
Overview
How to Connect

Connecting with Node.js
Connecting with Python
Connecting with PHP
Connecting with Go
Connecting with Java
Connecting with psql
Connecting with pgAdmin

How-To Guides

Creating a Database
Upgrading to a Major Version
Installing or Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

Database Migration

Database Migration Service for PostgreSQL
Cloning a Service to Another Provider or Region
Manual Migration Using pg_dump and pg_restore

Cluster Management

PostgreSQL

Overview
Deploying a New Cluster
Node Management
Adding a Node
Promoting a Node
Removing a Node
Backups and Restores
Restricting Access by IP
Cluster Resynchronization
Database Migrations
Deleting a Cluster

PostgreSQL is an open-source relational database management system. It supports SQL language
and offers features like transactions, referential integrity, and user-defined types and functions.
PostgreSQL can handle complex queries, supports various data types, and is extensible, allowing
users to add custom functions and data types. It runs on multiple operating systems, including
Windows, Linux, and macOS.

Key Features of PostgreSQL:

Extensibility: Users can define custom data types, operators, and index methods,
tailoring the database to specific application needs.
Standards Compliance: PostgreSQL conforms to at least 170 of the 177 mandatory
features for SQL:2023 Core conformance, ensuring compatibility with SQL standards.
Advanced Data Types: Supports a wide array of data types, including JSON for
unstructured data, arrays, hstore (key-value pairs), and geometric types, enhancing its
versatility.
Concurrency and Performance: Utilizes Multi-Version Concurrency Control (MVCC) to
handle multiple transactions simultaneously without conflicts, ensuring data integrity and
performance.
Replication and High Availability: Offers asynchronous replication, allowing data to be
copied to standby servers for load balancing and failover support, enhancing reliability.
ACID Compliance: Ensures transactions are processed reliably through Atomicity,
Consistency, Isolation, and Durability properties, which are crucial for applications
requiring data integrity.
Security Features: Provides robust security mechanisms, including role-based access
control, data encryption, and connection security, safeguarding data against unauthorized
access.
Cross-Platform Support: Runs on all major operating systems, including Windows,
Linux, macOS, FreeBSD, and OpenBSD, offering flexibility in deployment environments.

These features make PostgreSQL a preferred choice for developers and enterprises seeking a
reliable, feature-rich, and scalable database solution.

Overview

How to Connect

How to Connect

This guide explains how to establish a connection between a Node.js application and a PostgreSQL
database using the pg package. It walks through the necessary setup, configuration, and
execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a PostgreSQL
database. Below is a breakdown of each required variable, its purpose, and where to find it. Here’s
what each variable represents:

Variable Description Purpose

USER PostgreSQL username, from the
Elestio service overview page

Identifies the database user who has
permission to access the PostgreSQL
database.

PASSWORD PostgreSQL password, from the
Elestio service overview page

The authentication key required for
the specified USER to access the
database

HOST Hostname for PostgreSQL connection,
from the Elestio service overview
page

The address of the server hosting the
PostgreSQL database.

PORT Port for PostgreSQL connection, from
the Elestio service overview page

The network port is used to connect
to PostgreSQL. The default port is
5432 .

DATABASE Database Name for PostgreSQL
connection, from the Elestio service
overview page

The name of the database being
accessed. A PostgreSQL instance can
contain multiple databases.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Node.js

Variables

Install Node.js and NPM
Check if Node.js is installed by running:
node -v

If not installed, download it from nodejs.org and install.
Verify npm installation:
npm -v

Install the pg Package
The pg package enables Node.js applications to interact with PostgreSQL. Install it using:
npm install pg --save

Once all prerequisites are set up, create a new file named pg.js and add the following code:

Prerequisites

Code

const pg = require("pg");

https://docs.elest.io/uploads/images/gallery/2025-03/screenshot-2025-03-20-at-12-34-30-pm.jpg
https://nodejs.org/

To execute the script, open the terminal or command prompt and navigate to the directory where
pg.js . Once in the correct directory, run the script with the command

// Database connection configuration
const config = {
 user: "USER",
 password: "PASSWORD",
 host: "HOST",
 port: "PORT",
 database: "DATABASE",
};

// Create a new PostgreSQL client
const client = new pg.Client(config);

// Connect to the database
client.connect((err) => {
 if (err) {
 console.error("Connection failed:", err);
 return;
 }
 console.log("Connected to PostgreSQL");

 // Run a test query to check the PostgreSQL version
 client.query("SELECT VERSION()", [], (err, result) => {
 if (err) {
 console.error("Query execution failed:", err);
 client.end();
 return;
 }

 console.log("PostgreSQL Version:", result.rows[0]);

 // Close the database connection
 client.end((err) => {
 if (err) console.error("Error closing connection:", err);
 });
 });
});

If the connection is successful, the terminal will display output similar to:

node pg.js

Connected to PostgreSQL
PostgreSQL Version: {
 version: 'PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by gcc (Debian
12.2.0-14) 12.2.0, 64-bit'
}

How to Connect

This guide explains how to establish a connection between a Python application and a
PostgreSQL database using the psycopg2-binary package. It walks through the necessary setup,
configuration, and execution of a simple SQL query.

To connect to a PostgreSQL database, you only need one environment variable — the connection
URI. This URI contains all the necessary information like username, password, host, port, and
database name.

Variable Description Purpose

POSTGRESQL_URI Full PostgreSQL connection string
(from the Elestio service overview
page)

Provides all necessary credentials and
endpoint details in a single URI
format.

The URI will look like this:

You can find the details needed in the URI from the Elestio service overview details. Copy and
replace the variables carefully in the URI example provided above.

Connecting with Python

Variables

postgresql://<USER>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>

Check if Python is installed by running:

If not installed, download it from python.org and install it.

The psycopg2-binary package enables Python applications to interact with PostgreSQL. Install it
using:

Prerequisites
Install Python

python --version

Install psycopg2-binary Package

pip install psycopg2-binary

Code

https://www.python.org/

Once all prerequisites are set up, create a new file named pg.py and add the following code and
replace the POSTGRESQL_URI with actual link or in environment setup as you wish:

To execute the script, open the terminal or command prompt and navigate to the directory where
pg.js . Once in the correct directory, run the script with the command

If the connection is successful, the terminal will display output similar to:

import psycopg2

def get_db_version():
 try:
 db_connection = psycopg2.connect('POSTGRESQL_URI')
 db_cursor = db_connection.cursor()
 db_cursor.execute('SELECT VERSION()')
 db_version = db_cursor.fetchone()[0]
 return db_version

 except Exception as e:
 print(f"Database connection error: {e}")
 return None

 finally:
 if 'db_cursor' in locals():
 db_cursor.close()
 if 'db_connection' in locals():
 db_connection.close()

def display_version():
 version = get_db_version()
 if version:
 print(f"Connected to PostgreSQL: {version}")

if __name__ == "__main__":
 display_version()

python pg.py

Connected to PostgreSQL: PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by
gcc (Debian 12.2.0-14) 12.2.0, 64-bit

How to Connect

This guide explains how to establish a connection between a PHP application and a PostgreSQL
database using the built-in PDO extension. It walks through the necessary setup, configuration,
and execution of a simple SQL query.

To connect to a PostgreSQL database, you only need one environment variable — the connection
URI. This URI contains all the necessary information like username, password, host, port, and
database name.

Variable Description Purpose

POSTGRESQL_URI Full PostgreSQL connection string
(from the Elestio service overview
page)

Provides all necessary credentials and
endpoint details in a single URI
format.

The URI will look like this:

You can find the details needed in the URI from the Elestio service overview details. Copy and
replace the variables carefully in the URI example provided above.

Connecting with PHP

Variables

postgresql://<USER>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>

Check if PHP is installed by running:

If not installed, download and install it from https://www.php.net/downloads.php.

Once all prerequisites are set up, create a new file named pg.php and add the following code and
replace the POSTGRESQL_URI with actual link or in environment setup as you wish:

Prerequisites
Install PHP

php -v

Code

<?php

$db_url = "POSTGRESQL_URI";//Replace with actual URI
$db_parts = parse_url($db_url);

https://www.php.net/downloads.php

To execute the script, open the terminal or command prompt and navigate to the directory where
pg.php . Once in the correct directory, run the script with the command

If the connection is successful, the terminal will display output similar to:

$dsn = "pgsql:host={$db_parts['host']};port={$db_parts['port']};dbname=Elestio";//Replace with your DB
name
$pdo = new PDO($dsn, $db_parts['user'], $db_parts['pass']);

$version = $pdo->query("SELECT VERSION()")->fetchColumn();
echo $version;

php pg.php

PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by gcc (Debian 12.2.0-14)
12.2.0, 64-bit

How to Connect

This guide explains how to establish a connection between a Go (Golang) application and a
PostgreSQL database using the github.com/lib/pq driver. It walks through the necessary setup,
configuration, and execution of a simple SQL query.

To connect to a PostgreSQL database, you only need one environment variable — the connection
URI. This URI contains all the necessary information like username, password, host, port, and
database name.

Variable Description Purpose

POSTGRESQL_URI Full PostgreSQL connection string
(from the Elestio service overview
page)

Provides all necessary credentials and
endpoint details in a single URI
format.

The URI will look like this:

You can find the details needed in the URI from the Elestio service overview details. Copy and
replace the variables carefully in the URI example provided above.

Connecting with Go

Variables

postgresql://<USER>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>

Check if Go is installed by running:

If not installed, download and install it from https://go.dev/dl/.

Install the pq driver using:

Prerequisites
Install Go

go version

Install pq Package

go get github.com/lib/pq

Code

https://go.dev/dl/

Once all prerequisites are set up, create a new file named main.go and add the following code, and
replace the POSTGRESQL_URI with actual link or in environment setup as you wish:

package main

import (
	"database/sql"
	"fmt"
	"log"
	"net/url"

	_ "github.com/lib/pq"
)

func getDBConnection(connectionString string) (*sql.DB, error) {
	parsedURL, err := url.Parse(connectionString)
	if err != nil {
		return nil, fmt.Errorf("Failed to parse connection string: %v", err)
	}

	db, err := sql.Open("postgres", parsedURL.String())
	if err != nil {
		return nil, fmt.Errorf("Failed to open database connection: %v", err)
	}

	return db, nil
}

func main() {
	connectionString := "POSTGRESQL_URI"

	db, err := getDBConnection(connectionString)
	if err != nil {
		log.Fatal(err)
	}
	defer db.Close()

	query := "SELECT current_database(), current_user, version()"
	rows, err := db.Query(query)
	if err != nil {

To execute the script, open the terminal or command prompt and navigate to the directory where
main.go . Once in the correct directory, run the script with the command

If the connection is successful, the terminal will display output similar to:

		log.Fatal("Failed to execute query:", err)
	}
	defer rows.Close()

	for rows.Next() {
		var dbName, user, version string
		if err := rows.Scan(&dbName, &user, &version); err != nil {
			log.Fatal("Failed to scan row:", err)
		}
		fmt.Printf("Database: %s\nUser: %s\nVersion: %s\n", dbName, user, version)
	}
}

go run main.go

Database: Elestio
User: postgres
Version: PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by gcc (Debian 12.2.0-
14) 12.2.0, 64-bit

How to Connect

This guide explains how to establish a connection between a Java application and a PostgreSQL
database using the JDBC driver. It walks through the necessary setup, configuration, and
execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a PostgreSQL
database. Below is a breakdown of each required variable, its purpose, and where to find it. Here’s
what each variable represents:

Variable Description Purpose

USER PostgreSQL username, from the
Elestio service overview page

Identifies the database user who has
permission to access the PostgreSQL
database.

PASSWORD PostgreSQL password, from the
Elestio service overview page

The authentication key required for
the specified USER to access the
database

HOST Hostname for PostgreSQL connection,
from the Elestio service overview
page

The address of the server hosting the
PostgreSQL database.

PORT Port for PostgreSQL connection, from
the Elestio service overview page

The network port is used to connect
to PostgreSQL. The default port is
5432 .

DATABASE Database Name for PostgreSQL
connection, from the Elestio service
overview page

The name of the database being
accessed. A PostgreSQL instance can
contain multiple databases.

These values can usually be found in the Elestio service overview details, as shown in the image
below. Make sure to take a copy of these details and add them to the code moving ahead.

Connecting with Java

Variables

Check if Java is installed by running:

If not installed, install it first and then download and install JDBC driver from
https://jdbc.postgresql.org/download/ or if you have Maven installed, run the following command
with updated version of the driver:

Once all prerequisites are set up, create a new file named Pg.java and add the following code:

Prerequisites
Install Java & JDBC driver

java -version

mvn org.apache.maven.plugins:maven-dependency-plugin:2.8:get -
Dartifact=org.postgresql:postgresql:42.7.5:jar -Ddest=postgresql-42.7.5.jar

Code

https://jdbc.postgresql.org/download/

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashMap;
import java.util.Map;

public class Pg {
 private static class ConnectionConfig {
 private final String host;
 private final String port;
 private final String database;
 private final String username;
 private final String password;

 public ConnectionConfig(String host, String port, String database, String username, String password) {
 this.host = host;
 this.port = port;
 this.database = database;
 this.username = username;
 this.password = password;
 }

 public String getConnectionUrl() {
 return String.format("jdbc:postgresql://%s:%s/%s?sslmode=require", host, port, database);
 }

 public boolean isValid() {
 return host != null && !host.isEmpty() &&
 port != null && !port.isEmpty() &&
 database != null && !database.isEmpty();
 }
 }

 private static Map<String, String> parseArguments(String[] args) {
 Map<String, String> config = new HashMap<>();
 for (int i = 0; i < args.length - 1; i++) {
 String key = args[i].toLowerCase();
 String value = args[++i];

 config.put(key, value);
 }
 return config;
 }

 private static ConnectionConfig createConfig(Map<String, String> args) {
 return new ConnectionConfig(
 args.get("-host"),
 args.get("-port"),
 args.get("-database"),
 args.get("-username"),
 args.get("-password")
);
 }

 private static void validateConnection(Connection connection) throws SQLException {
 try (Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT version()")) {
 if (rs.next()) {
 System.out.println("Database Version: " + rs.getString("version"));
 }
 }
 }

 public static void main(String[] args) {
 try {
 // Load PostgreSQL driver
 Class.forName("org.postgresql.Driver");

 // Parse and validate configuration
 Map<String, String> parsedArgs = parseArguments(args);
 ConnectionConfig config = createConfig(parsedArgs);

 if (!config.isValid()) {
 System.err.println("Error: Missing required connection parameters (host, port, database)");
 return;
 }

 // Establish connection and validate
 try (Connection conn = DriverManager.getConnection(

To execute the script, open the terminal or command prompt and navigate to the directory where
Pg.java . Once in the correct directory, run the script with the command (Update the variables with
actual values acquired from previous steps.

If the connection is successful, the terminal will display output similar to:

 config.getConnectionUrl(),
 config.username,
 config.password)) {

 System.out.println("Successfully connected to the database!");
 validateConnection(conn);
 }

 } catch (ClassNotFoundException e) {
 System.err.println("Error: PostgreSQL JDBC Driver not found");
 e.printStackTrace();
 } catch (SQLException e) {
 System.err.println("Database connection error:");
 e.printStackTrace();
 }
 }
}

javac Pg.java && java -cp postgresql-42.7.5.jar:. Pg -host HOST -port PORT -database DATABASE -username
avnadmin -password PASSWORD

Successfully connected to the database!
Database Version: PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by gcc
(Debian 12.2.0-14) 12.2.0, 64-bit

How to Connect

This guide explains how to connect to a PostgreSQL database using the psql command-line tool.
It walks through the necessary setup, connection process, and execution of a simple SQL query.

To connect to a PostgreSQL database, you only need one environment variable — the connection
URI. This URI contains all the necessary information like username, password, host, port, and
database name.

Variable Description Purpose

POSTGRESQL_
URI

Full PostgreSQL connection string (from the
Elestio service overview page)

Provides all necessary credentials and endpoint
details in a single URI format.

The URI will look like this:

You can find the details needed in the URI from the Elestio service overview details. Copy and
replace the variables carefully in the URI example provided above.

Connecting with psql

Variables

postgresql://<USER>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>

While following this tutorial, you will need to have psql already installed; if not head over to
https://www.postgresql.org/download/ and download it first.

Open your terminal and run the following command to connect to your PostgreSQL database using
the full connection URI:

If the connection is successful, you’ll see output similar to this. Here it will show you the database
you tried to connect to, which in this case is Elestio:

Prerequisites

Connecting to PostgreSQL

psql POSTGRESQL_URI

psql (17.4, server 16.8 (Debian 16.8-1.pgdg120+1))
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off, ALPN: none)
Type "help" for help.

https://www.postgresql.org/download/

To ensure you're connected correctly, run this command inside the psql prompt:

You should receive output like the following:

Elestio=#

SELECT version();

 version

 PostgreSQL 16.8 (Debian 16.8-1.pgdg120+1) on x86_64-pc-linux-gnu, compiled by gcc (Debian 12.2.0-14)
12.2.0, 64-bit
(1 row)

How to Connect

pgAdmin is a widely used graphical interface for PostgreSQL that allows you to manage, connect
to, and run queries on your databases with ease.

To connect using pgAdmin , you'll need the following connection parameters. When you deploy a
PostgreSQL service on Elestio, you also get a pgAdmin dashboard configured for you to use with
these variables. These details are available in the Elestio service overview page:

Variable Description Purpose

USER pgAdmin username Identifies the pgAdmin user with
access permission.

PASSWORD pgAdmin password Authentication key for the USER .

You can find these values in your Elestio project dashboard under Admin section.

Make sure the PostgreSQL service is correctly deployed on Elestio and you are able to access the
Admin section like the one in the image above.

Connecting with pgAdmin

Variables

Prerequisites

Setting Up the Connection

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-01-at-3-49-57-pm.jpg

1. Launch pgAdmin from the Admin UI URL and log in with the credentials acquired in the
steps before.

2. Click on "Create" and select "Server…" from the dropdown, or find Add New Server
from the quick links

3. In the General tab:
Enter a name for your connection (e.g., Trial pgAdmin Connection).

4. Go to the Connection tab and enter the following details:
Host name/address: HOSTNAME
Port: PORT
Maintenance database: DATABASE
Username: USERNAME
Password: PASSWORD

How-To Guides

How-To Guides

PostgreSQL allows you to create databases using different methods, including the PostgreSQL
interactive shell (psql), Docker (assuming PostgreSQL is running inside a container), and the
command-line interface (createdb). This guide explains each method step-by-step, covering
required permissions, best practices, and troubleshooting common issues.

PostgreSQL is a database system that stores and manages structured data efficiently. The psql
tool is an interactive command-line interface (CLI) that allows users to execute SQL commands
directly on a PostgreSQL database. Follow these steps to create a database:

Open terminal on your local system, and if PostgreSQL is installed locally, connect using the
following command. If not installed, install from official website:

For a remote database, use:

Replace HOST with the database server address, USER with the PostgreSQL username, and
DATABASE with an existing database name.

Inside the psql shell, run:

The default settings will apply unless specified otherwise. To customize the encoding and collation,
use:

Creating a Database

Creating Using psql CLI

Connect to PostgreSQL

psql -U postgres

psql -h HOST -U USER -d DATABASE

Create a New Database

CREATE DATABASE mydatabase;

https://www.postgresql.org/download/

Docker is a tool that helps run applications in isolated environments called containers. A
PostgreSQL container provides a self-contained database instance that can be quickly deployed
and managed. If you are running PostgreSQL inside a Docker container, follow these steps:

Head over to your deployed PostgreSQL service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

CREATE DATABASE mydatabase ENCODING 'UTF8' LC_COLLATE 'en_US.UTF-8' LC_CTYPE 'en_US.UTF-8'
TEMPLATE template0;

Creating Database in Docker

Access Elestio Terminal

cd /opt/app/

Access the PostgreSQL Container Shell

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-08-at-12-58-07-pm.jpg

Instead of pulling an image or running the container manually, use Docker Compose to interact
with your running container. As you are using Elestio, it will already be a Docker compose:

This opens a shell session inside the running PostgreSQL container.

Once inside the container shell, if environment variables like POSTGRES_USER and POSTGRES_DB are
already set in the stack, you can use them directly:

Or use the default one:

Now, to create a database, use the following command. This command tells PostgreSQL to create a
new logical database called mydatabase . By default, it inherits settings like encoding and collation
from the template database (template1), unless specified otherwise.

You can quickly list the database you just created using the following command

The createdb command simplifies database creation from the terminal without using psql .

Check the PostgreSQL service status, this ensures that the PostgreSQL instance is running on your
local instance:

docker-compose exec postgres bash

Use Environment Variables to Connect via psql

psql -U "$POSTGRES_USER" -d "$POSTGRES_DB"

psql -U postgres

Create Database

CREATE DATABASE mydatabase;

/l

Creating Using createdb CLI

Ensure PostgreSQL is Running

sudo systemctl status postgresql

If not running, start it:

Now, you can create a simple database using the following command:

To specify encoding and collation:

List all databases using the following commands, as it will list all the databases available under
your PostgreSQL:

Next, you can easily connect with the database using the psql command and start working on it.

Creating a database requires the CREATEDB privilege. By default, the postgres user has this
privilege. To grant it to another user:

For restricted access, assign specific permissions:

sudo systemctl start postgresql

Create a Database

createdb -U postgres mydatabase

createdb -U postgres --encoding=UTF8 --lc-collate=en_US.UTF-8 --lc-ctype=en_US.UTF-8 mydatabase

Verify Database Creation

psql -U postgres -l

Connect to the New Database

psql -U postgres -d mydatabase

Required Permissions for
Database Creation

ALTER USER username CREATEDB;

Use Meaningful Names: Choosing clear and descriptive names for databases helps in
organization and maintenance. Avoid generic names like testdb or database1 , as they do
not indicate the database’s purpose. Instead, use names that reflect the type of data
stored, such as customer_data or sales_records . Meaningful names make it easier for
developers and administrators to understand the database’s function without extra
documentation.
Follow Naming Conventions: A standardized naming convention ensures consistency
across projects and simplifies database management. PostgreSQL is case-sensitive, so
using lowercase letters and underscores (e.g., order_details) is recommended to avoid
unnecessary complexities. Avoid spaces and special characters in names, as they require
additional quoting in SQL queries.
Restrict User Permissions: Granting only the necessary permissions improves
database security and reduces risks. By default, users should have the least privilege
required for their tasks, such as read-only access for reporting tools. Superuser or
administrative privileges should be limited to trusted users to prevent accidental or
malicious changes. Using roles and groups simplifies permission management and
ensures consistent access control.
Enable Backups: Regular backups ensure data recovery in case of accidental deletions,
hardware failures, or security breaches. PostgreSQL provides built-in tools like pg_dump
for single-database backups and pg_basebackup for full-instance backups. Automating
backups using cron jobs or scheduling them through a database management tool
reduces the risk of data loss.
Monitor Performance: Monitoring database performance helps identify bottlenecks,
optimize queries, and ensure efficient resource utilization. PostgreSQL provides system
views like pg_stat_activity and pg_stat_database to track query execution and database
usage. Analyzing slow queries using EXPLAIN ANALYZE helps in indexing and optimization.

CREATE ROLE newuser WITH LOGIN PASSWORD 'securepassword';
GRANT CONNECT ON DATABASE mydatabase TO newuser;
GRANT USAGE ON SCHEMA public TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO newuser;

Best Practices for Creating
Databases

SELECT datname, numbackends, xact_commit, blks_read FROM pg_stat_database;

Issue Possible Cause Solution

ERROR: permission denied to create
database

User lacks CREATEDB privileges Grant permission using ALTER USER
username CREATEDB;

ERROR: database "mydatabase" already
exists

Database name already taken Use a different name or drop the
existing one with DROP DATABASE
mydatabase;

FATAL: database "mydatabase" does not
exist

Attempting to connect to a non-
existent database

Verify creation using \l

psql: could not connect to server PostgreSQL is not running Start PostgreSQL with sudo systemctl
start postgresql

ERROR: role "username" does not exist The specified user does not exist Create the user with CREATE ROLE
username WITH LOGIN PASSWORD
'password';

Common Issues and
Troubleshooting

How-To Guides

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to a Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Change version tab
within your database service page.

Here, you'll find an option labeled Change Version. In the Change Version menu, select the
desired database version from the available list. After confirming the version, Elestio will begin the
upgrade process automatically. During this time, the platform takes care of the version change and
restarts the database if needed. No manual commands are required, and the system handles most
of the operational aspects in the background.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-02-at-1-35-17-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-02-at-1-35-58-pm.jpg

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-02-at-1-36-26-pm.jpg

How-To Guides

PostgreSQL supports a wide range of extensions that add extra functionality to the core database
system. Extensions like uuid-ossp, pg_trgm, and postgis are often used to provide features for text
search, spatial data, UUID generation, and more. If you are running PostgreSQL on Elestio, you can
enable many of these extensions directly within your database. This document explains how to
enable, manage, and troubleshoot PostgreSQL extensions in an Elestio-hosted environment. It also
includes guidance on checking extension compatibility with different PostgreSQL versions.

PostgreSQL extensions can be installed in each database individually. Most common extensions are
included in the PostgreSQL installation on Elestio. To enable an extension, you need to connect to
your database using a tool like psql.

Start by connecting to your PostgreSQL database. You can follow the detailed documentation as
provided here.

Once connected, you can enable an extension using the CREATE EXTENSION command. For
example, to enable the uuid-ossp extension:

To check which extensions are already installed in your current database, use the `\dx` command
within psql. If you want to see all available extensions on the server, use:

If the extension you need is not listed in the available extensions, it may not be installed on the
server.

Installing or Updating an
Extension

Installing and Enabling Extensions

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

SELECT * FROM pg_available_extensions ORDER BY name;

Checking Extension Compatibility

https://docs.elest.io/books/postgresql/page/connecting-with-psql

Each PostgreSQL extension is built for a specific PostgreSQL version. Not all extensions are
compatible across major versions. Before upgrading PostgreSQL or deploying an extension, it is
important to check whether the extension is compatible with the version you are using.

To check the installed version of an extension and the default version provided by the system, run:

If you are planning to upgrade your PostgreSQL version, it is recommended to deploy a new
instance with the target version and run the above query to see if the extension is available and
compatible. Some extensions may require specific builds for each version of PostgreSQL. After
upgrading your database, you may also need to update your extensions using:

This ensures the extension objects in the database match the new database version.

There are some common issues users may encounter when working with extensions. These usually
relate to missing files, permission problems, or version mismatches.

If you see an error like could not open extension control file, it means the extension is not installed
on the server. This usually happens when the extension is not included in the PostgreSQL
installation. If the error message says that the extension already exists, it means it has already
been installed in the database. You can confirm this with the \dx command or the query:

If you need to reinstall it, you can drop and recreate it. Be careful, as dropping an extension with
CASCADE may remove objects that depend on it:

Another common issue appears after upgrading PostgreSQL, where some functions related to the
extension stop working. This is often due to the extension not being updated. Running the following
command will usually fix this.

SELECT name, default_version, installed_version
FROM pg_available_extensions
WHERE name = 'pg_trgm';

ALTER EXTENSION <extension_name> UPDATE;

Troubleshooting Common Extension
Issues

SELECT * FROM pg_extension;

DROP EXTENSION IF EXISTS <extension_name> CASCADE;
CREATE EXTENSION <extension_name>;

In some cases, you may get a permission denied error when trying to create an extension. This
means your database role does not have the required privileges. You will need to connect using a
superuser account like postgres, or request that Elestio enable the extension for you.

ALTER EXTENSION <name> UPDATE;

How-To Guides

Regular backups are a key part of managing a PostgreSQL deployment. While Elestio provides
automated backups by default, you may want to perform manual backups for specific reasons,
such as preparing for a major change, keeping a local copy, or testing backup automation. This
guide walks through how to create PostgreSQL backups on Elestio using multiple approaches. It
covers manual backups through the Elestio dashboard, using PostgreSQL CLI tools, and Docker
Compose-based setups. It also includes advice for backup storage, retention policies, and
automation using scheduled jobs.

If you’re using Elestio’s managed PostgreSQL service, the easiest way to create a manual backup is
through the dashboard. This built-in method creates a full snapshot of your current database state
and stores it within Elestio’s infrastructure. These backups are tied to your service and can be
restored through the same interface. This option is recommended when you need a quick,
consistent backup without using any terminal commands.

To trigger a manual backup from the Elestio dashboard:

1. Log in to the Elestio dashboard and navigate to your PostgreSQL service/cluster.
2. Click the Backups tab in the service menu.
3. Select Back up now to generate a snapshot.

Creating Manual Backups

Manual Service Backups on
Elestio

PostgreSQL provides a set of command-line tools that are useful when you want to create backups
from your terminal. These include pg_dump exporting the database, psql for basic connectivity and
queries, and pg_restore restoring backups. This approach is useful when you need to store backups
locally or use them with custom automation workflows. The CLI method gives you full control over
the backup format and destination.

To use the CLI tools, you’ll need the database host, port, name, username, and password. These
details can be found in the Overview section of your PostgreSQL service in the Elestio dashboard.

Manual Backups Using
PostgreSQL CLI

Collect Database Connection Info

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-08-at-1-50-48-pm.jpg

Use pg_dump to export the database in a custom format. This format is flexible and preferred for
restore operations using pg_restore. Replace the values with actual values that you copied from the
Elestio overview page.

This command connects to the Elestio database and creates a .dump file containing your data. You
can use the -v flag for verbose output and confirm that the backup completed successfully.

Back Up with pg_dump

PGPASSWORD='<your-db-password>' pg_dump \
 -U <username> \
 -h <host> \
 -p <port> \
 -Fc -v \
 -f <output_file>.dump \
 <database_name>

Manual Backups Using Docker
Compose

https://docs.elest.io/uploads/images/gallery/2025-04/DKCimage.png

If your PostgreSQL database is deployed through a Docker Compose setup on Elestio, you can run
the pg_dump command from within the running container. This is useful when the tools are installed
inside the container environment and you want to keep everything self-contained. The backup can
be created inside the container and then copied to your host system for long-term storage or
transfer.

Head over to your deployed PostgreSQL service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

This command runs pg_dump from inside the container and saves the backup to a file in /tmp. Make
sure you have the following things in command in your env, else replace them with actual values
and not the env variables.

Access Elestio Terminal

cd /opt/app/

Run pg_dump Inside the Container

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-08-at-12-58-07-pm.jpg

This assumes that environment variables like POSTGRES_USER, POSTGRES_PASSWORD, and POSTGRES_DB
 are defined in your Compose setup.

After creating the backup inside the container, use docker cp to copy the file to your host machine.

This creates a local copy of the backup file, which you can then upload to external storage or keep
for versioned snapshots.

Once backups are created, they should be stored securely and managed with a clear retention
policy. Proper naming, encryption, and rotation reduce the risk of data loss and help during
recovery. Use timestamped filenames to identify when the backup was created. External storage
services such as AWS S3, Backblaze B2, or an encrypted server volume are recommended for long-
term storage.

Here are some guidelines to follow:

Name your backups clearly: mydb_backup_2024_04_02.dump.
Store in secure, off-site storage if possible.
Retain 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Remove old backups automatically to save space.

By combining storage hygiene with regular scheduling, you can maintain a reliable backup history
and reduce manual effort.

docker-compose exec postgres \
 bash -c "PGPASSWORD='\$POSTGRES_PASSWORD' pg_dump -U \$POSTGRES_USER -Fc -v \$POSTGRES_DB >
/tmp/manual_backup.dump"

Copy Backup to Host

docker cp $(docker-compose ps -q postgres):/tmp/manual_backup.dump ./manual_backup.dump

Backup Storage & Retention
Best Practices

Automating Manual Backups (
cron)

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Open your crontab file for editing:

Then add a job like the following:

Make sure the /backups/ directory exists and is writable by the user running the job. You can also
compress the backup and upload it to a remote destination as part of the same script.

Example: Daily Backup at 2 AM

crontab -e

0 2 * * * PGPASSWORD='mypassword' pg_dump -U elestio -h db-xyz.elestio.app -p 5432 -Fc -f
/backups/backup_$(date +\%F).dump mydatabase

How-To Guides

Restoring backups is essential for recovery, environment duplication, or rollback scenarios. Elestio
supports restoring backups both through its built-in dashboard and via command-line tools like
pg_restore psql. You can also restore from inside Docker Compose environments. This guide
provides detailed steps for full and partial restores using each method and explains how to address
common errors that occur during restoration.

This method is used when you’ve created a .dump file using pg_dump in custom format. You can
restore it using pg_restore , which gives you fine-grained control over what gets restored. This is
useful for restoring backups to new environments, during version upgrades, or testing data locally.

If the database you’re restoring into doesn’t already exist, you must create it first.

This command restores the full contents of the .dump file into the specified database.

Restoring a Backup

Restoring from a Backup via
Terminal

Create the target database if it does not exist

PGPASSWORD='<your-password>' createdb \
 -U <username> \
 -h <host> \
 -p <port> \
 <database_name>

Run pg_restore to import the backup

PGPASSWORD='<your-password>' pg_restore \
 -U <username> \
 -h <host> \
 -p <port> \
 -d <database_name> \
 -v <backup_file>.dump

You can add --clean to drop existing objects before restoring.

If your PostgreSQL service is deployed using Docker Compose, you can restore the database inside
the container environment. This is useful when PostgreSQL runs in an isolated Docker setup, and
you want to handle all backup and restore processes inside that environment.

Use docker cp to move the .dump file from your host machine to the PostgreSQL container.

Use pg_restore from within the container to restore the file to the database.

Make sure your environment variables in the Docker Compose file match the values used here.

PostgreSQL supports partial restores, allowing you to restore only selected tables, schemas, or
schema definitions. This can be useful when recovering a specific part of the database or testing
part of the data.

Use the -t flag to restore only one table from the .dump file.

Restoring via Docker Compose

Copy the backup into the container

docker cp ./manual_backup.dump $(docker-compose ps -q postgres):/tmp/manual_backup.dump

Run the restore inside the container

docker-compose exec postgres \
 bash -c "PGPASSWORD='\$POSTGRES_PASSWORD' pg_restore -U \$POSTGRES_USER -d \$POSTGRES_DB -Fc -v
/tmp/manual_backup.dump"

Partial Restores

Restore a specific table

PGPASSWORD='<your-password>' pg_restore \
 -U <username> \
 -h <host> \
 -p <port> \
 -d <database_name> \

This command will restore only the table structures, types, functions, and other schema definitions
without inserting any data.

Partial restores work best with custom-format .dump files generated by pg_dump -Fc .

Errors during restore are often caused by permission issues, incorrect formats, or missing objects.
Understanding the error messages and their causes will help you recover faster and avoid data
loss.

1. Could not connect to database

This usually happens if the database doesn’t exist or the credentials are incorrect. Make sure the
database has been created and the connection details are correct.

2. Permission denied for schema

This error indicates that the user account used for restore lacks the privileges needed to write into
the schema. Use a superuser account or adjust the schema permissions before restoring.

3. Input file appears to be a text format dump

 -t <table_name> \
 -v <backup_file>.dump

Restore schema only (no data)

pg_restore \
 -U <username> \
 -h <host> \
 -p <port> \
 -d <database_name> \
 --schema-only \
 -v <backup_file>.dump

Common Errors & How to Fix
Them

pg_restore: [archiver] could not connect to database

ERROR: permission denied for schema public

This means you are trying to use pg_restore a plain SQL file. In this case, you should use psql
instead:

4. Duplicate key value violates unique constraint

This occurs when the restore process tries to insert rows that already exist in the target database.
You can either drop the target database before restoring or use --clean it in pg_restore to drop
existing objects automatically.

pg_restore: error: input file appears to be a text format dump

psql -U <username> -h <host> -p <port> -d <database_name> -f backup.sql

How-To Guides

Slow queries can significantly affect application performance and user experience. PostgreSQL
offers built-in tools to analyze and identify these slow operations. On Elestio, whether you’re
connected via terminal, inside a Docker Compose container, or using PostgreSQL CLI tools, you can
use several methods to pinpoint and fix performance issues. This guide walks through various
techniques to identify slow queries, interpret execution plans, and apply optimizations.

When connected to your PostgreSQL service via terminal, you can use built-in tools like psql and
SQL functions to observe how queries behave. This method is useful for immediate, ad hoc
diagnostics in production or staging environments. You can use simple commands to view currently
running queries, analyze individual query plans, and measure runtime performance. These steps
help determine which queries are taking the most time and why.

Use psql to connect directly to your PostgreSQL instance. This provides access to administrative
and diagnostic SQL commands.

Now use the following command to show the query plan the database will use. It highlights whether
PostgreSQL will perform a sequential scan, index scan, or other operation.

Another type of command that executes the query and returns actual runtime and row counts.
Comparing planned and actual rows helps determine if the planner is misestimating costs.

Lastly, monitor queries in real time using the following command. This view lists all active queries,
sorted by duration. It helps you identify queries that are taking too long and might need
optimization.

Identifying Slow Queries

Analyzing Slow Queries Using
Terminal

psql -U <username> -h <host> -d <database>

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 42;

If your PostgreSQL is deployed using Docker Compose on Elestio, you can inspect and troubleshoot
slow queries from within the container. This method is useful when the PostgreSQL instance is
isolated inside a container and not accessible directly from the host. Logs and query data can be
collected from inside the service container using PostgreSQL tools or by checking configuration
files.

This command opens a shell inside the running PostgreSQL container. From here, you can run
commands like psql or view logs. Use the same psql interface from inside the container to interact
with the database and execute analysis commands.

Next, edit postgresql.conf inside the container to enable slow query logging:

This setting logs all queries that take longer than 500 milliseconds. You may need to restart the
container for these settings to take effect.

PostgreSQL offers CLI-based tools and extensions like pg_stat_statements for long-term query
performance analysis. These tools provide aggregated metrics over time, helping you spot
frequently executed but inefficient queries. This section shows how to use PostgreSQL extensions

SELECT pid, now() - query_start AS duration, query
FROM pg_stat_activity
WHERE state = 'active'
ORDER BY duration DESC;

Analyzing Slow Queries in
Docker Compose Environments

docker-compose exec postgres bash

psql -U $POSTGRES_USER -d $POSTGRES_DB

log_min_duration_statement = 500
log_statement = 'none'

Using CLI Tools to Analyze
Query Performance

and views to collect detailed statistics.

This extension logs each executed query along with performance metrics such as execution time
and row count. The next command shows the queries that have consumed the most total execution
time. These are strong candidates for indexing or rewriting.

PostgreSQL’s query planner produces execution plans that describe how a query will be executed.
Reading these plans can help identify operations that slow down performance, such as full table
scans or repeated joins. Comparing estimated and actual rows processed can also reveal outdated
statistics or inefficient filters. Understanding these elements is key to choosing the right
optimization strategy.

Seq Scan: A full table scan; slow on large tables unless indexed.
Index Scan: Uses an index for fast lookup; typically faster than a sequential scan.
Cost: Estimated cost of the query, used by the planner to decide the best execution path.
Rows: Estimated vs. actual rows; large mismatches indicate bad planning or outdated
stats.
Execution Time: Total time it took to run the query; from EXPLAIN ANALYZE.

Use these metrics to compare how the query was expected to run versus how it actually
performed.

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

SELECT query, calls, total_time, mean_time, rows
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 10;

Understanding Execution Plans
and Metrics

Key elements to understand:

Optimizing Queries for Better
Performance

Once you’ve identified slow queries, the next step is to optimize them. Optimizations may involve
adding indexes, rewriting SQL statements, or updating statistics. The goal is to reduce scan times,
avoid redundant operations, and guide the planner to more efficient execution paths. Performance
tuning is iterative—test after each change.

Add indexes to columns used in WHERE, JOIN, and ORDER BY clauses.
Use EXPLAIN ANALYZE before and after changes to measure impact.
Avoid SELECT * to reduce data transfer and memory use.
Use LIMIT to restrict row output when only a subset is needed.
Run ANALYZE to update PostgreSQL’s internal statistics and improve planner accuracy:

By focusing on frequent and long-running queries, you can make improvements that significantly
reduce overall load on the database.

Common optimization steps:

ANALYZE;

How-To Guides

Long-running queries can significantly impact database performance by consuming CPU, memory,
and I/O resources over extended periods. In production environments like Elestio, it’s important to
monitor for these queries and take timely action to terminate them when necessary. PostgreSQL
provides built-in monitoring tools and system views to help detect problematic queries and respond
accordingly. This guide covers how to identify and cancel long-running queries using PostgreSQL’s
terminal tools, Docker Compose environments, and logging features, along with preventive
practices.

When connected to your PostgreSQL service through the terminal using psql, you can check which
queries are running and how long they have been active. This can help identify queries that are
stuck, inefficient, or blocked.

To list all active queries sorted by duration, you can use:

This query reveals which operations have been running the longest and their current state. If you
want to isolate queries that have exceeded a specific duration (e.g., 1 minute), add a time filter:

Detect and terminate long-
running queries

Identifying Long-Running
Queries via Terminal

SELECT pid, now() - query_start AS duration, state, query
FROM pg_stat_activity
WHERE state = 'active'
ORDER BY duration DESC;

SELECT pid, now() - query_start AS runtime, query
FROM pg_stat_activity
WHERE state = 'active' AND now() - query_start > interval '1 minute';

These queries help you locate potential performance bottlenecks in real time.

Once a problematic query is identified, PostgreSQL allows you to cancel it using the pid (process
ID). If you want to cancel the query without affecting the client session, use:

This tells PostgreSQL to stop the running query, but keep the session connected. If the query is
unresponsive or the client is idle for too long, you can fully terminate the session using:

This forcibly closes the session and stops the query. Termination should be used cautiously,
especially in shared application environments.

If PostgreSQL is deployed using Docker Compose on Elestio, you can detect and manage queries
from inside the container. Start by entering the container:

Inside the container, connect to the database with:

From here, you can use the same commands as above to monitor and cancel long-running queries.
The logic remains the same; you’re simply operating inside the container’s shell environment.

Terminating Long-Running
Queries Safely

SELECT pg_cancel_backend(<pid>);

SELECT pg_terminate_backend(<pid>);

Working Within Docker
Compose Environments

docker-compose exec postgres bash

psql -U $POSTGRES_USER -d $POSTGRES_DB

PostgreSQL supports logging queries that exceed a certain duration threshold, which is useful for
long-term monitoring and post-incident review. To enable this, modify your postgresql.conf file and
set:

This setting logs every query that takes longer than 500 milliseconds. The logs are written to
PostgreSQL’s log files, which you can access through the Elestio dashboard (if supported) or inside
the container under the PostgreSQL data directory.

For cumulative insights, enable the pg_stat_statements extension to track long-running queries
over time:

Then query the collected data:

This shows which queries are consistently expensive, not just slow once.

Preventing long-running queries is more effective than terminating them after the fact. Start by
indexing columns used in WHERE, JOIN, and ORDER BY clauses. Use query analysis tools like
EXPLAIN ANALYZE to find out how queries are executed and where performance issues may occur.

Also, consider setting timeouts for queries. At the session level, you can use:

Using Logs and Monitoring
Tools

log_min_duration_statement = 500

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

SELECT query, total_time, mean_time, calls
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 10;

Best Practices to Prevent
Long-Running Queries

SET statement_timeout = '2s';

This automatically cancels any query that runs longer than 2 seconds. For applications, set timeout
configurations in the client or ORM layer to ensure they don’t wait indefinitely on slow
queries. Monitoring tools and alerts can help you detect abnormal query behavior early. If you’re
managing your own monitoring stack, connect it to PostgreSQL logs or pg_stat_activity to trigger
alerts for long-running operations.

How-To Guides

Running out of disk space in a database environment can lead to failed writes, service downtime,
and even data corruption. PostgreSQL systems require available space not only for storing data but
also for managing temporary files, WAL logs, indexes, and routine background tasks. On Elestio,
while infrastructure is managed, you are still responsible for monitoring growth and preventing
overuse. This guide outlines how to monitor disk usage, configure alerts, automate cleanup, and
follow best practices to avoid full disk conditions in PostgreSQL.

Proactively monitoring disk usage helps you detect unusual growth in time to act. Whether you’re
accessing your database directly via the terminal or through a Docker Compose environment,
several built-in tools can provide usage stats and trends. Combining filesystem-level monitoring
with PostgreSQL-specific checks gives a complete view of space utilization

To check the overall disk usage of the system from a terminal or container:

This command shows available space for each mounted volume. Focus on the mount point where
your PostgreSQL data directory is stored, usually /var/lib/postgresql.

For detailed PostgreSQL-specific usage, connect to your database and run:

This shows the total size used by the active database. You can also analyze individual tables and
indexes using:

This query highlights the largest tables by size, helping you identify which parts of your schema
consume the most space.

Preventing Full Disk Issues

Monitoring Disk Usage

df -h

SELECT pg_size_pretty(pg_database_size(current_database()));

SELECT relname AS object, pg_size_pretty(pg_total_relation_size(relid)) AS size
FROM pg_catalog.pg_statio_user_tables
ORDER BY pg_total_relation_size(relid) DESC
LIMIT 10;

Even with monitoring in place, automatic alerts and cleanup scripts ensure you act before hitting
disk limits. You can set up external monitoring agents or run container-level scripts to track disk
usage and notify you.

If you’re using Docker Compose, you can monitor container-level storage stats using:

This command provides an overview of Docker volumes, images, and container usage. To monitor
and clean unused volumes and logs manually:

Make sure you’re not deleting active database volumes. Always verify that backups exist and are
up-to-date before running cleanup commands.

To configure PostgreSQL-specific cleanup, enable auto-vacuum and monitor its effectiveness.
PostgreSQL removes dead tuples and reclaims space using this process. Check the vacuum activity
with:

If dead tuples accumulate, increase autovacuum frequency or run a manual vacuum:

Autovacuum settings can also be tuned in postgresql.conf to trigger more aggressively based on
table activity.

Beyond immediate cleanup, long-term strategies help keep disk usage under control.
These include data retention policies, partitioning, compression, and regular maintenance.

Configuring Alerts and Cleanup

docker system df

docker volume ls
docker volume rm <volume-name>

SELECT relname, n_dead_tup, last_vacuum, last_autovacuum
FROM pg_stat_user_tables
ORDER BY n_dead_tup DESC;

VACUUM ANALYZE;

Best Practices for Disk Space
Management

It’s also important to have a growth plan based on usage trends.
Avoid storing large binary objects like images or PDFs directly in the database. Use object
storage for large files and reference them by URL. If historical data is no longer needed for
queries, archive it into a separate cold-storage database or export to files.
Partition large tables by time or ID ranges to manage growth and make pruning easier.
Use tools like pg_partman native PostgreSQL table partitioning to automatically offload
older data
Regularly rotate and clean up PostgreSQL logs and WAL files. If using archive mode,
ensure archived WALs are uploaded and removed from disk after successful backup.
To keep your setup safe, also monitor backup file sizes and locations. Backups stored on
the same volume as the database may consume critical space. If possible, push backups
to remote object storage or another disk volume.

How-To Guides

As your PostgreSQL database grows over time, it’s important to monitor its size and identify what
parts of the database consume the most space. Unmanaged growth can lead to performance
issues, disk exhaustion, and backup delays. On Elestio, where PostgreSQL is hosted in a managed
environment, you can use SQL and command-line tools to measure database usage, analyze large
objects, and troubleshoot storage problems. This guide explains how to check database size, detect
bloated tables and indexes, and optimize storage usage efficiently.

PostgreSQL provides built-in functions to report the size of the current database, its individual
schemas, tables, and indexes. These functions are useful for understanding where most of your
storage is being used and planning cleanup or archiving strategies.

To check the total size of the active database:

This returns a human-readable value like “2 GB”, indicating how much space the entire database
consumes on disk.

To list the largest tables in your schema:

This helps you identify which tables take up the most space, including indexes and TOAST (large
field) data.

Checking Database Size and
Related Issues

Checking Database and Table
Sizes

SELECT pg_size_pretty(pg_database_size(current_database()));

SELECT relname AS table, pg_size_pretty(pg_total_relation_size(relid)) AS total_size
FROM pg_catalog.pg_statio_user_tables
ORDER BY pg_total_relation_size(relid) DESC
LIMIT 10;

To break down table vs index size separately:

This distinction allows you to assess whether most space is used by raw table data or indexes,
which can inform optimization decisions.

Database bloat occurs when PostgreSQL retains outdated or deleted rows due to its MVCC model.
This is common in high-write tables and can lead to wasted space and degraded performance.
Bloated indexes and tables are often invisible unless explicitly checked. To estimate bloat at a
table level, you can use a community query like this:

This query calculates how much of a table’s total size is not accounted for by its base data—higher
percentages suggest unused or dead space. You can also check dead tuples directly:

A high count of dead tuples suggests that autovacuum might not be keeping up and that a manual
VACUUM could help.

SELECT relname AS object,
 pg_size_pretty(pg_relation_size(relid)) AS table_size,
 pg_size_pretty(pg_indexes_size(relid)) AS index_size
FROM pg_catalog.pg_statio_user_tables
ORDER BY pg_relation_size(relid) DESC
LIMIT 10;

Identifying Bloat and
Inefficiencies

SELECT schemaname, relname, round(100 * (pg_total_relation_size(relid) - pg_relation_size(relid)) /
pg_total_relation_size(relid), 2) AS bloat_pct
FROM pg_catalog.pg_statio_user_tables
ORDER BY bloat_pct DESC
LIMIT 10;

SELECT relname, n_dead_tup
FROM pg_stat_user_tables
ORDER BY n_dead_tup DESC
LIMIT 10;

Once you’ve identified large or bloated objects, the next step is to optimize them. PostgreSQL
offers tools like VACUUM, REINDEX, and CLUSTER to reclaim space and improve storage efficiency.
These commands must be run with care to avoid locking critical tables during active hours. To
reclaim dead tuples and update statistics:

This command removes dead rows and refreshes query planning statistics, which helps
performance and frees up storage. To shrink large indexes that aren’t cleaned automatically, use:

This recreates the table’s indexes from scratch and can free up disk space if indexes are
fragmented or bloated. If a table is heavily bloated and full table rewrites are acceptable during
maintenance, use:

This rewrites the entire table based on an index order and reclaims space similar to VACUUM FULL,
but with more control.

Additionally, removing or archiving old data from large time-based tables can reduce total size.
Consider partitioning large tables to manage this process more efficiently.

Optimizing and Reducing
Database Size

VACUUM ANALYZE;

REINDEX TABLE <table_name>;

CLUSTER <table_name>;

Database Migration

Database Migration

Elestio provides a structured approach for migrating PostgreSQL databases from various
environments, such as on-premises systems or other cloud platforms, to its managed services. This
process ensures data integrity and minimizes downtime, facilitating a smooth transition to a
managed environment.​

Before initiating the migration process, it's essential to undertake thorough preparation to ensure a
smooth transition:

Create an Elestio Account: Register on the Elestio platform to access their suite of
managed services. This account will serve as the central hub for managing your
PostgreSQL instance and related resources.
Deploy the Target PostgreSQL Service: Set up a new PostgreSQL instance on Elestio
to serve as the destination for your data. It's crucial to match the software version of your
current PostgreSQL database to avoid compatibility issues during data transfer. Detailed
prerequisites and guidance can be found in Elestio's migration documentation.

With the preparatory steps completed, you can proceed to migrate your PostgreSQL database to
Elestio:

1. Access the Migration Tool: Navigate to the overview of your PostgreSQL service on the
Elestio dashboard. Click on the "Migrate Database" button to initiate the migration
process. This tool is designed to facilitate a smooth transition by guiding you through each
step.

Database Migration Service
for PostgreSQL

Key Steps in Migrating to
Elestio
Pre-Migration Preparation

Initiating the Migration Process

https://docs.elest.io/books/databases/page/postgresql-database-migration-to-elestio

2. Configure Migration Settings: A modal window will open, prompting you to ensure that
your target service has sufficient disk space to accommodate your database. Adequate
storage is vital to prevent interruptions during data transfer. Once confirmed, click on the
"Get started" button to proceed.

3. Validate Source Database Connection: Provide the connection details for your
existing PostgreSQL database, including:

Hostname: The address of your current database server.
Port: The port number on which your PostgreSQL service is running (default is
5432).
Database Name: The name of the database you intend to migrate.
Username: The username with access privileges to the database.
Password: The corresponding password for the user.

After entering these details, click on "Run Check" to validate the connection. This step
ensures that Elestio can securely and accurately access your existing data. You can find
these details under Database admin section under your deployed PostgreSQL service.

4. Execute the Migration: If all checks pass without errors, initiate the migration by
selecting "Start migration." Monitor the progress through the real-time migration logs
displayed on the dashboard. This transparency allows for immediate detection and
resolution of any issues, ensuring data integrity throughout the process.

After completing the migration, it's crucial to perform validation and optimization tasks to ensure
the integrity and performance of your database in the new environment:

Verify Data Integrity: Conduct thorough checks to ensure all data has been accurately
transferred. This includes comparing row counts, checksums, and sample data between
the source and target databases. Such verification maintains the reliability of your
database and ensures that no data was lost or altered during migration.
Test Application Functionality: Ensure that applications interacting with the database
function correctly in the new environment. Update connection strings and configurations

Post-Migration Validation and Optimization

https://docs.elest.io/uploads/images/gallery/2025-03/y44image.png

as necessary to reflect the new database location. This step prevents potential disruptions
and ensures seamless operation of dependent systems.
Optimize Performance: Utilize Elestio's managed service features to fine-tune database
performance. Set up automated backups to safeguard your data, monitor resource
utilization to identify and address bottlenecks, and configure scaling options to
accommodate future growth. These actions contribute to improved application
responsiveness and overall system efficiency.
Implement Security Measures: Review and configure security settings to protect your
data within the Elestio environment. Set up firewalls to control access, manage user
access controls to ensure only authorized personnel can interact with the database, and
enable encryption where applicable to protect data at rest and in transit. Implementing
these security measures safeguards your data against unauthorized access and potential
threats.

Migrating your PostgreSQL database to Elestio offers several advantages:​

Simplified Management: Elestio automates database maintenance tasks, including
software updates, backups, and system monitoring, reducing manual work. The platform
provides a dashboard with real-time insights into database performance and resource
usage. It allows for adjusting service plans, scaling CPU and RAM as needed. Users can
modify environment variables and access software information to manage configurations.

Security: Elestio keeps PostgreSQL instances updated with security patches to protect
against vulnerabilities. The platform automates backups to ensure data integrity and
availability. It provides secure access mechanisms, including randomly generated
passwords for database instances, which can be managed through the dashboard.

Performance: Elestio configures PostgreSQL instances for performance based on
workload requirements. The platform supports the latest PostgreSQL versions,
incorporating updates that improve database operations. Its infrastructure handles
different workloads and maintains performance during high usage periods.

Scalability: Elestio's PostgreSQL service allows for scaling database resources to handle
growth and changing workloads without major downtime. Users can upgrade or
downgrade service plans, adjusting CPU and RAM as needed. The platform supports
adding network volumes to increase storage capacity.

Benefits of Using Elestio for
PostgreSQL

Database Migration

Migrating or cloning services across cloud providers or geographic regions is a critical part of
modern infrastructure management. Whether you’re optimizing for latency, preparing for disaster
recovery, meeting regulatory requirements, or simply switching providers, a well-planned migration
ensures continuity, performance, and data integrity. This guide outlines a structured methodology
for service migration, applicable to most cloud-native environments.

Before initiating a migration, thorough planning and preparation are essential. This helps avoid
unplanned downtime, data loss, or misconfiguration during the move:

Evaluate the Current Setup: Begin by documenting the existing service’s configuration.
This includes runtime environments (container images, platform versions), persistent data
(databases, object storage), network rules (ports, firewalls), and application dependencies
(APIs, credentials, linked services).
Define the Migration Target: Choose the new cloud provider or region you plan to
migrate to. Confirm service compatibility, resource limits, and geographic latency
requirements. If you’re replicating an existing environment, make sure the target region
supports the same compute/storage features and versions.
Provision the Target Environment: Set up the target infrastructure where the service
will be cloned. This could involve creating new Kubernetes clusters, VM groups, container
registries, databases, or file storage volumes—depending on your stack.
Backup the Current Service: Always create a full backup or snapshot of the current
service and its associated data before proceeding. This acts as a rollback point in case of
migration issues and ensures recovery in the event of failure.

The first step in executing a clone is to replicate the configuration of the original service in the
target environment. This involves deploying the same container image or service binary using the
same runtime settings. If you’re using Kubernetes or container orchestrators, this can be done via

Cloning a Service to Another
Provider or Region

Pre-Migration Preparation

Cloning Execution

Helm charts or declarative manifests. Pay close attention to environment variables, secrets,
mounted paths, storage class definitions, and health check configurations to ensure a consistent
runtime environment.

Next, you’ll need to migrate any persistent data tied to the service. For PostgreSQL databases, this
might involve using pg_dump to export the schema and data, followed by psql or pg_restore to
import it into the new instance. In more complex cases, tools like pgBackRest, wal-g, or logical
replication can be used to minimize downtime during the switchover. For file-based storage, tools
like rsync or rclone are effective for copying volume contents over SSH or cloud storage backends.
It’s crucial to verify compatibility across disk formats, database versions, and encoding standards
to avoid corruption or mismatched behavior.

After replicating the environment and data, it’s important to validate the new service in isolation.
This means confirming that all application endpoints respond as expected, background tasks or
cron jobs are functioning, and third-party integrations (e.g., payment gateways, S3 buckets) are
accessible. You should test authentication flows, data read/write operations, and retry logic to
ensure the new service is functionally identical. Use observability tools to monitor resource
consumption and application logs during this stage.

Once validation is complete, configure DNS and route traffic to the new environment. This might
involve updating DNS A or CNAME records, changing cloud load balancer configurations, or
applying new firewall rules. For high-availability setups, consider using health-based routing or
weighted DNS to gradually transition traffic from the old instance to the new one.

Once the new environment is live and receiving traffic, focus on optimizing and securing the setup:

Validate Application Functionality: Test all integrations, user workflows, and
background jobs to confirm proper behavior. Review logs for silent errors or timeouts.
Ensure all applications pointing to the service are updated with the new URL or connection
string.
Monitor Performance: Analyze load, CPU, memory, and storage utilization. Scale
resources as needed, or optimize runtime settings for the new provider/region. Enable
autoscaling where applicable.
Secure the Environment: Implement firewall rules, IP restrictions, and access controls.
Rotate secrets and validate that no hardcoded credentials or endpoints point to the old
service.
Cleanup and Documentation: Once validated, decommission the old setup safely.
Update internal documentation with new deployment details, endpoint addresses, and any

Post-Migration Validation and
Optimization

configuration changes.

Cloning a database service, particularly for engines like PostgreSQL offers several operational and
strategic advantages. It allows teams to test schema migrations, version upgrades, or major
application features in an isolated environment without affecting production. By maintaining a
cloned copy, developers and QA teams can work against realistic data without introducing risk.

Cloning also simplifies cross-region redundancy setups. A replica in another region can be
promoted quickly if the primary region experiences an outage. For compliance or analytics
purposes, cloned databases allow for read-only access to production datasets, enabling safe
reporting or data processing without interrupting live traffic.

Additionally, rather than building a new environment from scratch, you can clone the database into
another provider, validate it, and cut over with minimal disruption. This helps maintain operational
continuity and reduces the effort needed for complex migrations.

Benefits of Cloning

Database Migration

Manual Migrations using PostgreSQL’s built-in tools pg_dump and pg_restore are ideal for users who
prefer full control over data export and import, particularly during provider transitions, database
version upgrades, or when importing an existing self-managed PostgreSQL dataset into Elestio’s
managed environment. This guide walks through the process of performing a manual migration to
and from Elestio PostgreSQL services using command-line tools, ensuring that your data remains
portable, auditable, and consistent.

Manual migration using pg_dump and pg_restore is well-suited for scenarios where full control over
the data export and import process is required. This method is particularly useful when migrating
from an existing PostgreSQL setup, whether self-hosted, on-premises, or on another cloud provider,
into Elestio’s managed PostgreSQL service. It allows for one-time imports without requiring
continuous connectivity between source and target systems.

This approach is also ideal when dealing with version upgrades, as PostgreSQL’s logical backups
can be restored into newer versions without compatibility issues. In situations where Elestio’s built-
in snapshot or replication tools aren’t applicable such as migrations from isolated environments or
selective schema transfers, manual migration becomes the most practical option. Additionally, this
method enables users to retain portable, versioned backups outside of Elestio’s infrastructure,
which can be archived, validated offline, or re-imported into future instances.

Before initiating a migration, verify that PostgreSQL is properly installed and configured on both the
source system and your Elestio service. On the source, you need an active PostgreSQL instance
with a user account that has sufficient privileges to read schemas, tables, sequences, and any
installed extensions. The user must also be allowed to connect over TCP if the server is remote.

Manual Migration Using
pg_dump and pg_restore

When to Use Manual Migration

Performing the Migration
Prepare the Environments

On the Elestio side, provision a PostgreSQL service from the dashboard. Once deployed, retrieve
the connection information from the Database admin tab. This includes the hostname, port,
database name, username, and password. You’ll use these credentials to connect during the
restore step. Ensure that your IP is allowed to connect under the Cluster Overview > Security >
Limit access per IP section; otherwise, the PostgreSQL port will be unreachable during the
migration.

In this step, you generate a logical backup of the source database using pg_dump. This utility
connects to the PostgreSQL server and extracts the structure and contents of the specified
database. It serializes tables, indexes, constraints, triggers, views, and functions into a consistent
snapshot. The custom format (-Fc) is used because it produces a compressed binary dump that can
be restored selectively using pg_restore.

This command connects to the source server (-h), authenticates with the user (-U), targets the
database (source_database), and exports the entire schema and data into backup.dump. The
resulting file is portable and version-aware. You can also add --no-owner and --no-acl If you’re
migrating between environments that use different database roles or access models. This prevents
restore-time errors related to ownership mismatches.

Create a Dump Using pg_dump

pg_dump -U <source_user> -h <source_host> -p <source_host> -Fc <source_database> > backup.dump

Transfer the Dump File to the Target

https://docs.elest.io/uploads/images/gallery/2025-04/1aPimage.png

If your source and target environments are on different hosts, the dump file must be transferred
securely. This step ensures the logical backup is available on the system from which you’ll perform
the restore. You can use secure copy (scp), rsync, or any remote file transfer method.

If restoring from your local machine to Elestio, ensure the dump file is stored in a location readable
by your current shell user. Elestio does not require the file to be uploaded to its servers; the restore
is performed by connecting over the network using standard PostgreSQL protocols. At this point,
your backup is isolated from the source environment and ready for import.

By default, Elestio provisions a single database instance. However, if you wish to restore into a
separate database name or if your dump references a different name, you must create the new
database manually. Use the psql client to connect to your Elestio service using the credentials from
the dashboard.

Within the psql session, create the database:

This ensures that the new database has consistent encoding and locale settings, which are critical
for text comparison, sorting, and indexing. Using template0 avoids inheriting default extensions or
templates that might conflict with your dump file. At this stage, you can also create any roles,
schemas, or extensions that were used in the original database if they are not included in the
dump.

With the target database created and the dump file in place, initiate the restoration using pg_restore.
This tool reads the custom-format archive and reconstructs all schema and data objects in the new
environment.

This command establishes a network connection to the Elestio PostgreSQL service and begins
issuing CREATE, INSERT, and ALTER statements to rebuild the database. The --verbose flag provides
real-time feedback about the objects being restored. You can also use --jobs=N to run the restore in
parallel, improving performance for large datasets, provided the dump was created with pg_dump --

scp backup.dump your_user@your_workstation:/path/to/local/

Create the Target Database

psql -U <elestio_user> -h <elestio_host> -p <elestio_host> -d postgres

CREATE DATABASE target_database WITH ENCODING='UTF8' LC_COLLATE='en_US.UTF-8'
LC_CTYPE='en_US.UTF-8' TEMPLATE=template0;

Restore Using pg_restore

pg_restore -U elestio_user -h elestio_host -p 5432 -d target_database -Fc /path/to/backup.dump --verbose

jobs=N .

It’s important to ensure that all referenced extensions, collations, and roles exist on the target
instance to avoid partial restores. If errors occur, the logs will point to the missing components or
permission issues that need to be resolved.

Once the restore completes, you must validate the accuracy and completeness of the migration.
Connect to the Elestio database using psql or a PostgreSQL GUI (such as pgAdmin or TablePlus),
and run checks across critical tables.

Begin by inspecting the table existence and row counts:

Validate views, functions, and indexes, especially if they were used in reporting or application
queries. Run application-specific health checks, reinitialize ORM migrations if applicable, and
confirm that the application can read and write to the new database without errors.

If you made any changes to connection strings or credentials, update your environment variables
or secret managers accordingly. Elestio also supports automated backups, which you should enable
post-migration to protect the restored dataset.

Manual PostgreSQL migration using pg_dump and pg_restore on Elestio provides several key
advantages:

Compatibility and Portability: Logical dumps allow you to migrate from any
PostgreSQL-compatible source into Elestio, including on-premises systems, Docker
containers, or other clouds.
Version-Safe Upgrades: The tools support migrating across PostgreSQL versions, which
is ideal during controlled upgrades.
Offline Archiving: Manual dumps serve as portable archives for cold storage, disaster
recovery, or historical snapshots.
Platform Independence: You retain full access to PostgreSQL’s native tools without
being locked into Elestio-specific formats or interfaces.

This method complements Elestio’s automated backup and migration features by enabling custom
workflows and one-off imports with full visibility into each stage.

Validate the Migration

\dt
SELECT COUNT(*) FROM your_important_table;s

Benefits of Manual Migration

Cluster Management

Cluster Management

Elestio provides a complete solution for setting up and managing software clusters. This helps
users deploy, scale, and maintain applications more reliably. Clustering improves performance and
ensures that services remain available, even if one part of the system fails. Elestio supports
different cluster setups to handle various technical needs like load balancing, failover, and data
replication.

Elestio supports clustering for a wide range of open-source software. Each is designed to support
different use cases like databases, caching, and analytics:

MySQL:
Supports Single Node, Primary/Replica, and Multi-Master cluster types. These allow users
to create simple setups or more advanced ones where reads and writes are distributed
across nodes. In a Primary/Replica setup, replicas are updated continuously through
replication. These configurations are useful for high-traffic applications that need fast and
reliable access to data.
PostgreSQL:
PostgreSQL clusters can be configured for read scalability and failover protection.
Replication ensures that data written to the primary node is copied to replicas. Clustering
PostgreSQL also improves query throughput by offloading read queries to replicas. Elestio
handles replication setup and node failover automatically.
Redis/KeyDB/Valkey:
These in-memory data stores support clustering to improve speed and fault tolerance.
Clustering divides data across multiple nodes (sharding), allowing horizontal scaling.
These tools are commonly used for caching and real-time applications, so fast failover and
data availability are critical.
Hydra and TimescaleDB:
These support distributed and time-series workloads, respectively. Clustering helps
manage large datasets spread across many nodes. TimescaleDB, built on PostgreSQL,
benefits from clustering by distributing time-based data for fast querying. Hydra uses
clustering to process identity and access management workloads more efficiently in high-
load environments.

Overview

Supported Software for Clustering:

Elestio offers several clustering modes, each designed for a different balance between simplicity,
speed, and reliability:

Single Node:
This setup has only one node and is easy to manage. It acts as a standalone Primary
node. It’s good for testing, development, or low-traffic applications. Later, you can scale to
more nodes without rebuilding the entire setup. Elestio lets you expand this node into a
full cluster with just a few clicks.
Primary/Replica:
One node (Primary) handles all write operations, and one or more Replicas handle read
queries. Replication is usually asynchronous and ensures data is copied to all replicas.
This improves read performance and provides redundancy if the primary node fails.
Elestio manages automatic data syncing and failover setup.

Elestio’s cluster dashboard includes tools for managing, monitoring, and securing your clusters.
These help ensure stability and ease of use:

Node Management:
You can scale your cluster by adding or removing nodes as your app grows. Adding a node
increases capacity; removing one helps reduce costs. Elestio handles provisioning and

Note: Elestio is frequently adding support for more clustered software like OpenSearch,
Kafka, and ClickHouse. Always check the Elestio catalogue for the latest supported services.

Cluster Configurations:

Cluster Management Features:

https://docs.elest.io/uploads/images/gallery/2025-03/6Chimage.png

configuring nodes automatically, including replication setup. This makes it easier to scale
horizontally without downtime.
Backups and Restores:
Elestio provides scheduled and on-demand backups for all nodes. Backups are stored
securely and can be restored if something goes wrong. You can also create a snapshot
before major changes to your system. This helps protect against data loss due to failures,
bugs, or human error.
Access Control:
You can limit access to your cluster using IP allowlists, ensuring only trusted sources can
connect. Role-based access control (RBAC) can be applied for managing different user
permissions. SSH and database passwords are generated securely and can be rotated
easily from the dashboard. These access tools help reduce the risk of unauthorized
access.
Monitoring and Alerts:
Real-time metrics like CPU, memory, disk usage, and network traffic are available through
the dashboard. You can also check logs for troubleshooting and set alerts for high
resource usage or failure events. Elestio uses built-in observability tools to monitor the
health of your cluster and notify you if something needs attention. This allows you to
catch problems early and take action.

Cluster Management

Creating a cluster is a foundational step when deploying services in Elestio. Clusters provide
isolated environments where you can run containerized workloads, databases, and applications.
Elestio’s web dashboard helps the process, allowing you to configure compute resources, choose
cloud providers, and define deployment regions without writing infrastructure code. This guide
walks through the steps required to create a new cluster using the Elestio dashboard.

To get started, you’ll need an active Elestio account. If you’re planning to use your own
infrastructure, make sure you have valid credentials for your preferred cloud provider (like AWS,
GCP, Azure, etc.). Alternatively, you can choose to deploy clusters using Elestio-managed
infrastructure, which requires no external configuration.

Once you’re logged into the Elestio dashboard, navigate to the Clusters section from the sidebar.
You’ll see an option to Create a new cluster—clicking this will start the configuration process.
The cluster creation flow is flexible but simple for defining essential details like provider, region,
and resources in one place.

Deploying a New Cluster

Prerequisites

Creating a Cluster

Now, select the database service of your choice that you need to create in a cluster environment.
Click on Select button as you choose one.

https://docs.elest.io/uploads/images/gallery/2025-04/tPoscreenshot-2025-04-10-at-12-09-02-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-09-46-pm.jpg

During setup, you’ll be asked to choose a hosting provider. Elestio supports both managed and
BYOC (Bring Your Own Cloud) deployments, including AWS, DigitalOcean, Hetzner, and custom
configurations. You can then select a region based on latency or compliance needs, and specify the
number of nodes along with CPU, RAM, and disk sizes per node.

If you’re setting up a high-availability cluster, the dashboard also allows you to configure cluster-
related details under Cluster configuration, where you get to select things like replication
modes, number of replicas, etc. After you’ve configured the cluster, review the summary to ensure
all settings are correct. Click the Create Cluster button to begin provisioning.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-10-27-pm.jpg

Elestio will start the deployment process, and within a few minutes, the cluster will appear in your
dashboard. Once your cluster is live, it can be used to deploy new nodes and additional
configurations. Each cluster supports real-time monitoring, log access, and scaling operations
through the dashboard. You can also set up automated backups and access control through built-in
features available in the cluster settings.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-11-17-pm.jpg

Cluster Management

Node management plays a critical role in operating reliable and scalable infrastructure on Elestio.
Whether you’re deploying stateless applications or stateful services like databases, managing the
underlying compute units nodes is essential for maintaining stability and performance.

In Elestio, a node is a virtual machine that contributes compute, memory, and storage resources to
a cluster. Clusters can be composed of a single node or span multiple nodes, depending on
workload demands and availability requirements. Each node runs essential services and containers
as defined by your deployed applications or databases.

Nodes in Elestio are provider-agnostic, meaning the same concepts apply whether you’re using
Elestio-managed infrastructure or connecting your own cloud provider (AWS, Azure, GCP, etc.).
Each node is isolated at the VM level but participates fully in the cluster’s orchestration and
networking. This abstraction allows you to manage infrastructure without diving into the
complexity of underlying platforms.

The Elestio dashboard allows you to manage the lifecycle of nodes through clearly defined
operations. These include:

Creating a node, which adds capacity to your cluster and helps with horizontal scaling of
services. This is commonly used when load increases or when preparing a high-availability
deployment.
Deleting a node, which removes underutilized or problematic nodes. Safe deletion
includes draining workloads to ensure service continuity.
Promoting a node, which changes the role of a node within the cluster—typically used in
clusters with redundancy, where certain nodes may need to take on primary or leader
responsibilities.

Each of these operations is designed to be safely executed through the dashboard and is validated
against the current cluster state to avoid unintended service disruption. These actions are
supported by Elestio’s backend orchestration, which handles tasks like container rescheduling and

Node Management

Understanding Nodes

Node Operations

load balancing when topology changes.

Monitoring is a key part of effective node management. Elestio provides per-node visibility through
the dashboard, allowing you to inspect CPU, memory, and disk utilization in real time. Each
node also exposes logs, status indicators, and health checks to help detect anomalies or
degradation early.

In addition to passive monitoring, the dashboard supports active maintenance tasks. You can
reboot a node when applying system-level changes or troubleshooting, or drain a node to safely
migrate workloads away from it before performing disruptive actions. Draining ensures that
running containers are rescheduled on other nodes in the cluster, minimizing service impact.

For production setups, combining resource monitoring with automation like scheduled reboots, log
collection, and alerting can help catch issues before they affect users. While Elestio handles many
aspects of orchestration automatically, having visibility at the node level helps teams make
informed decisions about scaling, updates, and incident response.

Cluster-wide resource graphs and node-level metrics are also useful for capacity planning.
Identifying trends such as memory saturation or disk pressure allows you to preemptively scale or
rebalance workloads, reducing the risk of downtime.

Monitoring and Maintenance

Cluster Management

As your application usage grows or your infrastructure requirements change, scaling your cluster
becomes essential. In Elestio, you can scale horizontally by adding new nodes to an existing
cluster. This operation allows you to expand your compute capacity, improve availability, and
distribute workloads more effectively.

There are several scenarios where adding a node becomes necessary. One of the most common
cases is resource saturation when existing nodes are fully utilized in terms of CPU, memory, or
disk. Adding another node helps distribute the workload and maintain performance under load.

In clusters that run stateful services or require high availability, having additional nodes
ensures that workloads can fail over without downtime. Even in development environments, nodes
can be added to isolate environments or test services under production-like load conditions.
Scaling out also gives you flexibility when deploying services with different resource profiles or
placement requirements.

To begin, log in to the Elestio dashboard and navigate to the Clusters section from the sidebar.
Select the cluster you want to scale. Once inside the cluster view, switch to the Nodes tab. This
section provides an overview of all current nodes along with their health status and real-time
resource usage.

Adding a Node

Need to Add a Node

Add a Node to Cluster

https://dash.elest.io

To add a new node, click the “Add Node” button. This opens a configuration panel where you can
define the specifications for the new node. You’ll be asked to specify the amount of CPU, memory,
and disk you want to allocate. If you’re using a bring-your-own-cloud setup, you may also need to
confirm or choose the cloud provider and deployment region.

After configuring the node, review the settings to ensure they meet your performance and cost
requirements. Click “Create” to initiate provisioning. Elestio will begin setting up the new node,
and once it’s ready, it will automatically join your cluster.

https://docs.elest.io/uploads/images/gallery/2025-04/5cQimage.png
https://docs.elest.io/uploads/images/gallery/2025-04/4F9screenshot-2025-04-10-at-12-27-13-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/XVmscreenshot-2025-04-10-at-12-28-29-pm.jpg

Once provisioned, the new node will appear in the node list with its own metrics and status
indicators. You can monitor its activity, verify that workloads are being scheduled to it, and access
its logs directly from the dashboard. From this point onward, the node behaves like any other in the
cluster and can be managed using the same lifecycle actions such as rebooting or draining.

After the node has been added, it becomes part of the active cluster and is available for scheduling
workloads. Elestio’s orchestration layer will begin using it automatically, but you can further
customize service placement through resource constraints or affinity rules if needed.

For performance monitoring, the dashboard provides per-node metrics, including CPU load,
memory usage, and disk I/O. This visibility helps you confirm that the new node is functioning
correctly and contributing to workload distribution as expected.

Maintenance actions such as draining or rebooting the node are also available from the same
interface, making it easy to manage the node lifecycle after provisioning.

Post-Provisioning
Considerations

Cluster Management

Clusters can be designed for high availability or role-based workloads, where certain nodes may
take on leadership or coordination responsibilities. In these scenarios, promoting a node is a key
administrative task. It allows you to change the role of a node. While not always needed in basic
setups, node promotion becomes essential in distributed systems, replicated databases, or services
requiring failover control.

Promoting a node is typically performed in clusters where role-based architecture is used. In high-
availability setups, some nodes may act as leaders while others serve as followers or replicas. If a
leader node becomes unavailable or needs to be replaced, you can promote another node to take
over its responsibilities and maintain continuity of service.

Node promotion is also useful when scaling out and rebalancing responsibilities across a larger
cluster. For example, promoting a node to handle scheduling, state tracking, or replication
leadership can reduce bottlenecks and improve responsiveness. In cases involving database
clusters or consensus-driven systems, promotion ensures a clear and controlled transition of
leadership without relying solely on automatic failover mechanisms.

To promote a node, start by accessing the Clusters section in the Elestio dashboard. Choose the
cluster containing the node you want to promote. Inside the cluster view, navigate to the Nodes
tab to see the full list of nodes, including their current roles, health status, and resource
usage. Locate the node that you want to promote and open its action menu. From here, select the
“Promote Node” option.

Promoting a Node

When to Promote a Node?

Promote a Node in Elestio

https://dash.elest.io

You may be prompted to confirm the action, depending on the configuration and current role of the
node. This confirmation helps prevent unintended role changes that could affect cluster behavior.

Once confirmed, Elestio will initiate the promotion process. This involves reconfiguring the cluster’s
internal coordination state to acknowledge the new role of the promoted node. Depending on the
service architecture and the software running on the cluster, this may involve reassigning
leadership, updating replication targets, or shifting service orchestration responsibilities.

After promotion is complete, the node’s updated role will be reflected in the dashboard. At this
point, it will begin operating with the responsibilities assigned to its new status. You can monitor its
activity, inspect logs, and validate that workloads are being handled as expected.

Before promoting a node, ensure that it meets the necessary resource requirements and is in a
stable, healthy state. Promoting a node that is under high load or experiencing performance issues

Considerations for Promotion

https://docs.elest.io/uploads/images/gallery/2025-04/8Giscreenshot-2025-04-10-at-12-29-03-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-31-06-pm.jpg

can lead to service degradation. It’s also important to consider replication and data
synchronization, especially in clusters where stateful components like databases are in use.

Promotion is a safe and reversible operation, but it should be done with awareness of your
workload architecture. If your system relies on specific leader election mechanisms, promoting a
node should follow the design patterns supported by those systems.

Cluster Management

Over time, infrastructure needs change. You may scale down a cluster after peak load,
decommission outdated resources, or remove a node that is no longer needed for cost, isolation, or
maintenance reasons. Removing a node from a cluster is a safe and structured process designed to
avoid disruption. The dashboard provides an accessible interface for performing this task while
preserving workload stability.

Node removal is typically part of resource optimization or cluster reconfiguration. You might
remove a node when reducing costs in a staging environment, when redistributing workloads
across fewer or more efficient machines, or when phasing out a node for maintenance or
retirement.

Another common scenario is infrastructure rebalancing, where workloads are shifted to newer
nodes with better specs or different regions. Removing an idle or underutilized node can simplify
management and reduce noise in your monitoring stack. It also improves scheduling efficiency by
removing unneeded targets from the orchestration engine.

In high-availability clusters, node removal may be preceded by data migration or role reassignment
(such as promoting a replica). Proper planning helps maintain system health while reducing
reliance on unnecessary compute resources.

To begin the removal process, open the Elestio dashboard and navigate to the Clusters section.
Select the cluster that contains the node you want to remove. From within the cluster view, open
the Nodes tab to access the list of active nodes and their statuses.

Find the node you want to delete from the list. If the node is currently running services, ensure that
those workloads can be safely rescheduled to other nodes or are no longer needed. Since Elestio
does not have a built-in drain option, any workload redistribution needs to be handled manually,
either by adjusting deployments or verifying that redundant nodes are available. Once the node is
drained and idle, open the action menu for that node and select “Delete Node”.

Removing a Node

Why Remove a Node?

Remove a Node

https://dash.elest.io

The dashboard may prompt you to confirm the operation. After confirmation, Elestio will begin the
decommissioning process. This includes detaching the node from the cluster, cleaning up any
residual state, and terminating the associated virtual machine.

Once the operation completes, the node will no longer appear in the cluster’s node list, and its
resources will be released.

Considerations for Safe Node
Removal

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-30-13-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-10-at-12-36-31-pm.jpg

Before removing a node in Elestio, it’s important to review the services and workloads currently
running on that node. Since Elestio does not automatically redistribute or migrate workloads during
node removal, you should ensure that critical services are either no longer in use or can be
manually rescheduled to other nodes in the cluster. This is particularly important in multi-node
environments running stateful applications, databases, or services with specific affinity rules.

You should also verify that your cluster will have sufficient capacity after the node is removed. If
the deleted node was handling a significant portion of traffic or compute load, removing it without
replacement may lead to performance degradation or service interruption. In high-availability
clusters, ensure that quorum-based components or replicas are not depending on the node
targeted for deletion. Additionally, confirm that the node is not playing a special role such as
holding primary data or acting as a manually promoted leader before removal. If necessary,
reconfigure or promote another node prior to deletion to maintain cluster integrity.

Cluster Management

Reliable backups are essential for data resilience, recovery, and business continuity. Elestio
provides built-in support for managing backups across all supported services, ensuring that your
data is protected against accidental loss, corruption, or infrastructure failure. The platform includes
an automated backup system with configurable retention policies and a straightforward restore
process, all accessible from the dashboard. Whether you’re operating a production database or a
test environment, understanding how backups and restores work in Elestio is critical for
maintaining service reliability.

Elestio provides multiple backup mechanisms designed to support various recovery and
compliance needs. Backups are created automatically for most supported services, with consistent
intervals and secure storage in managed infrastructure. These backups are performed in the
background to ensure minimal performance impact and no downtime during the snapshot process.
Each backup is timestamped, versioned, and stored securely with encryption. You can access your
full backup history for any given service through the dashboard and select any version for
restoration.

You can utilize different backup options depending on your preferences and operational
requirements. Elestio supports manual local backups for on-demand recovery points,
automated snapshots that capture the state of the service at fixed intervals, and automated
remote backups using Borg, which securely stores backups on external storage volumes
managed by Elestio. In addition, you can configure automated external backups to S3-
compatible storage, allowing you to maintain full control over long-term retention and
geographic storage preferences.

Backups and Restores

Cluster Backups

Restoring a backup in Elestio is a user-initiated operation, available directly from the service
dashboard. Once you’re in the dashboard, select the service you’d like to restore. Navigate to the
Backups section, where you’ll find a list of all available backups along with their creation
timestamps.

To initiate a restore, choose the desired backup version and click on the “Restore” option. You will
be prompted to confirm the operation. Depending on the type of service, the restore can either
overwrite the current state or recreate the service as a new instance from the selected backup.

The restore process takes a few minutes, depending on the size of the backup and the service
type. Once completed, the restored service is immediately accessible. In the case of databases,
you can validate the restore by connecting to the database and inspecting the restored data.

Restoring from a Backup

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-7-07-51-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-7-08-12-pm.jpg

Before restoring a backup, it’s important to understand the impact on your current data.
Restores may overwrite existing service state, so if you need to preserve the current
environment, consider creating a manual backup before initiating the restore. In critical
environments, restoring to a new instance and validating the data before replacing the
original is a safer approach.
Keep in mind that restore operations are not instantaneous and may temporarily affect
service availability. It’s best to plan restores during maintenance windows or periods of
low traffic, especially in production environments.
For services with high-frequency data changes, be aware of the backup schedule and
retention policy. Elestio’s default intervals may not capture every change, so for high-
volume databases, consider exporting incremental backups manually or using continuous
replication where supported.

Elestio provides visibility into your backup history directly through the dashboard. You can monitor
the status, timestamps, and success/failure of backup jobs. In case of errors or failed backups,
the dashboard will display alerts, allowing you to take corrective actions or contact support if
necessary.

It’s good practice to periodically verify that backups are being generated and that restore points
are recent and complete. This ensures you’re prepared for unexpected failures and that recovery
options remain reliable.

Considerations for Backup &
Restore

Monitoring Backup Health

Cluster Management

Securing access to services is a fundamental part of managing cloud infrastructure. One of the
most effective ways to reduce unauthorized access is by restricting connectivity to a defined set of
IP addresses. Elestio supports IP-based access control through its dashboard, allowing you to
explicitly define which IPs or IP ranges are allowed to interact with your services. This is particularly
useful when exposing databases, APIs, or web services over public endpoints.

Restricting access by IP provides a first layer of network-level protection. Instead of relying solely
on application-layer authentication, you can control who is allowed to even initiate a connection to
your service. This approach reduces the surface area for attacks such as brute-force login
attempts, automated scanning, or unauthorized probing.

Common use cases include:

Limiting access to production databases from known office networks or VPNs.
Allowing only CI/CD pipelines or monitoring tools with static IPs to connect.
Restricting admin dashboards or internal tools to internal teams.

By defining access rules at the infrastructure level, you gain more control over who can reach your
services, regardless of their authentication or API access status.

To restrict access by IP in Elestio, start by logging into the Elestio dashboard and navigating to the
Clusters section. Select the cluster that hosts the service you want to protect. Once inside the
Cluster Overview page, locate the Security section.

Restricting Access by IP

Need to Restrict Access by IP

Restrict Access by IP

https://dash.elest.io

Within this section, you’ll find a setting labeled “Limit access per IP”. This is where you can
define which IP addresses or CIDR ranges are permitted to access the services running in the
cluster. You can add a specific IPv4 or IPv6 address (e.g., 203.0.113.5) or a subnet in CIDR notation
(e.g., 203.0.113.0/24) to allow access from a range of IPs.

After entering the necessary IP addresses, save the configuration. The changes will apply to all
services running inside the cluster, and only the defined IPs will be allowed to establish network
connections. All other incoming requests from unlisted IPs will be blocked at the infrastructure
level.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-7-23-36-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/QMbimage.png

When applying IP restrictions, it’s important to avoid locking yourself out. Always double-
check that your own IP address is included in the allowlist before applying rules, especially
when working on remote infrastructure.
For users on dynamic IPs (e.g., home broadband connections), consider using a VPN or a
static jump host that you can reliably allowlist. Similarly, if your services are accessed
through cloud-based tools, make sure to verify their IP ranges and update your rules
accordingly when those IPs change.
In multi-team environments, document and review IP access policies regularly to avoid
stale rules or overly permissive configurations. Combine IP restrictions with secure
authentication and encrypted connections (such as HTTPS or SSL for databases) for
layered security.

Considerations When Using IP
Restrictions

Cluster Management

In distributed systems, consistency and synchronization between nodes are critical to ensure that
services behave reliably and that data remains accurate across the cluster. Elestio provides built-in
mechanisms to detect and resolve inconsistencies across nodes using a feature called Cluster
Resynchronization. This functionality ensures that node-level configurations, data replication,
and service states are properly aligned, especially after issues like node recovery, temporary
network splits, or service restarts.

Resynchronization is typically required when secondary nodes in a cluster are no longer consistent
with the primary node. This can happen due to temporary network failures, node restarts,
replication lag, or partial service interruptions. In such cases, secondary nodes may fall behind or
store incomplete datasets, which could lead to incorrect behavior if a failover occurs or if read
operations are directed to those nodes. Unresolved inconsistencies can result in data divergence,
serving outdated content, or failing health checks in load-balanced environments. Performing a
resynchronization ensures that all secondary nodes are forcibly aligned with the current state of
the primary node, restoring a clean and unified cluster state.

It may also be necessary to perform a resync after restoring a service from backup, during
infrastructure migrations, or after recovering a previously offline node. In each of these cases,
resynchronization acts as a corrective mechanism to ensure that every node is operating with the
same configuration and dataset, reducing the risk of drift and maintaining data integrity across the
cluster.

To perform a resynchronization, start by accessing the Elestio dashboard and navigating to the
Clusters section. Select the cluster where synchronization is needed. On the Cluster Overview
page, scroll down slightly until you find the “Resync Cluster” option. This option is visible as part
of the cluster controls and is available only in clusters with multiple nodes and a defined primary
node.

Cluster Resynchronization

Need for Cluster
Resynchronization

Cluster Resynchronization

https://dash.elest.io

Clicking the Resync button opens a confirmation dialog. The message clearly explains that this
action will initiate a request to resynchronize all secondary nodes. During the resync process,
existing data on all secondary nodes will be erased and replaced with a copy of the data
from the primary node. This operation ensures full consistency across the cluster but should be
executed with caution, especially if recent changes exist on any of the secondaries that haven’t yet
been replicated.

You will receive an email notification once the resynchronization is complete. During this process,
Elestio manages the replication safely, but depending on the size of the data, the operation may
take a few minutes. It’s advised to avoid making further changes to the cluster while the resync is
in progress.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-7-45-50-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/CP0image.png

Before triggering a resync, it’s important to verify that the primary node holds the desired
state and that the secondary nodes do not contain any critical unsynced data. Since the
resync overwrites the secondary nodes completely, any local changes on those nodes
will be lost.
This action is best used when you’re confident that the primary node is healthy, current,
and stable. Avoid initiating a resync if the primary has recently experienced errors or data
issues. Additionally, consider performing this operation during a low-traffic period, as
synchronization may temporarily impact performance depending on the data volume.
If your application requires high consistency guarantees, it’s recommended to monitor
your cluster closely during and after the resync to confirm that services are functioning
correctly and that the replication process completed successfully.

Considerations Before
Resynchronizing

Cluster Management

When managing production-grade services, the ability to perform reliable and repeatable database
migrations is critical. Whether you’re applying schema changes, updating seed data, or managing
version-controlled transitions, Elestio provides a built-in mechanism to execute migrations safely
from the dashboard. This functionality is especially relevant when running containerized database
services like PostgreSQL, MySQL, or similar within a managed cluster.

Database migrations are commonly required when updating your application’s data model or
deploying new features. Schema updates such as adding columns, modifying data types, creating
indexes, or introducing new tables need to be synchronized with the deployment lifecycle of your
application code.

Migrations may also be needed during version upgrades to introduce structural or configuration
changes required by newer database engine versions. In some cases, teams use migrations to
apply baseline datasets, adjust permissions, or clean up legacy objects. Running these changes
through a controlled migration system ensures consistency across environments and helps avoid
untracked manual changes.

To run a database migration in Elestio, start by logging into the Elestio dashboard and navigating
to the Clusters section. Select the cluster that contains the target database service. From the
Cluster Overview page, scroll down until you find the “Migration” option.

Database Migrations

Need for Migrations

Running Database Migration

https://dash.elest.io

Clicking this option will open the migration workflow, which follows a three-step process:
Configure, Validation, and Migration. In the Configure step, Elestio provides a migration
configuration guide specific to the database type, such as PostgreSQL. At this point, you must
ensure that your target service has sufficient disk space to complete the migration. If there is not
enough storage available, the migration may fail midway, so it’s strongly recommended to review
storage utilization beforehand.

Once configuration prerequisites are met, you can proceed to the Validation step. Elestio will
check the secondary database details you have provided for the migration.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-8-04-55-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-8-02-18-pm.jpg

If the validation passes, the final Migration step will become active. You can then initiate the
migration process. Elestio will handle the actual data transfer, schema replication, and state
synchronization internally. The progress is tracked, and once completed, the migrated database
will be fully operational on the target service.

Before running any migration, it’s important to validate the script or changes in a staging
environment. Since migrations may involve irreversible changes—such as dropping
columns, altering constraints, or modifying data—careful review and version control are
essential.
In production environments, plan migrations during maintenance windows or low-traffic
periods to minimize the impact of any schema locks or temporary unavailability. If you’re

Considerations Before Running
Migrations

https://docs.elest.io/uploads/images/gallery/2025-04/Ihkimage.png

using replication or high-availability setups, confirm that the migration is compatible with
your architecture and will not disrupt synchronization between primary and secondary
nodes.
You should also ensure that proper backups are in place before applying structural
changes. In Elestio, the backup feature can be used to create a restore point that allows
rollback in case the migration introduces issues.

Cluster Management

When a cluster is no longer needed—whether it was created for testing, staging, or an obsolete
workload—deleting it helps free up resources and maintain a clean infrastructure footprint. Elestio
provides a straightforward and secure way to delete entire clusters directly from the dashboard.
This action permanently removes the associated services, data, and compute resources tied to the
cluster.

Deleting a cluster is a final step often performed when decommissioning an environment. This
could include shutting down a test setup, replacing infrastructure during migration, or retiring an
unused production instance. In some cases, users also delete and recreate clusters as part of major
version upgrades or architectural changes. It is essential to confirm that all data and services tied
to the cluster are no longer required or have been backed up or migrated before proceeding. Since
cluster deletion is irreversible, any services, volumes, and backups associated with the cluster will
be permanently removed.

Deleting a Cluster

When to Delete a Cluster

Delete a Cluster

To delete a cluster, log in to the Elestio dashboard and navigate to the Clusters section. From the
list of clusters, select the one you want to remove. Inside the selected cluster, you’ll find a
navigation bar at the top of the page. One of the available options in this navigation bar is
“Delete Cluster.”

Clicking this opens a confirmation dialog that outlines the impact of deletion. It will clearly state
that deleting the cluster will permanently remove all associated services, storage, and
configurations. By acknowledging a warning or typing in the cluster name, depending on the
service type. Once confirmed, Elestio will initiate the deletion process, which includes tearing down
all resources associated with the cluster. This typically completes within a few minutes, after which
the cluster will no longer appear in your dashboard.

https://dash.elest.io
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-11-at-8-09-21-pm.jpg

Deleting a cluster also terminates any linked domains, volumes, monitoring configurations, and
scheduled backups. These cannot be recovered once deletion is complete, so plan accordingly
before confirming the action. If the cluster was used for production workloads, consider archiving
data to external storage (e.g., S3) or exporting final snapshots for compliance and recovery
purposes.

Before deleting a cluster, verify that:

All required data has been backed up externally (e.g., downloaded dumps or exports).
Any active services or dependencies tied to the cluster have been reconfigured or shut
down.
Access credentials, logs, or stored configuration settings have been retrieved if needed for
auditing or migration.

Considerations Before Deleting

https://docs.elest.io/uploads/images/gallery/2025-04/Uhyimage.png

