- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
PaLM2TextEmbeddingGenerator(
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None,
)PaLM2 text embedding generator LLM model.
Parameters | 
      |
|---|---|
| Name | Description | 
session | 
        
  	bigframes.Session or None
  	BQ session to create the model. If None, use the global default session.  | 
      
connection_name | 
        
  	str or None
  	connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. 
  | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
predict
predict(
    X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFramePredict the result from input DataFrame.
| Parameter | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          Input DataFrame, which needs to contain a column with name "content". Only the column will be used as input. Content can include preamble, questions, suggestions, instructions, or examples.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        Output DataFrame with only 1 column as the output embedding results | 
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._TRegister the model to Vertex AI.
After register, go to Google Cloud Console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
| Parameter | |
|---|---|
| Name | Description | 
vertex_ai_model_id | 
        
          Optional[str], default None
          optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.  |