Abstract
We present an ultraviolet extension of the Twin Higgs in which the radial mode of twin symmetry breaking is itself a pseudo-goldstone boson. This “turtle” structure raises the scale of new colored particles in exchange for additional states in the Higgs sector, making multiple Higgs-like scalars the definitive signature of naturalness in this context. We explore the parametrics and phenomenology of a concrete Twin Turtle model and demonstrate its robustness in two different supersymmetric completions. Along the way, we also introduce a new mechanism for inducing hard twin symmetry-breaking quartics via soft supersymmetry breaking.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
N. Craig, S. Knapen and P. Longhi, Neutral naturalness from orbifold Higgs models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].
D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183.
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187.
R. Contino et al., Precision tests and fine tuning in twin Higgs models, Phys. Rev. D 96 (2017) 095036 [arXiv:1702.00797] [INSPIRE].
A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
S. Chang, L.J. Hall and N. Weiner, A supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].
N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].
M. Geller and O. Telem, Holographic twin Higgs model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].
R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The composite twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].
M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].
A. Katz et al., SUSY meets her twin, JHEP 01 (2017) 142 [arXiv:1611.08615] [INSPIRE].
M. Badziak and K. Harigaya, Supersymmetric D-term twin Higgs, JHEP 06 (2017) 065 [arXiv:1703.02122] [INSPIRE].
D.E. Kaplan, M. Schmaltz and W. Skiba, Little Higgses and turtles, Phys. Rev. D 70 (2004) 075009 [hep-ph/0405257] [INSPIRE].
S. Hawking, A brief history of time, Bantam Dell Publishing Group, U.S.A. (1988).
P. Batra and D.E. Kaplan, Perturbative, non-supersymmetric completions of the little Higgs, JHEP 03 (2005) 028 [hep-ph/0412267] [INSPIRE].
D. Curtin and P. Saraswat, Towards a no-lose theorem for naturalness, Phys. Rev. D 93 (2016) 055044 [arXiv:1509.04284] [INSPIRE].
H. Beauchesne, K. Earl and T. Grégoire, The spontaneous ℤ2 breaking twin Higgs, JHEP 01 (2016) 130 [arXiv:1510.06069] [INSPIRE].
R. Harnik, K. Howe and J. Kearney, Tadpole-induced electroweak symmetry breaking and PNGB Higgs models, JHEP 03 (2017) 111 [arXiv:1603.03772] [INSPIRE].
Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].
N. Craig, S. Knapen and P. Longhi, The orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].
J.-H. Yu, A tale of twin Higgs: natural twin two Higgs doublet models, JHEP 12 (2016) 143 [arXiv:1608.05713] [INSPIRE].
R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].
P. Stewart, Concurring opinion in Jacobellis v. Ohio 378 U.S. 184, (1964).
A. Ahmed, Heavy Higgs of the twin Higgs models, JHEP 02 (2018) 048 [arXiv:1711.03107] [INSPIRE].
D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].
P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].
X. Lu, H. Murayama, J.T. Ruderman and K. Tobioka, A natural Higgs mass in supersymmetry from non-decoupling effects, Phys. Rev. Lett. 112 (2014) 191803 [arXiv:1308.0792] [INSPIRE].
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].
N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1810.09467
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Asadi, P., Craig, N. & Li, YY. Twin Turtles. J. High Energ. Phys. 2019, 138 (2019). https://doi.org/10.1007/JHEP02(2019)138
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2019)138