Abstract
We present TVID 2, a program to numerically evaluate an important class of planar three-loop self-energy master integrals with arbitrary masses. As with the predecessor version (TVID 1) the integrals are separated into a known piece, containing the UV divergencies, and a finite piece that is integrated numerically, implemented in C. The set of master integrals under consideration was found with self-energy diagrams containing two closed fermion loops in mind. Two techniques are employed in deriving the expressions for the finite pieces that are then numerically integrated: (a) Sub-loop dispersion relations in the case of topologies containing sub-bubbles, and (b) a modification of the procedure suggested by Ghinculov for integrals with only sub-loop triangles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Freitas, Numerical multi-loop integrals and applications, Prog. Part. Nucl. Phys.90 (2016) 201 [arXiv:1604.00406] [INSPIRE].
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].
T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: The Planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.144 (2002) 200 [hep-ph/0111255] [INSPIRE].
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun.167 (2005) 177 [hep-ph/0410259] [INSPIRE].
A. Levin, Elliptic polylogarithms: an analytic theory, Compos. Math.106 (1997) 267.
A. Levin and G. Racinet, Towards multiple elliptic polylogarithms, math/0703237.
S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor.148 (2015) 328 [arXiv:1309.5865] [INSPIRE].
L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys.55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].
L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms, Commun. Num. Theor. Phys.12 (2018) 193 [arXiv:1704.08895] [INSPIRE].
J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, J. Math. Phys.59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].
J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].
J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev.D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].
J. Blümlein, Large scale analytic calculations in quantum field theories, arXiv:1905.02148 [INSPIRE].
J. Carter and G. Heinrich, SecDec: A general program for sector decomposition, Comput. Phys. Commun.182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].
S. Borowka, J. Carter and G. Heinrich, Numerical Evaluation of Multi-Loop Integrals for Arbitrary Kinematics with SecDec 2.0, Comput. Phys. Commun.184 (2013) 396 [arXiv:1204.4152] [INSPIRE].
S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun.196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun.222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun.180 (2009) 735 [arXiv:0807.4129] [INSPIRE].
A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: Parallelizeable multiloop numerical calculations, Comput. Phys. Commun.182 (2011) 790 [arXiv:0912.0158] [INSPIRE].
A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun.185 (2014) 2090 [arXiv:1312.3186] [INSPIRE].
A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.204 (2016) 189 [arXiv:1511.03614] [INSPIRE].
J. Gluza, K. Kajda and T. Riemann, AMBRE: A Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun.177 (2007) 879 [arXiv:0704.2423] [INSPIRE].
J. Gluza, K. Kajda, T. Riemann and V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics, Eur. Phys. J.C 71 (2011) 1516 [arXiv:1010.1667] [INSPIRE].
I. Dubovyk, J. Gluza and T. Riemann, Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0, J. Phys. Conf. Ser.608 (2015) 012070 [INSPIRE].
I. Dubovyk, J. Gluza, T. Riemann and J. Usovitsch, Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions, PoS (LL2016)034 (2016) [arXiv:1607.07538] [INSPIRE].
J. Usovitsch, I. Dubovyk and T. Riemann, MBnumerics: Numerical integration of Mellin-Barnes integrals in physical regions, PoS(LL2018)046 (2018) [arXiv:1810.04580] [INSPIRE].
A. Freitas, Three-loop vacuum integrals with arbitrary masses, JHEP11 (2016) 145 [arXiv:1609.09159] [INSPIRE].
S. Bauberger and A. Freitas, TVID: Three-loop Vacuum Integrals from Dispersion relations, arXiv:1702.02996 [INSPIRE].
S.P. Martin and D.G. Robertson, Evaluation of the general 3-loop vacuum Feynman integral, Phys. Rev.D 95 (2017) 016008 [arXiv:1610.07720] [INSPIRE].
S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys.B 434 (1995) 383 [hep-ph/9409388] [INSPIRE].
S. Bauberger and M. Böhm, Simple one-dimensional integral representations for two loop selfenergies: The Master diagram, Nucl. Phys.B 445 (1995) 25 [hep-ph/9501201] [INSPIRE].
A. Ghinculov, On the evaluation of three loop scalar integrals in the massive case, Phys. Lett.B 385 (1996) 279 [hep-ph/9604333] [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].
A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
G. Weiglein, R. Scharf and M. Böhm, Reduction of general two loop selfenergies to standard scalar integrals, Nucl. Phys.B 416 (1994) 606 [hep-ph/9310358] [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys.B 153 (1979) 365 [INSPIRE].
G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys.C 46 (1990) 425 [INSPIRE].
A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE].
S. Bauberger, Two-loop Contributions to Muon Decay, Ph.D. Thesis, Universität Würzburg (1997) [INSPIRE].
A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys.B 397 (1993) 123 [INSPIRE].
C. Ford, I. Jack and D.R.T. Jones, The Standard model effective potential at two loops, Nucl. Phys.B 387 (1992) 373 [Erratum ibid.B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].
R. Scharf and J.B. Tausk, Scalar two loop integrals for gauge boson selfenergy diagrams with a massless fermion loop, Nucl. Phys.B 412 (1994) 523 [INSPIRE].
Wolfram Research, Inc., Mathematica, Version 10.2, Champaign, Illinois, U.S.A. (2015).
R. Piessens, E. de Doncker-Kapenga, C.W. Überhuber and D.K. Kahanger, QUADPACK, A Subroutine Package for Automatic Integration, Springer, Berlin (1983).
K. Briggs, doubledouble version 2.2.
T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1908.09887
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Bauberger, S., Freitas, A. & Wiegand, D. TVID 2: evaluation of planar-type three-loop self-energy integrals with arbitrary masses. J. High Energ. Phys. 2020, 24 (2020). https://doi.org/10.1007/JHEP01(2020)024
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)024