Abstract
The proposed DarkQuest beam dump experiment, a modest upgrade to the existing SeaQuest/SpinQuest experiment, has great potential for uncovering new physics within a dark sector. We explore both the near-term and long-term prospects for observing two distinct, highly-motivated hidden sector benchmark models: heavy neutral leptons and Higgs-mixed scalars. We comprehensively examine the particle production and detector acceptance at DarkQuest, including an updated treatment of meson production, and light scalar production through both bremsstrahlung and gluon-gluon fusion. In both benchmark models, DarkQuest will provide an opportunity to probe previously inaccessible interesting regions of parameter space on a fairly short timescale when compared to other proposed experiments.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
J. Alexander et al., Dark sectors 2016 workshop: community report, FERMILAB-CONF-16-421, (2016) [arXiv:1608.08632] [INSPIRE].
M. Battaglieri et al., U.S. cosmic visions: new ideas in dark matter 2017. Community report, in U.S. cosmic visions: new ideas in dark matter, (2017) [arXiv:1707.04591] [INSPIRE].
J. Beacham et al., Physics beyond colliders at CERN: beyond the Standard Model working group report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].
R. Alemany et al., Summary report of physics beyond colliders at CERN, arXiv:1902.00260 [INSPIRE].
D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum ibid. 11 (2013) 101] [arXiv:0705.1729] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].
SeaQuest collaboration, The SeaQuest spectrometer at Fermilab, Nucl. Instrum. Meth. A 930 (2019) 49 [arXiv:1706.09990] [INSPIRE].
S. Gardner, R.J. Holt and A.S. Tadepalli, New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab, Phys. Rev. D 93 (2016) 115015 [arXiv:1509.00050] [INSPIRE].
A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and accelerator tests of strongly interacting dark matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].
A. Berlin, S. Gori, P. Schuster and N. Toro, Dark sectors at the Fermilab SeaQuest experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].
K.-Y. Choi, T. Inami, K. Kadota, I. Park and O. Seto, Searching for axino-like particle at fixed target experiments, Phys. Dark Univ. 27 (2020) 100460 [arXiv:1902.10475] [INSPIRE].
B. Döbrich, J. Jaeckel and T. Spadaro, Light in the beam dump — ALP production from decay photons in proton beam-dumps, JHEP 05 (2019) 213 [Erratum ibid. 10 (2020) 046] [arXiv:1904.02091] [INSPIRE].
Y.-D. Tsai, P. deNiverville and M.X. Liu, The high-energy frontier of the intensity frontier: closing the dark photon, inelastic dark matter, and muon g − 2 windows, arXiv:1908.07525 [INSPIRE].
L. Darmé, S.A.R. Ellis and T. You, Light dark sectors through the fermion portal, JHEP 07 (2020) 053 [arXiv:2001.01490] [INSPIRE].
G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].
F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
P. Minkowski, μ → eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
PHENIX collaboration, PHENIX calorimeter, Nucl. Instrum. Meth. A 499 (2003) 521 [INSPIRE].
S. Uemura, Direct search for dark photons and dark Higgs with the SeaQuest spectrometer at Fermilab, APS April Meeting (2018) R09.004.
Particle data group atomic and nuclear properties, http://pdg.lbl.gov/2018/AtomicNuclearProperties/.
V. Shiltsev, Fermilab proton accelerator complex status and improvement plans, Mod. Phys. Lett. A 32 (2017) 1730012 [arXiv:1705.03075] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
SHiP collaboration, Sensitivity of the SHiP experiment to heavy neutral leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
SHiP collaboration, Heavy flavour cascade production in a beam dump, CERN-SHiP-NOTE-2015-009, (2015).
C. Lourenco and H.K. Wohri, Heavy flavour hadro-production from fixed-target to collider energies, Phys. Rept. 433 (2006) 127 [hep-ph/0609101] [INSPIRE].
K. Bondarenko, A. Boyarsky, M. Ovchynnikov and O. Ruchayskiy, Sensitivity of the intensity frontier experiments for neutrino and scalar portals: analytic estimates, JHEP 08 (2019) 061 [arXiv:1902.06240] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
D. Gorbunov, I. Krasnov, Y. Kudenko and S. Suvorov, Heavy neutral leptons from kaon decays in the SHiP experiment, Phys. Lett. B 810 (2020) 135817 [arXiv:2004.07974] [INSPIRE].
SHiP collaboration, SHiP: a new facility with a dedicated detector for studying ντ properties and nucleon structure functions, PoS(DIS2016)260 (2016) [arXiv:1609.04860] [INSPIRE].
N. Tran, private communication.
R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired Standard Model, Phys. Lett. B 187 (1987) 303 [INSPIRE].
M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, Phenomenology of GeV-scale heavy neutral leptons, JHEP 11 (2018) 032 [arXiv:1805.08567] [INSPIRE].
P. Ballett, T. Boschi and S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector, JHEP 03 (2020) 111 [arXiv:1905.00284] [INSPIRE].
CHARM collaboration, A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].
G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].
DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. 75 (1997) 580] [INSPIRE].
NuTeV and E815 collaborations, Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].
E949 collaboration, Search for heavy neutrinos in K+ → μ+νH decays, Phys. Rev. D 91 (2015) 052001 [Erratum ibid. 91 (2015) 059903] [arXiv:1411.3963] [INSPIRE].
MicroBooNE collaboration, Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector, Phys. Rev. D 101 (2020) 052001 [arXiv:1911.10545] [INSPIRE].
T2K collaboration, Search for heavy neutrinos with the T2K near detector ND280, Phys. Rev. D 100 (2019) 052006 [arXiv:1902.07598] [INSPIRE].
ATLAS collaboration, Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10 (2019) 265 [arXiv:1905.09787] [INSPIRE].
Belle collaboration, Search for heavy neutrinos at Belle, Phys. Rev. D 87 (2013) 071102 [Erratum ibid. 95 (2017) 099903] [arXiv:1301.1105] [INSPIRE].
A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy and V. Syvolap, Improved BBN constraints on heavy neutral leptons, arXiv:2008.00749 [INSPIRE].
N. Sabti, A. Magalich and A. Filimonova, An extended analysis of heavy neutral leptons during big bang nucleosynthesis, JCAP 11 (2020) 056 [arXiv:2006.07387] [INSPIRE].
M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].
F. Kling and S. Trojanowski, Heavy neutral leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].
G. Aielli et al., Expression of interest for the CODEX-b detector, Eur. Phys. J. C 80 (2020) 1177 [arXiv:1911.00481] [INSPIRE].
D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case, Rept. Prog. Phys. 82 (2019) 116201 [arXiv:1806.07396] [INSPIRE].
S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].
P. Ballett, S. Pascoli and M. Ross-Lonergan, MeV-scale sterile neutrino decays at the Fermilab short-baseline neutrino program, JHEP 04 (2017) 102 [arXiv:1610.08512] [INSPIRE].
J.M. Berryman, A. de Gouvêa, P.J. Fox, B.J. Kayser, K.J. Kelly and J.L. Raaf, Searches for decays of new particles in the DUNE multi-purpose near detector, JHEP 02 (2020) 174 [arXiv:1912.07622] [INSPIRE].
P. Coloma, P. Hernández, V. Muñoz and I.M. Shoemaker, New constraints on heavy neutral leptons from super-Kamiokande data, Eur. Phys. J. C 80 (2020) 235 [arXiv:1911.09129] [INSPIRE].
P. Coloma, E. Fernández-Martínez, M. González-López, J. Hernández-García and Z. Pavlovic, GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Eur. Phys. J. C 81 (2021) 78 [arXiv:2007.03701] [INSPIRE].
M. Hirsch and Z.S. Wang, Heavy neutral leptons at ANUBIS, Phys. Rev. D 101 (2020) 055034 [arXiv:2001.04750] [INSPIRE].
D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
R.S. Willey and H.L. Yu, Neutral Higgs boson from decays of heavy flavored mesons, Phys. Rev. D 26 (1982) 3086 [INSPIRE].
H. Leutwyler and M.A. Shifman, Light Higgs particle in decays of K and η mesons, Nucl. Phys. B 343 (1990) 369 [INSPIRE].
J.F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03 (2012) 090 [arXiv:1111.6402] [INSPIRE].
M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev. D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].
J.A. Evans, Detecting hidden particles with MATHUSLA, Phys. Rev. D 97 (2018) 055046 [arXiv:1708.08503] [INSPIRE].
V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].
B. Grinstein, L.J. Hall and L. Randall, Do B meson decays exclude a light Higgs?, Phys. Lett. B 211 (1988) 363 [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev. D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].
I. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko, M. Ovchynnikov and A. Sokolenko, Phenomenology of GeV-scale scalar portal, JHEP 11 (2019) 162 [arXiv:1904.10447] [INSPIRE].
K.J. Kim and Y.-S. Tsai, Improved Weizsacker-Williams method and its application to lepton and W boson pair production, Phys. Rev. D 8 (1973) 3109 [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
M.B. Voloshin, Once again about the role of gluonic mechanism in interaction of light Higgs boson with hadrons, Sov. J. Nucl. Phys. 44 (1986) 478 [Yad. Fiz. 44 (1986) 738] [INSPIRE].
J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].
S. Raby and G.B. West, The branching ratio for a light Higgs to decay into μ+μ− pairs, Phys. Rev. D 38 (1988) 3488 [INSPIRE].
T.N. Truong and R.S. Willey, Branching ratios for decays of light Higgs bosons, Phys. Rev. D 40 (1989) 3635 [INSPIRE].
A. Monin, A. Boyarsky and O. Ruchayskiy, Hadronic decays of a light Higgs-like scalar, Phys. Rev. D 99 (2019) 015019 [arXiv:1806.07759] [INSPIRE].
F. Bezrukov, D. Gorbunov and I. Timiryasov, Uncertainties of hadronic scalar decay calculations, arXiv:1812.08088 [INSPIRE].
K. Liu, private communication.
CHARM collaboration, Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].
S. Foroughi-Abari and A. Ritz, LSND constraints on the Higgs portal, Phys. Rev. D 102 (2020) 035015 [arXiv:2004.14515] [INSPIRE].
E949 collaboration, New measurement of the K+ → π+\( \nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
BNL-E949 collaboration, Study of the decay K+ → π+\( \nu \overline{\nu} \) in the momentum region 140 < Pπ < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
LHCb collaboration, Search for long-lived scalar particles in B+ → K+χ(μ+μ−) decays, Phys. Rev. D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].
LHCb collaboration, Search for hidden-sector bosons in B0 → K*0μ+μ− decays, Phys. Rev. Lett. 115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].
R. Volpe, New result on K+ → π+\( \nu \overline{\nu} \) from the NA62 experiment, in 2020 phenomenology symposium, Pittsburgh, PA, U.S.A., 4–6 May 2020.
K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118 [arXiv:1909.08632] [INSPIRE].
B. Batell, J. Berger and A. Ismail, Probing the Higgs portal at the Fermilab short-baseline neutrino experiments, Phys. Rev. D 100 (2019) 115039 [arXiv:1909.11670] [INSPIRE].
A. Kachanovich, U. Nierste and I. Nišandžić, Higgs portal to dark matter and B → K(*) decays, Eur. Phys. J. C 80 (2020) 669 [arXiv:2003.01788] [INSPIRE].
A. Filimonova, R. Schäfer and S. Westhoff, Probing dark sectors with long-lived particles at BELLE II, Phys. Rev. D 101 (2020) 095006 [arXiv:1911.03490] [INSPIRE].
J.L. Feng, I. Galon, F. Kling and S. Trojanowski, Dark Higgs bosons at the ForwArd Search ExpeRiment, Phys. Rev. D 97 (2018) 055034 [arXiv:1710.09387] [INSPIRE].
KLEVER Project collaboration, KLEVER: an experiment to measure BR(KL → π0\( \nu \overline{\nu} \)) at the CERN SPS, PoS(ICHEP2018)529 (2019) [arXiv:1812.01896] [INSPIRE].
P. Archer-Smith and Y. Zhang, Higgs portal from the atmosphere to Hyper-K, arXiv:2005.08980 [INSPIRE].
D. Egana-Ugrinovic, S. Homiller and P. Meade, Light scalars and the KOTO anomaly, Phys. Rev. Lett. 124 (2020) 191801 [arXiv:1911.10203] [INSPIRE].
P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Constraints on long-lived light scalars with flavor-changing couplings and the KOTO anomaly, Phys. Rev. D 101 (2020) 075014 [arXiv:1911.12334] [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
A. Faessler, M.I. Krivoruchenko and B.V. Martemyanov, Once more on electromagnetic form factors of nucleons in extended vector meson dominance model, Phys. Rev. C 82 (2010) 038201 [arXiv:0910.5589] [INSPIRE].
J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
P. deNiverville, C.-Y. Chen, M. Pospelov and A. Ritz, Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP, Phys. Rev. D 95 (2017) 035006 [arXiv:1609.01770] [INSPIRE].
A.I. Vainshtein and V.I. Zakharov, Remarks on electromagnetic form-factors of hadrons in the quark model, Phys. Lett. B 72 (1978) 368 [INSPIRE].
A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].
D.B. Clark, E. Godat and F.I. Olness, ManeParse: a Mathematica reader for parton distribution functions, Comput. Phys. Commun. 216 (2017) 126 [arXiv:1605.08012] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2008.08108
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Batell, B., Evans, J.A., Gori, S. et al. Dark scalars and heavy neutral leptons at DarkQuest. J. High Energ. Phys. 2021, 49 (2021). https://doi.org/10.1007/JHEP05(2021)049
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)049