1965) 297.
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
J.M. Campbell, R.K. Ellis and W.T. Giele, A multi-threaded version of MCFM, Eur. Phys. J. C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.
A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of higgs diphoton decays and muon g−2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].
M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].
HADES collaboration, G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
KLOE-2 collaboration, D. Babusci et al., Search for light vector boson production in e+e− → μ+μ−γ interactions with the KLOE experiment, Phys. Lett. B 736 (2014) 459 [arXiv:1404.7772] [INSPIRE].
APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
BaBar collaboration, J.P. Lees et al., Search for a dark photon in e+e− collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].
J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].
A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
M. Davier and H. Nguyen Ngoc, An unambiguous search for a light Higgs boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].
J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].
R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].
J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on light hidden sector gauge bosons from supernova cooling, arXiv:1201.2683 [INSPIRE].
H.K. Dreiner, J.-F. Fortin, C. Hanhart and L. Ubaldi, Supernova constraints on MeV dark sectors from e+e− annihilations, Phys. Rev. D 89 (2014) 105015 [arXiv:1310.3826] [INSPIRE].
NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1505.07459
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Buschmann, M., Kopp, J., Liu, J. et al. Lepton jets from radiating dark matter. J. High Energ. Phys. 2015, 45 (2015). https://doi.org/10.1007/JHEP07(2015)045
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2015)045