core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::cmp::Ordering::{self, Equal, Greater, Less};
10use crate::intrinsics::{exact_div, unchecked_sub};
11use crate::mem::{self, MaybeUninit, SizedTypeProperties};
12use crate::num::NonZero;
13use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
14use crate::panic::const_panic;
15use crate::simd::{self, Simd};
16use crate::ub_checks::assert_unsafe_precondition;
17use crate::{fmt, hint, ptr, range, slice};
18
19#[unstable(
20    feature = "slice_internals",
21    issue = "none",
22    reason = "exposed from core to be reused in std; use the memchr crate"
23)]
24#[doc(hidden)]
25/// Pure Rust memchr implementation, taken from rust-memchr
26pub mod memchr;
27
28#[unstable(
29    feature = "slice_internals",
30    issue = "none",
31    reason = "exposed from core to be reused in std;"
32)]
33#[doc(hidden)]
34pub mod sort;
35
36mod ascii;
37mod cmp;
38pub(crate) mod index;
39mod iter;
40mod raw;
41mod rotate;
42mod specialize;
43
44#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
45pub use ascii::EscapeAscii;
46#[unstable(feature = "str_internals", issue = "none")]
47#[doc(hidden)]
48pub use ascii::is_ascii_simple;
49#[stable(feature = "slice_get_slice", since = "1.28.0")]
50pub use index::SliceIndex;
51#[unstable(feature = "slice_range", issue = "76393")]
52pub use index::{range, try_range};
53#[unstable(feature = "array_windows", issue = "75027")]
54pub use iter::ArrayWindows;
55#[stable(feature = "slice_group_by", since = "1.77.0")]
56pub use iter::{ChunkBy, ChunkByMut};
57#[stable(feature = "rust1", since = "1.0.0")]
58pub use iter::{Chunks, ChunksMut, Windows};
59#[stable(feature = "chunks_exact", since = "1.31.0")]
60pub use iter::{ChunksExact, ChunksExactMut};
61#[stable(feature = "rust1", since = "1.0.0")]
62pub use iter::{Iter, IterMut};
63#[stable(feature = "rchunks", since = "1.31.0")]
64pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
65#[stable(feature = "slice_rsplit", since = "1.27.0")]
66pub use iter::{RSplit, RSplitMut};
67#[stable(feature = "rust1", since = "1.0.0")]
68pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
69#[stable(feature = "split_inclusive", since = "1.51.0")]
70pub use iter::{SplitInclusive, SplitInclusiveMut};
71#[stable(feature = "from_ref", since = "1.28.0")]
72pub use raw::{from_mut, from_ref};
73#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
74pub use raw::{from_mut_ptr_range, from_ptr_range};
75#[stable(feature = "rust1", since = "1.0.0")]
76pub use raw::{from_raw_parts, from_raw_parts_mut};
77
78/// Calculates the direction and split point of a one-sided range.
79///
80/// This is a helper function for `split_off` and `split_off_mut` that returns
81/// the direction of the split (front or back) as well as the index at
82/// which to split. Returns `None` if the split index would overflow.
83#[inline]
84fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
85    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
86
87    Some(match range.bound() {
88        (StartInclusive, i) => (Direction::Back, i),
89        (End, i) => (Direction::Front, i),
90        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
91    })
92}
93
94enum Direction {
95    Front,
96    Back,
97}
98
99impl<T> [T] {
100    /// Returns the number of elements in the slice.
101    ///
102    /// # Examples
103    ///
104    /// ```
105    /// let a = [1, 2, 3];
106    /// assert_eq!(a.len(), 3);
107    /// ```
108    #[lang = "slice_len_fn"]
109    #[stable(feature = "rust1", since = "1.0.0")]
110    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
111    #[rustc_no_implicit_autorefs]
112    #[inline]
113    #[must_use]
114    pub const fn len(&self) -> usize {
115        ptr::metadata(self)
116    }
117
118    /// Returns `true` if the slice has a length of 0.
119    ///
120    /// # Examples
121    ///
122    /// ```
123    /// let a = [1, 2, 3];
124    /// assert!(!a.is_empty());
125    ///
126    /// let b: &[i32] = &[];
127    /// assert!(b.is_empty());
128    /// ```
129    #[stable(feature = "rust1", since = "1.0.0")]
130    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
131    #[rustc_no_implicit_autorefs]
132    #[inline]
133    #[must_use]
134    pub const fn is_empty(&self) -> bool {
135        self.len() == 0
136    }
137
138    /// Returns the first element of the slice, or `None` if it is empty.
139    ///
140    /// # Examples
141    ///
142    /// ```
143    /// let v = [10, 40, 30];
144    /// assert_eq!(Some(&10), v.first());
145    ///
146    /// let w: &[i32] = &[];
147    /// assert_eq!(None, w.first());
148    /// ```
149    #[stable(feature = "rust1", since = "1.0.0")]
150    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
151    #[inline]
152    #[must_use]
153    pub const fn first(&self) -> Option<&T> {
154        if let [first, ..] = self { Some(first) } else { None }
155    }
156
157    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
158    ///
159    /// # Examples
160    ///
161    /// ```
162    /// let x = &mut [0, 1, 2];
163    ///
164    /// if let Some(first) = x.first_mut() {
165    ///     *first = 5;
166    /// }
167    /// assert_eq!(x, &[5, 1, 2]);
168    ///
169    /// let y: &mut [i32] = &mut [];
170    /// assert_eq!(None, y.first_mut());
171    /// ```
172    #[stable(feature = "rust1", since = "1.0.0")]
173    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
174    #[inline]
175    #[must_use]
176    pub const fn first_mut(&mut self) -> Option<&mut T> {
177        if let [first, ..] = self { Some(first) } else { None }
178    }
179
180    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
181    ///
182    /// # Examples
183    ///
184    /// ```
185    /// let x = &[0, 1, 2];
186    ///
187    /// if let Some((first, elements)) = x.split_first() {
188    ///     assert_eq!(first, &0);
189    ///     assert_eq!(elements, &[1, 2]);
190    /// }
191    /// ```
192    #[stable(feature = "slice_splits", since = "1.5.0")]
193    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
194    #[inline]
195    #[must_use]
196    pub const fn split_first(&self) -> Option<(&T, &[T])> {
197        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
198    }
199
200    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
201    ///
202    /// # Examples
203    ///
204    /// ```
205    /// let x = &mut [0, 1, 2];
206    ///
207    /// if let Some((first, elements)) = x.split_first_mut() {
208    ///     *first = 3;
209    ///     elements[0] = 4;
210    ///     elements[1] = 5;
211    /// }
212    /// assert_eq!(x, &[3, 4, 5]);
213    /// ```
214    #[stable(feature = "slice_splits", since = "1.5.0")]
215    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
216    #[inline]
217    #[must_use]
218    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
219        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
220    }
221
222    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
223    ///
224    /// # Examples
225    ///
226    /// ```
227    /// let x = &[0, 1, 2];
228    ///
229    /// if let Some((last, elements)) = x.split_last() {
230    ///     assert_eq!(last, &2);
231    ///     assert_eq!(elements, &[0, 1]);
232    /// }
233    /// ```
234    #[stable(feature = "slice_splits", since = "1.5.0")]
235    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
236    #[inline]
237    #[must_use]
238    pub const fn split_last(&self) -> Option<(&T, &[T])> {
239        if let [init @ .., last] = self { Some((last, init)) } else { None }
240    }
241
242    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
243    ///
244    /// # Examples
245    ///
246    /// ```
247    /// let x = &mut [0, 1, 2];
248    ///
249    /// if let Some((last, elements)) = x.split_last_mut() {
250    ///     *last = 3;
251    ///     elements[0] = 4;
252    ///     elements[1] = 5;
253    /// }
254    /// assert_eq!(x, &[4, 5, 3]);
255    /// ```
256    #[stable(feature = "slice_splits", since = "1.5.0")]
257    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
258    #[inline]
259    #[must_use]
260    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
261        if let [init @ .., last] = self { Some((last, init)) } else { None }
262    }
263
264    /// Returns the last element of the slice, or `None` if it is empty.
265    ///
266    /// # Examples
267    ///
268    /// ```
269    /// let v = [10, 40, 30];
270    /// assert_eq!(Some(&30), v.last());
271    ///
272    /// let w: &[i32] = &[];
273    /// assert_eq!(None, w.last());
274    /// ```
275    #[stable(feature = "rust1", since = "1.0.0")]
276    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
277    #[inline]
278    #[must_use]
279    pub const fn last(&self) -> Option<&T> {
280        if let [.., last] = self { Some(last) } else { None }
281    }
282
283    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
284    ///
285    /// # Examples
286    ///
287    /// ```
288    /// let x = &mut [0, 1, 2];
289    ///
290    /// if let Some(last) = x.last_mut() {
291    ///     *last = 10;
292    /// }
293    /// assert_eq!(x, &[0, 1, 10]);
294    ///
295    /// let y: &mut [i32] = &mut [];
296    /// assert_eq!(None, y.last_mut());
297    /// ```
298    #[stable(feature = "rust1", since = "1.0.0")]
299    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
300    #[inline]
301    #[must_use]
302    pub const fn last_mut(&mut self) -> Option<&mut T> {
303        if let [.., last] = self { Some(last) } else { None }
304    }
305
306    /// Returns an array reference to the first `N` items in the slice.
307    ///
308    /// If the slice is not at least `N` in length, this will return `None`.
309    ///
310    /// # Examples
311    ///
312    /// ```
313    /// let u = [10, 40, 30];
314    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
315    ///
316    /// let v: &[i32] = &[10];
317    /// assert_eq!(None, v.first_chunk::<2>());
318    ///
319    /// let w: &[i32] = &[];
320    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
321    /// ```
322    #[inline]
323    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
324    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
325    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
326        if self.len() < N {
327            None
328        } else {
329            // SAFETY: We explicitly check for the correct number of elements,
330            //   and do not let the reference outlive the slice.
331            Some(unsafe { &*(self.as_ptr().cast::<[T; N]>()) })
332        }
333    }
334
335    /// Returns a mutable array reference to the first `N` items in the slice.
336    ///
337    /// If the slice is not at least `N` in length, this will return `None`.
338    ///
339    /// # Examples
340    ///
341    /// ```
342    /// let x = &mut [0, 1, 2];
343    ///
344    /// if let Some(first) = x.first_chunk_mut::<2>() {
345    ///     first[0] = 5;
346    ///     first[1] = 4;
347    /// }
348    /// assert_eq!(x, &[5, 4, 2]);
349    ///
350    /// assert_eq!(None, x.first_chunk_mut::<4>());
351    /// ```
352    #[inline]
353    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
354    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
355    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
356        if self.len() < N {
357            None
358        } else {
359            // SAFETY: We explicitly check for the correct number of elements,
360            //   do not let the reference outlive the slice,
361            //   and require exclusive access to the entire slice to mutate the chunk.
362            Some(unsafe { &mut *(self.as_mut_ptr().cast::<[T; N]>()) })
363        }
364    }
365
366    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
367    ///
368    /// If the slice is not at least `N` in length, this will return `None`.
369    ///
370    /// # Examples
371    ///
372    /// ```
373    /// let x = &[0, 1, 2];
374    ///
375    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
376    ///     assert_eq!(first, &[0, 1]);
377    ///     assert_eq!(elements, &[2]);
378    /// }
379    ///
380    /// assert_eq!(None, x.split_first_chunk::<4>());
381    /// ```
382    #[inline]
383    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
384    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
385    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
386        let Some((first, tail)) = self.split_at_checked(N) else { return None };
387
388        // SAFETY: We explicitly check for the correct number of elements,
389        //   and do not let the references outlive the slice.
390        Some((unsafe { &*(first.as_ptr().cast::<[T; N]>()) }, tail))
391    }
392
393    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
394    /// slice.
395    ///
396    /// If the slice is not at least `N` in length, this will return `None`.
397    ///
398    /// # Examples
399    ///
400    /// ```
401    /// let x = &mut [0, 1, 2];
402    ///
403    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
404    ///     first[0] = 3;
405    ///     first[1] = 4;
406    ///     elements[0] = 5;
407    /// }
408    /// assert_eq!(x, &[3, 4, 5]);
409    ///
410    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
411    /// ```
412    #[inline]
413    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
414    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
415    pub const fn split_first_chunk_mut<const N: usize>(
416        &mut self,
417    ) -> Option<(&mut [T; N], &mut [T])> {
418        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
419
420        // SAFETY: We explicitly check for the correct number of elements,
421        //   do not let the reference outlive the slice,
422        //   and enforce exclusive mutability of the chunk by the split.
423        Some((unsafe { &mut *(first.as_mut_ptr().cast::<[T; N]>()) }, tail))
424    }
425
426    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
427    ///
428    /// If the slice is not at least `N` in length, this will return `None`.
429    ///
430    /// # Examples
431    ///
432    /// ```
433    /// let x = &[0, 1, 2];
434    ///
435    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
436    ///     assert_eq!(elements, &[0]);
437    ///     assert_eq!(last, &[1, 2]);
438    /// }
439    ///
440    /// assert_eq!(None, x.split_last_chunk::<4>());
441    /// ```
442    #[inline]
443    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
444    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
445    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
446        let Some(index) = self.len().checked_sub(N) else { return None };
447        let (init, last) = self.split_at(index);
448
449        // SAFETY: We explicitly check for the correct number of elements,
450        //   and do not let the references outlive the slice.
451        Some((init, unsafe { &*(last.as_ptr().cast::<[T; N]>()) }))
452    }
453
454    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
455    /// slice.
456    ///
457    /// If the slice is not at least `N` in length, this will return `None`.
458    ///
459    /// # Examples
460    ///
461    /// ```
462    /// let x = &mut [0, 1, 2];
463    ///
464    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
465    ///     last[0] = 3;
466    ///     last[1] = 4;
467    ///     elements[0] = 5;
468    /// }
469    /// assert_eq!(x, &[5, 3, 4]);
470    ///
471    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
472    /// ```
473    #[inline]
474    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
475    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
476    pub const fn split_last_chunk_mut<const N: usize>(
477        &mut self,
478    ) -> Option<(&mut [T], &mut [T; N])> {
479        let Some(index) = self.len().checked_sub(N) else { return None };
480        let (init, last) = self.split_at_mut(index);
481
482        // SAFETY: We explicitly check for the correct number of elements,
483        //   do not let the reference outlive the slice,
484        //   and enforce exclusive mutability of the chunk by the split.
485        Some((init, unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) }))
486    }
487
488    /// Returns an array reference to the last `N` items in the slice.
489    ///
490    /// If the slice is not at least `N` in length, this will return `None`.
491    ///
492    /// # Examples
493    ///
494    /// ```
495    /// let u = [10, 40, 30];
496    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
497    ///
498    /// let v: &[i32] = &[10];
499    /// assert_eq!(None, v.last_chunk::<2>());
500    ///
501    /// let w: &[i32] = &[];
502    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
503    /// ```
504    #[inline]
505    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
506    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
507    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
508        // FIXME(const-hack): Without const traits, we need this instead of `get`.
509        let Some(index) = self.len().checked_sub(N) else { return None };
510        let (_, last) = self.split_at(index);
511
512        // SAFETY: We explicitly check for the correct number of elements,
513        //   and do not let the references outlive the slice.
514        Some(unsafe { &*(last.as_ptr().cast::<[T; N]>()) })
515    }
516
517    /// Returns a mutable array reference to the last `N` items in the slice.
518    ///
519    /// If the slice is not at least `N` in length, this will return `None`.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// let x = &mut [0, 1, 2];
525    ///
526    /// if let Some(last) = x.last_chunk_mut::<2>() {
527    ///     last[0] = 10;
528    ///     last[1] = 20;
529    /// }
530    /// assert_eq!(x, &[0, 10, 20]);
531    ///
532    /// assert_eq!(None, x.last_chunk_mut::<4>());
533    /// ```
534    #[inline]
535    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
536    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
537    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
538        // FIXME(const-hack): Without const traits, we need this instead of `get`.
539        let Some(index) = self.len().checked_sub(N) else { return None };
540        let (_, last) = self.split_at_mut(index);
541
542        // SAFETY: We explicitly check for the correct number of elements,
543        //   do not let the reference outlive the slice,
544        //   and require exclusive access to the entire slice to mutate the chunk.
545        Some(unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) })
546    }
547
548    /// Returns a reference to an element or subslice depending on the type of
549    /// index.
550    ///
551    /// - If given a position, returns a reference to the element at that
552    ///   position or `None` if out of bounds.
553    /// - If given a range, returns the subslice corresponding to that range,
554    ///   or `None` if out of bounds.
555    ///
556    /// # Examples
557    ///
558    /// ```
559    /// let v = [10, 40, 30];
560    /// assert_eq!(Some(&40), v.get(1));
561    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
562    /// assert_eq!(None, v.get(3));
563    /// assert_eq!(None, v.get(0..4));
564    /// ```
565    #[stable(feature = "rust1", since = "1.0.0")]
566    #[rustc_no_implicit_autorefs]
567    #[inline]
568    #[must_use]
569    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
570    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
571    where
572        I: ~const SliceIndex<Self>,
573    {
574        index.get(self)
575    }
576
577    /// Returns a mutable reference to an element or subslice depending on the
578    /// type of index (see [`get`]) or `None` if the index is out of bounds.
579    ///
580    /// [`get`]: slice::get
581    ///
582    /// # Examples
583    ///
584    /// ```
585    /// let x = &mut [0, 1, 2];
586    ///
587    /// if let Some(elem) = x.get_mut(1) {
588    ///     *elem = 42;
589    /// }
590    /// assert_eq!(x, &[0, 42, 2]);
591    /// ```
592    #[stable(feature = "rust1", since = "1.0.0")]
593    #[rustc_no_implicit_autorefs]
594    #[inline]
595    #[must_use]
596    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
597    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
598    where
599        I: ~const SliceIndex<Self>,
600    {
601        index.get_mut(self)
602    }
603
604    /// Returns a reference to an element or subslice, without doing bounds
605    /// checking.
606    ///
607    /// For a safe alternative see [`get`].
608    ///
609    /// # Safety
610    ///
611    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
612    /// even if the resulting reference is not used.
613    ///
614    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
615    /// to call `.get_unchecked(len)`, even if you immediately convert to a
616    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
617    /// `.get_unchecked(..=len)`, or similar.
618    ///
619    /// [`get`]: slice::get
620    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
621    ///
622    /// # Examples
623    ///
624    /// ```
625    /// let x = &[1, 2, 4];
626    ///
627    /// unsafe {
628    ///     assert_eq!(x.get_unchecked(1), &2);
629    /// }
630    /// ```
631    #[stable(feature = "rust1", since = "1.0.0")]
632    #[rustc_no_implicit_autorefs]
633    #[inline]
634    #[must_use]
635    #[track_caller]
636    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
637    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
638    where
639        I: ~const SliceIndex<Self>,
640    {
641        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
642        // the slice is dereferenceable because `self` is a safe reference.
643        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
644        unsafe { &*index.get_unchecked(self) }
645    }
646
647    /// Returns a mutable reference to an element or subslice, without doing
648    /// bounds checking.
649    ///
650    /// For a safe alternative see [`get_mut`].
651    ///
652    /// # Safety
653    ///
654    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
655    /// even if the resulting reference is not used.
656    ///
657    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
658    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
659    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
660    /// `.get_unchecked_mut(..=len)`, or similar.
661    ///
662    /// [`get_mut`]: slice::get_mut
663    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
664    ///
665    /// # Examples
666    ///
667    /// ```
668    /// let x = &mut [1, 2, 4];
669    ///
670    /// unsafe {
671    ///     let elem = x.get_unchecked_mut(1);
672    ///     *elem = 13;
673    /// }
674    /// assert_eq!(x, &[1, 13, 4]);
675    /// ```
676    #[stable(feature = "rust1", since = "1.0.0")]
677    #[rustc_no_implicit_autorefs]
678    #[inline]
679    #[must_use]
680    #[track_caller]
681    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
682    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
683    where
684        I: ~const SliceIndex<Self>,
685    {
686        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
687        // the slice is dereferenceable because `self` is a safe reference.
688        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
689        unsafe { &mut *index.get_unchecked_mut(self) }
690    }
691
692    /// Returns a raw pointer to the slice's buffer.
693    ///
694    /// The caller must ensure that the slice outlives the pointer this
695    /// function returns, or else it will end up dangling.
696    ///
697    /// The caller must also ensure that the memory the pointer (non-transitively) points to
698    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
699    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
700    ///
701    /// Modifying the container referenced by this slice may cause its buffer
702    /// to be reallocated, which would also make any pointers to it invalid.
703    ///
704    /// # Examples
705    ///
706    /// ```
707    /// let x = &[1, 2, 4];
708    /// let x_ptr = x.as_ptr();
709    ///
710    /// unsafe {
711    ///     for i in 0..x.len() {
712    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
713    ///     }
714    /// }
715    /// ```
716    ///
717    /// [`as_mut_ptr`]: slice::as_mut_ptr
718    #[stable(feature = "rust1", since = "1.0.0")]
719    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
720    #[rustc_never_returns_null_ptr]
721    #[rustc_as_ptr]
722    #[inline(always)]
723    #[must_use]
724    pub const fn as_ptr(&self) -> *const T {
725        self as *const [T] as *const T
726    }
727
728    /// Returns an unsafe mutable pointer to the slice's buffer.
729    ///
730    /// The caller must ensure that the slice outlives the pointer this
731    /// function returns, or else it will end up dangling.
732    ///
733    /// Modifying the container referenced by this slice may cause its buffer
734    /// to be reallocated, which would also make any pointers to it invalid.
735    ///
736    /// # Examples
737    ///
738    /// ```
739    /// let x = &mut [1, 2, 4];
740    /// let x_ptr = x.as_mut_ptr();
741    ///
742    /// unsafe {
743    ///     for i in 0..x.len() {
744    ///         *x_ptr.add(i) += 2;
745    ///     }
746    /// }
747    /// assert_eq!(x, &[3, 4, 6]);
748    /// ```
749    #[stable(feature = "rust1", since = "1.0.0")]
750    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
751    #[rustc_never_returns_null_ptr]
752    #[rustc_as_ptr]
753    #[inline(always)]
754    #[must_use]
755    pub const fn as_mut_ptr(&mut self) -> *mut T {
756        self as *mut [T] as *mut T
757    }
758
759    /// Returns the two raw pointers spanning the slice.
760    ///
761    /// The returned range is half-open, which means that the end pointer
762    /// points *one past* the last element of the slice. This way, an empty
763    /// slice is represented by two equal pointers, and the difference between
764    /// the two pointers represents the size of the slice.
765    ///
766    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
767    /// requires extra caution, as it does not point to a valid element in the
768    /// slice.
769    ///
770    /// This function is useful for interacting with foreign interfaces which
771    /// use two pointers to refer to a range of elements in memory, as is
772    /// common in C++.
773    ///
774    /// It can also be useful to check if a pointer to an element refers to an
775    /// element of this slice:
776    ///
777    /// ```
778    /// let a = [1, 2, 3];
779    /// let x = &a[1] as *const _;
780    /// let y = &5 as *const _;
781    ///
782    /// assert!(a.as_ptr_range().contains(&x));
783    /// assert!(!a.as_ptr_range().contains(&y));
784    /// ```
785    ///
786    /// [`as_ptr`]: slice::as_ptr
787    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
788    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
789    #[inline]
790    #[must_use]
791    pub const fn as_ptr_range(&self) -> Range<*const T> {
792        let start = self.as_ptr();
793        // SAFETY: The `add` here is safe, because:
794        //
795        //   - Both pointers are part of the same object, as pointing directly
796        //     past the object also counts.
797        //
798        //   - The size of the slice is never larger than `isize::MAX` bytes, as
799        //     noted here:
800        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
801        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
802        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
803        //     (This doesn't seem normative yet, but the very same assumption is
804        //     made in many places, including the Index implementation of slices.)
805        //
806        //   - There is no wrapping around involved, as slices do not wrap past
807        //     the end of the address space.
808        //
809        // See the documentation of [`pointer::add`].
810        let end = unsafe { start.add(self.len()) };
811        start..end
812    }
813
814    /// Returns the two unsafe mutable pointers spanning the slice.
815    ///
816    /// The returned range is half-open, which means that the end pointer
817    /// points *one past* the last element of the slice. This way, an empty
818    /// slice is represented by two equal pointers, and the difference between
819    /// the two pointers represents the size of the slice.
820    ///
821    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
822    /// pointer requires extra caution, as it does not point to a valid element
823    /// in the slice.
824    ///
825    /// This function is useful for interacting with foreign interfaces which
826    /// use two pointers to refer to a range of elements in memory, as is
827    /// common in C++.
828    ///
829    /// [`as_mut_ptr`]: slice::as_mut_ptr
830    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
831    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
832    #[inline]
833    #[must_use]
834    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
835        let start = self.as_mut_ptr();
836        // SAFETY: See as_ptr_range() above for why `add` here is safe.
837        let end = unsafe { start.add(self.len()) };
838        start..end
839    }
840
841    /// Gets a reference to the underlying array.
842    ///
843    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
844    #[unstable(feature = "slice_as_array", issue = "133508")]
845    #[inline]
846    #[must_use]
847    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
848        if self.len() == N {
849            let ptr = self.as_ptr() as *const [T; N];
850
851            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
852            let me = unsafe { &*ptr };
853            Some(me)
854        } else {
855            None
856        }
857    }
858
859    /// Gets a mutable reference to the slice's underlying array.
860    ///
861    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
862    #[unstable(feature = "slice_as_array", issue = "133508")]
863    #[inline]
864    #[must_use]
865    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
866        if self.len() == N {
867            let ptr = self.as_mut_ptr() as *mut [T; N];
868
869            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
870            let me = unsafe { &mut *ptr };
871            Some(me)
872        } else {
873            None
874        }
875    }
876
877    /// Swaps two elements in the slice.
878    ///
879    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
880    ///
881    /// # Arguments
882    ///
883    /// * a - The index of the first element
884    /// * b - The index of the second element
885    ///
886    /// # Panics
887    ///
888    /// Panics if `a` or `b` are out of bounds.
889    ///
890    /// # Examples
891    ///
892    /// ```
893    /// let mut v = ["a", "b", "c", "d", "e"];
894    /// v.swap(2, 4);
895    /// assert!(v == ["a", "b", "e", "d", "c"]);
896    /// ```
897    #[stable(feature = "rust1", since = "1.0.0")]
898    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
899    #[inline]
900    #[track_caller]
901    pub const fn swap(&mut self, a: usize, b: usize) {
902        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
903        // Can't take two mutable loans from one vector, so instead use raw pointers.
904        let pa = &raw mut self[a];
905        let pb = &raw mut self[b];
906        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
907        // to elements in the slice and therefore are guaranteed to be valid and aligned.
908        // Note that accessing the elements behind `a` and `b` is checked and will
909        // panic when out of bounds.
910        unsafe {
911            ptr::swap(pa, pb);
912        }
913    }
914
915    /// Swaps two elements in the slice, without doing bounds checking.
916    ///
917    /// For a safe alternative see [`swap`].
918    ///
919    /// # Arguments
920    ///
921    /// * a - The index of the first element
922    /// * b - The index of the second element
923    ///
924    /// # Safety
925    ///
926    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
927    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
928    ///
929    /// # Examples
930    ///
931    /// ```
932    /// #![feature(slice_swap_unchecked)]
933    ///
934    /// let mut v = ["a", "b", "c", "d"];
935    /// // SAFETY: we know that 1 and 3 are both indices of the slice
936    /// unsafe { v.swap_unchecked(1, 3) };
937    /// assert!(v == ["a", "d", "c", "b"]);
938    /// ```
939    ///
940    /// [`swap`]: slice::swap
941    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
942    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
943    #[track_caller]
944    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
945        assert_unsafe_precondition!(
946            check_library_ub,
947            "slice::swap_unchecked requires that the indices are within the slice",
948            (
949                len: usize = self.len(),
950                a: usize = a,
951                b: usize = b,
952            ) => a < len && b < len,
953        );
954
955        let ptr = self.as_mut_ptr();
956        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
957        unsafe {
958            ptr::swap(ptr.add(a), ptr.add(b));
959        }
960    }
961
962    /// Reverses the order of elements in the slice, in place.
963    ///
964    /// # Examples
965    ///
966    /// ```
967    /// let mut v = [1, 2, 3];
968    /// v.reverse();
969    /// assert!(v == [3, 2, 1]);
970    /// ```
971    #[stable(feature = "rust1", since = "1.0.0")]
972    #[rustc_const_stable(feature = "const_slice_reverse", since = "CURRENT_RUSTC_VERSION")]
973    #[inline]
974    pub const fn reverse(&mut self) {
975        let half_len = self.len() / 2;
976        let Range { start, end } = self.as_mut_ptr_range();
977
978        // These slices will skip the middle item for an odd length,
979        // since that one doesn't need to move.
980        let (front_half, back_half) =
981            // SAFETY: Both are subparts of the original slice, so the memory
982            // range is valid, and they don't overlap because they're each only
983            // half (or less) of the original slice.
984            unsafe {
985                (
986                    slice::from_raw_parts_mut(start, half_len),
987                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
988                )
989            };
990
991        // Introducing a function boundary here means that the two halves
992        // get `noalias` markers, allowing better optimization as LLVM
993        // knows that they're disjoint, unlike in the original slice.
994        revswap(front_half, back_half, half_len);
995
996        #[inline]
997        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
998            debug_assert!(a.len() == n);
999            debug_assert!(b.len() == n);
1000
1001            // Because this function is first compiled in isolation,
1002            // this check tells LLVM that the indexing below is
1003            // in-bounds. Then after inlining -- once the actual
1004            // lengths of the slices are known -- it's removed.
1005            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1006            let (a, _) = a.split_at_mut(n);
1007            let (b, _) = b.split_at_mut(n);
1008
1009            let mut i = 0;
1010            while i < n {
1011                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1012                i += 1;
1013            }
1014        }
1015    }
1016
1017    /// Returns an iterator over the slice.
1018    ///
1019    /// The iterator yields all items from start to end.
1020    ///
1021    /// # Examples
1022    ///
1023    /// ```
1024    /// let x = &[1, 2, 4];
1025    /// let mut iterator = x.iter();
1026    ///
1027    /// assert_eq!(iterator.next(), Some(&1));
1028    /// assert_eq!(iterator.next(), Some(&2));
1029    /// assert_eq!(iterator.next(), Some(&4));
1030    /// assert_eq!(iterator.next(), None);
1031    /// ```
1032    #[stable(feature = "rust1", since = "1.0.0")]
1033    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1034    #[inline]
1035    #[rustc_diagnostic_item = "slice_iter"]
1036    pub const fn iter(&self) -> Iter<'_, T> {
1037        Iter::new(self)
1038    }
1039
1040    /// Returns an iterator that allows modifying each value.
1041    ///
1042    /// The iterator yields all items from start to end.
1043    ///
1044    /// # Examples
1045    ///
1046    /// ```
1047    /// let x = &mut [1, 2, 4];
1048    /// for elem in x.iter_mut() {
1049    ///     *elem += 2;
1050    /// }
1051    /// assert_eq!(x, &[3, 4, 6]);
1052    /// ```
1053    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1054    #[stable(feature = "rust1", since = "1.0.0")]
1055    #[inline]
1056    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1057        IterMut::new(self)
1058    }
1059
1060    /// Returns an iterator over all contiguous windows of length
1061    /// `size`. The windows overlap. If the slice is shorter than
1062    /// `size`, the iterator returns no values.
1063    ///
1064    /// # Panics
1065    ///
1066    /// Panics if `size` is zero.
1067    ///
1068    /// # Examples
1069    ///
1070    /// ```
1071    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1072    /// let mut iter = slice.windows(3);
1073    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1074    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1075    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1076    /// assert!(iter.next().is_none());
1077    /// ```
1078    ///
1079    /// If the slice is shorter than `size`:
1080    ///
1081    /// ```
1082    /// let slice = ['f', 'o', 'o'];
1083    /// let mut iter = slice.windows(4);
1084    /// assert!(iter.next().is_none());
1085    /// ```
1086    ///
1087    /// Because the [Iterator] trait cannot represent the required lifetimes,
1088    /// there is no `windows_mut` analog to `windows`;
1089    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1090    /// (though a [LendingIterator] analog is possible). You can sometimes use
1091    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1092    /// conjunction with `windows` instead:
1093    ///
1094    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1095    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1096    /// ```
1097    /// use std::cell::Cell;
1098    ///
1099    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1100    /// let slice = &mut array[..];
1101    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1102    /// for w in slice_of_cells.windows(3) {
1103    ///     Cell::swap(&w[0], &w[2]);
1104    /// }
1105    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1106    /// ```
1107    #[stable(feature = "rust1", since = "1.0.0")]
1108    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1109    #[inline]
1110    #[track_caller]
1111    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1112        let size = NonZero::new(size).expect("window size must be non-zero");
1113        Windows::new(self, size)
1114    }
1115
1116    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1117    /// beginning of the slice.
1118    ///
1119    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1120    /// slice, then the last chunk will not have length `chunk_size`.
1121    ///
1122    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1123    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1124    /// slice.
1125    ///
1126    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1127    /// give references to arrays of exactly that length, rather than slices.
1128    ///
1129    /// # Panics
1130    ///
1131    /// Panics if `chunk_size` is zero.
1132    ///
1133    /// # Examples
1134    ///
1135    /// ```
1136    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1137    /// let mut iter = slice.chunks(2);
1138    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1139    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1140    /// assert_eq!(iter.next().unwrap(), &['m']);
1141    /// assert!(iter.next().is_none());
1142    /// ```
1143    ///
1144    /// [`chunks_exact`]: slice::chunks_exact
1145    /// [`rchunks`]: slice::rchunks
1146    /// [`as_chunks`]: slice::as_chunks
1147    #[stable(feature = "rust1", since = "1.0.0")]
1148    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1149    #[inline]
1150    #[track_caller]
1151    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1152        assert!(chunk_size != 0, "chunk size must be non-zero");
1153        Chunks::new(self, chunk_size)
1154    }
1155
1156    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1157    /// beginning of the slice.
1158    ///
1159    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1160    /// length of the slice, then the last chunk will not have length `chunk_size`.
1161    ///
1162    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1163    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1164    /// the end of the slice.
1165    ///
1166    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1167    /// give references to arrays of exactly that length, rather than slices.
1168    ///
1169    /// # Panics
1170    ///
1171    /// Panics if `chunk_size` is zero.
1172    ///
1173    /// # Examples
1174    ///
1175    /// ```
1176    /// let v = &mut [0, 0, 0, 0, 0];
1177    /// let mut count = 1;
1178    ///
1179    /// for chunk in v.chunks_mut(2) {
1180    ///     for elem in chunk.iter_mut() {
1181    ///         *elem += count;
1182    ///     }
1183    ///     count += 1;
1184    /// }
1185    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1186    /// ```
1187    ///
1188    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1189    /// [`rchunks_mut`]: slice::rchunks_mut
1190    /// [`as_chunks_mut`]: slice::as_chunks_mut
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1193    #[inline]
1194    #[track_caller]
1195    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1196        assert!(chunk_size != 0, "chunk size must be non-zero");
1197        ChunksMut::new(self, chunk_size)
1198    }
1199
1200    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1201    /// beginning of the slice.
1202    ///
1203    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1204    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1205    /// from the `remainder` function of the iterator.
1206    ///
1207    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1208    /// resulting code better than in the case of [`chunks`].
1209    ///
1210    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1211    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1212    ///
1213    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1214    /// give references to arrays of exactly that length, rather than slices.
1215    ///
1216    /// # Panics
1217    ///
1218    /// Panics if `chunk_size` is zero.
1219    ///
1220    /// # Examples
1221    ///
1222    /// ```
1223    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1224    /// let mut iter = slice.chunks_exact(2);
1225    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1226    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1227    /// assert!(iter.next().is_none());
1228    /// assert_eq!(iter.remainder(), &['m']);
1229    /// ```
1230    ///
1231    /// [`chunks`]: slice::chunks
1232    /// [`rchunks_exact`]: slice::rchunks_exact
1233    /// [`as_chunks`]: slice::as_chunks
1234    #[stable(feature = "chunks_exact", since = "1.31.0")]
1235    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1236    #[inline]
1237    #[track_caller]
1238    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1239        assert!(chunk_size != 0, "chunk size must be non-zero");
1240        ChunksExact::new(self, chunk_size)
1241    }
1242
1243    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1244    /// beginning of the slice.
1245    ///
1246    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1247    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1248    /// retrieved from the `into_remainder` function of the iterator.
1249    ///
1250    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1251    /// resulting code better than in the case of [`chunks_mut`].
1252    ///
1253    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1254    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1255    /// the slice.
1256    ///
1257    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1258    /// give references to arrays of exactly that length, rather than slices.
1259    ///
1260    /// # Panics
1261    ///
1262    /// Panics if `chunk_size` is zero.
1263    ///
1264    /// # Examples
1265    ///
1266    /// ```
1267    /// let v = &mut [0, 0, 0, 0, 0];
1268    /// let mut count = 1;
1269    ///
1270    /// for chunk in v.chunks_exact_mut(2) {
1271    ///     for elem in chunk.iter_mut() {
1272    ///         *elem += count;
1273    ///     }
1274    ///     count += 1;
1275    /// }
1276    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1277    /// ```
1278    ///
1279    /// [`chunks_mut`]: slice::chunks_mut
1280    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1281    /// [`as_chunks_mut`]: slice::as_chunks_mut
1282    #[stable(feature = "chunks_exact", since = "1.31.0")]
1283    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1284    #[inline]
1285    #[track_caller]
1286    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1287        assert!(chunk_size != 0, "chunk size must be non-zero");
1288        ChunksExactMut::new(self, chunk_size)
1289    }
1290
1291    /// Splits the slice into a slice of `N`-element arrays,
1292    /// assuming that there's no remainder.
1293    ///
1294    /// This is the inverse operation to [`as_flattened`].
1295    ///
1296    /// [`as_flattened`]: slice::as_flattened
1297    ///
1298    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1299    /// [`as_rchunks`] instead, perhaps via something like
1300    /// `if let (chunks, []) = slice.as_chunks()` or
1301    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1302    ///
1303    /// [`as_chunks`]: slice::as_chunks
1304    /// [`as_rchunks`]: slice::as_rchunks
1305    ///
1306    /// # Safety
1307    ///
1308    /// This may only be called when
1309    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1310    /// - `N != 0`.
1311    ///
1312    /// # Examples
1313    ///
1314    /// ```
1315    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1316    /// let chunks: &[[char; 1]] =
1317    ///     // SAFETY: 1-element chunks never have remainder
1318    ///     unsafe { slice.as_chunks_unchecked() };
1319    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1320    /// let chunks: &[[char; 3]] =
1321    ///     // SAFETY: The slice length (6) is a multiple of 3
1322    ///     unsafe { slice.as_chunks_unchecked() };
1323    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1324    ///
1325    /// // These would be unsound:
1326    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1327    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1328    /// ```
1329    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1330    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1331    #[inline]
1332    #[must_use]
1333    #[track_caller]
1334    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1335        assert_unsafe_precondition!(
1336            check_language_ub,
1337            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1338            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1339        );
1340        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1341        let new_len = unsafe { exact_div(self.len(), N) };
1342        // SAFETY: We cast a slice of `new_len * N` elements into
1343        // a slice of `new_len` many `N` elements chunks.
1344        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1345    }
1346
1347    /// Splits the slice into a slice of `N`-element arrays,
1348    /// starting at the beginning of the slice,
1349    /// and a remainder slice with length strictly less than `N`.
1350    ///
1351    /// The remainder is meaningful in the division sense.  Given
1352    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1353    /// - `chunks.len()` equals `slice.len() / N`,
1354    /// - `remainder.len()` equals `slice.len() % N`, and
1355    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1356    ///
1357    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1358    ///
1359    /// [`as_flattened`]: slice::as_flattened
1360    ///
1361    /// # Panics
1362    ///
1363    /// Panics if `N` is zero.
1364    ///
1365    /// Note that this check is against a const generic parameter, not a runtime
1366    /// value, and thus a particular monomorphization will either always panic
1367    /// or it will never panic.
1368    ///
1369    /// # Examples
1370    ///
1371    /// ```
1372    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1373    /// let (chunks, remainder) = slice.as_chunks();
1374    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1375    /// assert_eq!(remainder, &['m']);
1376    /// ```
1377    ///
1378    /// If you expect the slice to be an exact multiple, you can combine
1379    /// `let`-`else` with an empty slice pattern:
1380    /// ```
1381    /// let slice = ['R', 'u', 's', 't'];
1382    /// let (chunks, []) = slice.as_chunks::<2>() else {
1383    ///     panic!("slice didn't have even length")
1384    /// };
1385    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1386    /// ```
1387    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1388    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1389    #[inline]
1390    #[track_caller]
1391    #[must_use]
1392    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1393        assert!(N != 0, "chunk size must be non-zero");
1394        let len_rounded_down = self.len() / N * N;
1395        // SAFETY: The rounded-down value is always the same or smaller than the
1396        // original length, and thus must be in-bounds of the slice.
1397        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1398        // SAFETY: We already panicked for zero, and ensured by construction
1399        // that the length of the subslice is a multiple of N.
1400        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1401        (array_slice, remainder)
1402    }
1403
1404    /// Splits the slice into a slice of `N`-element arrays,
1405    /// starting at the end of the slice,
1406    /// and a remainder slice with length strictly less than `N`.
1407    ///
1408    /// The remainder is meaningful in the division sense.  Given
1409    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1410    /// - `remainder.len()` equals `slice.len() % N`,
1411    /// - `chunks.len()` equals `slice.len() / N`, and
1412    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1413    ///
1414    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1415    ///
1416    /// [`as_flattened`]: slice::as_flattened
1417    ///
1418    /// # Panics
1419    ///
1420    /// Panics if `N` is zero.
1421    ///
1422    /// Note that this check is against a const generic parameter, not a runtime
1423    /// value, and thus a particular monomorphization will either always panic
1424    /// or it will never panic.
1425    ///
1426    /// # Examples
1427    ///
1428    /// ```
1429    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1430    /// let (remainder, chunks) = slice.as_rchunks();
1431    /// assert_eq!(remainder, &['l']);
1432    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1433    /// ```
1434    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1435    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1436    #[inline]
1437    #[track_caller]
1438    #[must_use]
1439    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1440        assert!(N != 0, "chunk size must be non-zero");
1441        let len = self.len() / N;
1442        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1443        // SAFETY: We already panicked for zero, and ensured by construction
1444        // that the length of the subslice is a multiple of N.
1445        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1446        (remainder, array_slice)
1447    }
1448
1449    /// Splits the slice into a slice of `N`-element arrays,
1450    /// assuming that there's no remainder.
1451    ///
1452    /// This is the inverse operation to [`as_flattened_mut`].
1453    ///
1454    /// [`as_flattened_mut`]: slice::as_flattened_mut
1455    ///
1456    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1457    /// [`as_rchunks_mut`] instead, perhaps via something like
1458    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1459    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1460    ///
1461    /// [`as_chunks_mut`]: slice::as_chunks_mut
1462    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1463    ///
1464    /// # Safety
1465    ///
1466    /// This may only be called when
1467    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1468    /// - `N != 0`.
1469    ///
1470    /// # Examples
1471    ///
1472    /// ```
1473    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1474    /// let chunks: &mut [[char; 1]] =
1475    ///     // SAFETY: 1-element chunks never have remainder
1476    ///     unsafe { slice.as_chunks_unchecked_mut() };
1477    /// chunks[0] = ['L'];
1478    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1479    /// let chunks: &mut [[char; 3]] =
1480    ///     // SAFETY: The slice length (6) is a multiple of 3
1481    ///     unsafe { slice.as_chunks_unchecked_mut() };
1482    /// chunks[1] = ['a', 'x', '?'];
1483    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1484    ///
1485    /// // These would be unsound:
1486    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1487    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1488    /// ```
1489    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1490    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1491    #[inline]
1492    #[must_use]
1493    #[track_caller]
1494    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1495        assert_unsafe_precondition!(
1496            check_language_ub,
1497            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1498            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1499        );
1500        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1501        let new_len = unsafe { exact_div(self.len(), N) };
1502        // SAFETY: We cast a slice of `new_len * N` elements into
1503        // a slice of `new_len` many `N` elements chunks.
1504        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1505    }
1506
1507    /// Splits the slice into a slice of `N`-element arrays,
1508    /// starting at the beginning of the slice,
1509    /// and a remainder slice with length strictly less than `N`.
1510    ///
1511    /// The remainder is meaningful in the division sense.  Given
1512    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1513    /// - `chunks.len()` equals `slice.len() / N`,
1514    /// - `remainder.len()` equals `slice.len() % N`, and
1515    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1516    ///
1517    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1518    ///
1519    /// [`as_flattened_mut`]: slice::as_flattened_mut
1520    ///
1521    /// # Panics
1522    ///
1523    /// Panics if `N` is zero.
1524    ///
1525    /// Note that this check is against a const generic parameter, not a runtime
1526    /// value, and thus a particular monomorphization will either always panic
1527    /// or it will never panic.
1528    ///
1529    /// # Examples
1530    ///
1531    /// ```
1532    /// let v = &mut [0, 0, 0, 0, 0];
1533    /// let mut count = 1;
1534    ///
1535    /// let (chunks, remainder) = v.as_chunks_mut();
1536    /// remainder[0] = 9;
1537    /// for chunk in chunks {
1538    ///     *chunk = [count; 2];
1539    ///     count += 1;
1540    /// }
1541    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1542    /// ```
1543    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1544    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1545    #[inline]
1546    #[track_caller]
1547    #[must_use]
1548    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1549        assert!(N != 0, "chunk size must be non-zero");
1550        let len_rounded_down = self.len() / N * N;
1551        // SAFETY: The rounded-down value is always the same or smaller than the
1552        // original length, and thus must be in-bounds of the slice.
1553        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1554        // SAFETY: We already panicked for zero, and ensured by construction
1555        // that the length of the subslice is a multiple of N.
1556        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1557        (array_slice, remainder)
1558    }
1559
1560    /// Splits the slice into a slice of `N`-element arrays,
1561    /// starting at the end of the slice,
1562    /// and a remainder slice with length strictly less than `N`.
1563    ///
1564    /// The remainder is meaningful in the division sense.  Given
1565    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1566    /// - `remainder.len()` equals `slice.len() % N`,
1567    /// - `chunks.len()` equals `slice.len() / N`, and
1568    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1569    ///
1570    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1571    ///
1572    /// [`as_flattened_mut`]: slice::as_flattened_mut
1573    ///
1574    /// # Panics
1575    ///
1576    /// Panics if `N` is zero.
1577    ///
1578    /// Note that this check is against a const generic parameter, not a runtime
1579    /// value, and thus a particular monomorphization will either always panic
1580    /// or it will never panic.
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// let v = &mut [0, 0, 0, 0, 0];
1586    /// let mut count = 1;
1587    ///
1588    /// let (remainder, chunks) = v.as_rchunks_mut();
1589    /// remainder[0] = 9;
1590    /// for chunk in chunks {
1591    ///     *chunk = [count; 2];
1592    ///     count += 1;
1593    /// }
1594    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1595    /// ```
1596    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1597    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1598    #[inline]
1599    #[track_caller]
1600    #[must_use]
1601    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1602        assert!(N != 0, "chunk size must be non-zero");
1603        let len = self.len() / N;
1604        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1605        // SAFETY: We already panicked for zero, and ensured by construction
1606        // that the length of the subslice is a multiple of N.
1607        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1608        (remainder, array_slice)
1609    }
1610
1611    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1612    /// starting at the beginning of the slice.
1613    ///
1614    /// This is the const generic equivalent of [`windows`].
1615    ///
1616    /// If `N` is greater than the size of the slice, it will return no windows.
1617    ///
1618    /// # Panics
1619    ///
1620    /// Panics if `N` is zero. This check will most probably get changed to a compile time
1621    /// error before this method gets stabilized.
1622    ///
1623    /// # Examples
1624    ///
1625    /// ```
1626    /// #![feature(array_windows)]
1627    /// let slice = [0, 1, 2, 3];
1628    /// let mut iter = slice.array_windows();
1629    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1630    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1631    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1632    /// assert!(iter.next().is_none());
1633    /// ```
1634    ///
1635    /// [`windows`]: slice::windows
1636    #[unstable(feature = "array_windows", issue = "75027")]
1637    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1638    #[inline]
1639    #[track_caller]
1640    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1641        assert!(N != 0, "window size must be non-zero");
1642        ArrayWindows::new(self)
1643    }
1644
1645    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1646    /// of the slice.
1647    ///
1648    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1649    /// slice, then the last chunk will not have length `chunk_size`.
1650    ///
1651    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1652    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1653    /// of the slice.
1654    ///
1655    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1656    /// give references to arrays of exactly that length, rather than slices.
1657    ///
1658    /// # Panics
1659    ///
1660    /// Panics if `chunk_size` is zero.
1661    ///
1662    /// # Examples
1663    ///
1664    /// ```
1665    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1666    /// let mut iter = slice.rchunks(2);
1667    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1668    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1669    /// assert_eq!(iter.next().unwrap(), &['l']);
1670    /// assert!(iter.next().is_none());
1671    /// ```
1672    ///
1673    /// [`rchunks_exact`]: slice::rchunks_exact
1674    /// [`chunks`]: slice::chunks
1675    /// [`as_rchunks`]: slice::as_rchunks
1676    #[stable(feature = "rchunks", since = "1.31.0")]
1677    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1678    #[inline]
1679    #[track_caller]
1680    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1681        assert!(chunk_size != 0, "chunk size must be non-zero");
1682        RChunks::new(self, chunk_size)
1683    }
1684
1685    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1686    /// of the slice.
1687    ///
1688    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1689    /// length of the slice, then the last chunk will not have length `chunk_size`.
1690    ///
1691    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1692    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1693    /// beginning of the slice.
1694    ///
1695    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1696    /// give references to arrays of exactly that length, rather than slices.
1697    ///
1698    /// # Panics
1699    ///
1700    /// Panics if `chunk_size` is zero.
1701    ///
1702    /// # Examples
1703    ///
1704    /// ```
1705    /// let v = &mut [0, 0, 0, 0, 0];
1706    /// let mut count = 1;
1707    ///
1708    /// for chunk in v.rchunks_mut(2) {
1709    ///     for elem in chunk.iter_mut() {
1710    ///         *elem += count;
1711    ///     }
1712    ///     count += 1;
1713    /// }
1714    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1715    /// ```
1716    ///
1717    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1718    /// [`chunks_mut`]: slice::chunks_mut
1719    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1720    #[stable(feature = "rchunks", since = "1.31.0")]
1721    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1722    #[inline]
1723    #[track_caller]
1724    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1725        assert!(chunk_size != 0, "chunk size must be non-zero");
1726        RChunksMut::new(self, chunk_size)
1727    }
1728
1729    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1730    /// end of the slice.
1731    ///
1732    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1733    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1734    /// from the `remainder` function of the iterator.
1735    ///
1736    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1737    /// resulting code better than in the case of [`rchunks`].
1738    ///
1739    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1740    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1741    /// slice.
1742    ///
1743    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1744    /// give references to arrays of exactly that length, rather than slices.
1745    ///
1746    /// # Panics
1747    ///
1748    /// Panics if `chunk_size` is zero.
1749    ///
1750    /// # Examples
1751    ///
1752    /// ```
1753    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1754    /// let mut iter = slice.rchunks_exact(2);
1755    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1756    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1757    /// assert!(iter.next().is_none());
1758    /// assert_eq!(iter.remainder(), &['l']);
1759    /// ```
1760    ///
1761    /// [`chunks`]: slice::chunks
1762    /// [`rchunks`]: slice::rchunks
1763    /// [`chunks_exact`]: slice::chunks_exact
1764    /// [`as_rchunks`]: slice::as_rchunks
1765    #[stable(feature = "rchunks", since = "1.31.0")]
1766    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1767    #[inline]
1768    #[track_caller]
1769    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1770        assert!(chunk_size != 0, "chunk size must be non-zero");
1771        RChunksExact::new(self, chunk_size)
1772    }
1773
1774    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1775    /// of the slice.
1776    ///
1777    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1778    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1779    /// retrieved from the `into_remainder` function of the iterator.
1780    ///
1781    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1782    /// resulting code better than in the case of [`chunks_mut`].
1783    ///
1784    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1785    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1786    /// of the slice.
1787    ///
1788    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1789    /// give references to arrays of exactly that length, rather than slices.
1790    ///
1791    /// # Panics
1792    ///
1793    /// Panics if `chunk_size` is zero.
1794    ///
1795    /// # Examples
1796    ///
1797    /// ```
1798    /// let v = &mut [0, 0, 0, 0, 0];
1799    /// let mut count = 1;
1800    ///
1801    /// for chunk in v.rchunks_exact_mut(2) {
1802    ///     for elem in chunk.iter_mut() {
1803    ///         *elem += count;
1804    ///     }
1805    ///     count += 1;
1806    /// }
1807    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1808    /// ```
1809    ///
1810    /// [`chunks_mut`]: slice::chunks_mut
1811    /// [`rchunks_mut`]: slice::rchunks_mut
1812    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1813    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1814    #[stable(feature = "rchunks", since = "1.31.0")]
1815    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1816    #[inline]
1817    #[track_caller]
1818    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1819        assert!(chunk_size != 0, "chunk size must be non-zero");
1820        RChunksExactMut::new(self, chunk_size)
1821    }
1822
1823    /// Returns an iterator over the slice producing non-overlapping runs
1824    /// of elements using the predicate to separate them.
1825    ///
1826    /// The predicate is called for every pair of consecutive elements,
1827    /// meaning that it is called on `slice[0]` and `slice[1]`,
1828    /// followed by `slice[1]` and `slice[2]`, and so on.
1829    ///
1830    /// # Examples
1831    ///
1832    /// ```
1833    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1834    ///
1835    /// let mut iter = slice.chunk_by(|a, b| a == b);
1836    ///
1837    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1838    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1839    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1840    /// assert_eq!(iter.next(), None);
1841    /// ```
1842    ///
1843    /// This method can be used to extract the sorted subslices:
1844    ///
1845    /// ```
1846    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1847    ///
1848    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1849    ///
1850    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1851    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1852    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1853    /// assert_eq!(iter.next(), None);
1854    /// ```
1855    #[stable(feature = "slice_group_by", since = "1.77.0")]
1856    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1857    #[inline]
1858    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1859    where
1860        F: FnMut(&T, &T) -> bool,
1861    {
1862        ChunkBy::new(self, pred)
1863    }
1864
1865    /// Returns an iterator over the slice producing non-overlapping mutable
1866    /// runs of elements using the predicate to separate them.
1867    ///
1868    /// The predicate is called for every pair of consecutive elements,
1869    /// meaning that it is called on `slice[0]` and `slice[1]`,
1870    /// followed by `slice[1]` and `slice[2]`, and so on.
1871    ///
1872    /// # Examples
1873    ///
1874    /// ```
1875    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1876    ///
1877    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1878    ///
1879    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1880    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1881    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1882    /// assert_eq!(iter.next(), None);
1883    /// ```
1884    ///
1885    /// This method can be used to extract the sorted subslices:
1886    ///
1887    /// ```
1888    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1889    ///
1890    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1891    ///
1892    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1893    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1894    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1895    /// assert_eq!(iter.next(), None);
1896    /// ```
1897    #[stable(feature = "slice_group_by", since = "1.77.0")]
1898    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1899    #[inline]
1900    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1901    where
1902        F: FnMut(&T, &T) -> bool,
1903    {
1904        ChunkByMut::new(self, pred)
1905    }
1906
1907    /// Divides one slice into two at an index.
1908    ///
1909    /// The first will contain all indices from `[0, mid)` (excluding
1910    /// the index `mid` itself) and the second will contain all
1911    /// indices from `[mid, len)` (excluding the index `len` itself).
1912    ///
1913    /// # Panics
1914    ///
1915    /// Panics if `mid > len`.  For a non-panicking alternative see
1916    /// [`split_at_checked`](slice::split_at_checked).
1917    ///
1918    /// # Examples
1919    ///
1920    /// ```
1921    /// let v = ['a', 'b', 'c'];
1922    ///
1923    /// {
1924    ///    let (left, right) = v.split_at(0);
1925    ///    assert_eq!(left, []);
1926    ///    assert_eq!(right, ['a', 'b', 'c']);
1927    /// }
1928    ///
1929    /// {
1930    ///     let (left, right) = v.split_at(2);
1931    ///     assert_eq!(left, ['a', 'b']);
1932    ///     assert_eq!(right, ['c']);
1933    /// }
1934    ///
1935    /// {
1936    ///     let (left, right) = v.split_at(3);
1937    ///     assert_eq!(left, ['a', 'b', 'c']);
1938    ///     assert_eq!(right, []);
1939    /// }
1940    /// ```
1941    #[stable(feature = "rust1", since = "1.0.0")]
1942    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1943    #[inline]
1944    #[track_caller]
1945    #[must_use]
1946    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1947        match self.split_at_checked(mid) {
1948            Some(pair) => pair,
1949            None => panic!("mid > len"),
1950        }
1951    }
1952
1953    /// Divides one mutable slice into two at an index.
1954    ///
1955    /// The first will contain all indices from `[0, mid)` (excluding
1956    /// the index `mid` itself) and the second will contain all
1957    /// indices from `[mid, len)` (excluding the index `len` itself).
1958    ///
1959    /// # Panics
1960    ///
1961    /// Panics if `mid > len`.  For a non-panicking alternative see
1962    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1963    ///
1964    /// # Examples
1965    ///
1966    /// ```
1967    /// let mut v = [1, 0, 3, 0, 5, 6];
1968    /// let (left, right) = v.split_at_mut(2);
1969    /// assert_eq!(left, [1, 0]);
1970    /// assert_eq!(right, [3, 0, 5, 6]);
1971    /// left[1] = 2;
1972    /// right[1] = 4;
1973    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1974    /// ```
1975    #[stable(feature = "rust1", since = "1.0.0")]
1976    #[inline]
1977    #[track_caller]
1978    #[must_use]
1979    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
1980    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1981        match self.split_at_mut_checked(mid) {
1982            Some(pair) => pair,
1983            None => panic!("mid > len"),
1984        }
1985    }
1986
1987    /// Divides one slice into two at an index, without doing bounds checking.
1988    ///
1989    /// The first will contain all indices from `[0, mid)` (excluding
1990    /// the index `mid` itself) and the second will contain all
1991    /// indices from `[mid, len)` (excluding the index `len` itself).
1992    ///
1993    /// For a safe alternative see [`split_at`].
1994    ///
1995    /// # Safety
1996    ///
1997    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
1998    /// even if the resulting reference is not used. The caller has to ensure that
1999    /// `0 <= mid <= self.len()`.
2000    ///
2001    /// [`split_at`]: slice::split_at
2002    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2003    ///
2004    /// # Examples
2005    ///
2006    /// ```
2007    /// let v = ['a', 'b', 'c'];
2008    ///
2009    /// unsafe {
2010    ///    let (left, right) = v.split_at_unchecked(0);
2011    ///    assert_eq!(left, []);
2012    ///    assert_eq!(right, ['a', 'b', 'c']);
2013    /// }
2014    ///
2015    /// unsafe {
2016    ///     let (left, right) = v.split_at_unchecked(2);
2017    ///     assert_eq!(left, ['a', 'b']);
2018    ///     assert_eq!(right, ['c']);
2019    /// }
2020    ///
2021    /// unsafe {
2022    ///     let (left, right) = v.split_at_unchecked(3);
2023    ///     assert_eq!(left, ['a', 'b', 'c']);
2024    ///     assert_eq!(right, []);
2025    /// }
2026    /// ```
2027    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2028    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2029    #[inline]
2030    #[must_use]
2031    #[track_caller]
2032    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2033        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2034        // function const; previously the implementation used
2035        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2036
2037        let len = self.len();
2038        let ptr = self.as_ptr();
2039
2040        assert_unsafe_precondition!(
2041            check_library_ub,
2042            "slice::split_at_unchecked requires the index to be within the slice",
2043            (mid: usize = mid, len: usize = len) => mid <= len,
2044        );
2045
2046        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2047        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2048    }
2049
2050    /// Divides one mutable slice into two at an index, without doing bounds checking.
2051    ///
2052    /// The first will contain all indices from `[0, mid)` (excluding
2053    /// the index `mid` itself) and the second will contain all
2054    /// indices from `[mid, len)` (excluding the index `len` itself).
2055    ///
2056    /// For a safe alternative see [`split_at_mut`].
2057    ///
2058    /// # Safety
2059    ///
2060    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2061    /// even if the resulting reference is not used. The caller has to ensure that
2062    /// `0 <= mid <= self.len()`.
2063    ///
2064    /// [`split_at_mut`]: slice::split_at_mut
2065    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2066    ///
2067    /// # Examples
2068    ///
2069    /// ```
2070    /// let mut v = [1, 0, 3, 0, 5, 6];
2071    /// // scoped to restrict the lifetime of the borrows
2072    /// unsafe {
2073    ///     let (left, right) = v.split_at_mut_unchecked(2);
2074    ///     assert_eq!(left, [1, 0]);
2075    ///     assert_eq!(right, [3, 0, 5, 6]);
2076    ///     left[1] = 2;
2077    ///     right[1] = 4;
2078    /// }
2079    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2080    /// ```
2081    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2082    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2083    #[inline]
2084    #[must_use]
2085    #[track_caller]
2086    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2087        let len = self.len();
2088        let ptr = self.as_mut_ptr();
2089
2090        assert_unsafe_precondition!(
2091            check_library_ub,
2092            "slice::split_at_mut_unchecked requires the index to be within the slice",
2093            (mid: usize = mid, len: usize = len) => mid <= len,
2094        );
2095
2096        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2097        //
2098        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2099        // is fine.
2100        unsafe {
2101            (
2102                from_raw_parts_mut(ptr, mid),
2103                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2104            )
2105        }
2106    }
2107
2108    /// Divides one slice into two at an index, returning `None` if the slice is
2109    /// too short.
2110    ///
2111    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2112    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2113    /// second will contain all indices from `[mid, len)` (excluding the index
2114    /// `len` itself).
2115    ///
2116    /// Otherwise, if `mid > len`, returns `None`.
2117    ///
2118    /// # Examples
2119    ///
2120    /// ```
2121    /// let v = [1, -2, 3, -4, 5, -6];
2122    ///
2123    /// {
2124    ///    let (left, right) = v.split_at_checked(0).unwrap();
2125    ///    assert_eq!(left, []);
2126    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2127    /// }
2128    ///
2129    /// {
2130    ///     let (left, right) = v.split_at_checked(2).unwrap();
2131    ///     assert_eq!(left, [1, -2]);
2132    ///     assert_eq!(right, [3, -4, 5, -6]);
2133    /// }
2134    ///
2135    /// {
2136    ///     let (left, right) = v.split_at_checked(6).unwrap();
2137    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2138    ///     assert_eq!(right, []);
2139    /// }
2140    ///
2141    /// assert_eq!(None, v.split_at_checked(7));
2142    /// ```
2143    #[stable(feature = "split_at_checked", since = "1.80.0")]
2144    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2145    #[inline]
2146    #[must_use]
2147    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2148        if mid <= self.len() {
2149            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2150            // fulfills the requirements of `split_at_unchecked`.
2151            Some(unsafe { self.split_at_unchecked(mid) })
2152        } else {
2153            None
2154        }
2155    }
2156
2157    /// Divides one mutable slice into two at an index, returning `None` if the
2158    /// slice is too short.
2159    ///
2160    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2161    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2162    /// second will contain all indices from `[mid, len)` (excluding the index
2163    /// `len` itself).
2164    ///
2165    /// Otherwise, if `mid > len`, returns `None`.
2166    ///
2167    /// # Examples
2168    ///
2169    /// ```
2170    /// let mut v = [1, 0, 3, 0, 5, 6];
2171    ///
2172    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2173    ///     assert_eq!(left, [1, 0]);
2174    ///     assert_eq!(right, [3, 0, 5, 6]);
2175    ///     left[1] = 2;
2176    ///     right[1] = 4;
2177    /// }
2178    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2179    ///
2180    /// assert_eq!(None, v.split_at_mut_checked(7));
2181    /// ```
2182    #[stable(feature = "split_at_checked", since = "1.80.0")]
2183    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2184    #[inline]
2185    #[must_use]
2186    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2187        if mid <= self.len() {
2188            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2189            // fulfills the requirements of `split_at_unchecked`.
2190            Some(unsafe { self.split_at_mut_unchecked(mid) })
2191        } else {
2192            None
2193        }
2194    }
2195
2196    /// Returns an iterator over subslices separated by elements that match
2197    /// `pred`. The matched element is not contained in the subslices.
2198    ///
2199    /// # Examples
2200    ///
2201    /// ```
2202    /// let slice = [10, 40, 33, 20];
2203    /// let mut iter = slice.split(|num| num % 3 == 0);
2204    ///
2205    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2206    /// assert_eq!(iter.next().unwrap(), &[20]);
2207    /// assert!(iter.next().is_none());
2208    /// ```
2209    ///
2210    /// If the first element is matched, an empty slice will be the first item
2211    /// returned by the iterator. Similarly, if the last element in the slice
2212    /// is matched, an empty slice will be the last item returned by the
2213    /// iterator:
2214    ///
2215    /// ```
2216    /// let slice = [10, 40, 33];
2217    /// let mut iter = slice.split(|num| num % 3 == 0);
2218    ///
2219    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2220    /// assert_eq!(iter.next().unwrap(), &[]);
2221    /// assert!(iter.next().is_none());
2222    /// ```
2223    ///
2224    /// If two matched elements are directly adjacent, an empty slice will be
2225    /// present between them:
2226    ///
2227    /// ```
2228    /// let slice = [10, 6, 33, 20];
2229    /// let mut iter = slice.split(|num| num % 3 == 0);
2230    ///
2231    /// assert_eq!(iter.next().unwrap(), &[10]);
2232    /// assert_eq!(iter.next().unwrap(), &[]);
2233    /// assert_eq!(iter.next().unwrap(), &[20]);
2234    /// assert!(iter.next().is_none());
2235    /// ```
2236    #[stable(feature = "rust1", since = "1.0.0")]
2237    #[inline]
2238    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2239    where
2240        F: FnMut(&T) -> bool,
2241    {
2242        Split::new(self, pred)
2243    }
2244
2245    /// Returns an iterator over mutable subslices separated by elements that
2246    /// match `pred`. The matched element is not contained in the subslices.
2247    ///
2248    /// # Examples
2249    ///
2250    /// ```
2251    /// let mut v = [10, 40, 30, 20, 60, 50];
2252    ///
2253    /// for group in v.split_mut(|num| *num % 3 == 0) {
2254    ///     group[0] = 1;
2255    /// }
2256    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2257    /// ```
2258    #[stable(feature = "rust1", since = "1.0.0")]
2259    #[inline]
2260    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2261    where
2262        F: FnMut(&T) -> bool,
2263    {
2264        SplitMut::new(self, pred)
2265    }
2266
2267    /// Returns an iterator over subslices separated by elements that match
2268    /// `pred`. The matched element is contained in the end of the previous
2269    /// subslice as a terminator.
2270    ///
2271    /// # Examples
2272    ///
2273    /// ```
2274    /// let slice = [10, 40, 33, 20];
2275    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2276    ///
2277    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2278    /// assert_eq!(iter.next().unwrap(), &[20]);
2279    /// assert!(iter.next().is_none());
2280    /// ```
2281    ///
2282    /// If the last element of the slice is matched,
2283    /// that element will be considered the terminator of the preceding slice.
2284    /// That slice will be the last item returned by the iterator.
2285    ///
2286    /// ```
2287    /// let slice = [3, 10, 40, 33];
2288    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2289    ///
2290    /// assert_eq!(iter.next().unwrap(), &[3]);
2291    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2292    /// assert!(iter.next().is_none());
2293    /// ```
2294    #[stable(feature = "split_inclusive", since = "1.51.0")]
2295    #[inline]
2296    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2297    where
2298        F: FnMut(&T) -> bool,
2299    {
2300        SplitInclusive::new(self, pred)
2301    }
2302
2303    /// Returns an iterator over mutable subslices separated by elements that
2304    /// match `pred`. The matched element is contained in the previous
2305    /// subslice as a terminator.
2306    ///
2307    /// # Examples
2308    ///
2309    /// ```
2310    /// let mut v = [10, 40, 30, 20, 60, 50];
2311    ///
2312    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2313    ///     let terminator_idx = group.len()-1;
2314    ///     group[terminator_idx] = 1;
2315    /// }
2316    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2317    /// ```
2318    #[stable(feature = "split_inclusive", since = "1.51.0")]
2319    #[inline]
2320    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2321    where
2322        F: FnMut(&T) -> bool,
2323    {
2324        SplitInclusiveMut::new(self, pred)
2325    }
2326
2327    /// Returns an iterator over subslices separated by elements that match
2328    /// `pred`, starting at the end of the slice and working backwards.
2329    /// The matched element is not contained in the subslices.
2330    ///
2331    /// # Examples
2332    ///
2333    /// ```
2334    /// let slice = [11, 22, 33, 0, 44, 55];
2335    /// let mut iter = slice.rsplit(|num| *num == 0);
2336    ///
2337    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2338    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2339    /// assert_eq!(iter.next(), None);
2340    /// ```
2341    ///
2342    /// As with `split()`, if the first or last element is matched, an empty
2343    /// slice will be the first (or last) item returned by the iterator.
2344    ///
2345    /// ```
2346    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2347    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2348    /// assert_eq!(it.next().unwrap(), &[]);
2349    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2350    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2351    /// assert_eq!(it.next().unwrap(), &[]);
2352    /// assert_eq!(it.next(), None);
2353    /// ```
2354    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2355    #[inline]
2356    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2357    where
2358        F: FnMut(&T) -> bool,
2359    {
2360        RSplit::new(self, pred)
2361    }
2362
2363    /// Returns an iterator over mutable subslices separated by elements that
2364    /// match `pred`, starting at the end of the slice and working
2365    /// backwards. The matched element is not contained in the subslices.
2366    ///
2367    /// # Examples
2368    ///
2369    /// ```
2370    /// let mut v = [100, 400, 300, 200, 600, 500];
2371    ///
2372    /// let mut count = 0;
2373    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2374    ///     count += 1;
2375    ///     group[0] = count;
2376    /// }
2377    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2378    /// ```
2379    ///
2380    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2381    #[inline]
2382    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2383    where
2384        F: FnMut(&T) -> bool,
2385    {
2386        RSplitMut::new(self, pred)
2387    }
2388
2389    /// Returns an iterator over subslices separated by elements that match
2390    /// `pred`, limited to returning at most `n` items. The matched element is
2391    /// not contained in the subslices.
2392    ///
2393    /// The last element returned, if any, will contain the remainder of the
2394    /// slice.
2395    ///
2396    /// # Examples
2397    ///
2398    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2399    /// `[20, 60, 50]`):
2400    ///
2401    /// ```
2402    /// let v = [10, 40, 30, 20, 60, 50];
2403    ///
2404    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2405    ///     println!("{group:?}");
2406    /// }
2407    /// ```
2408    #[stable(feature = "rust1", since = "1.0.0")]
2409    #[inline]
2410    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2411    where
2412        F: FnMut(&T) -> bool,
2413    {
2414        SplitN::new(self.split(pred), n)
2415    }
2416
2417    /// Returns an iterator over mutable subslices separated by elements that match
2418    /// `pred`, limited to returning at most `n` items. The matched element is
2419    /// not contained in the subslices.
2420    ///
2421    /// The last element returned, if any, will contain the remainder of the
2422    /// slice.
2423    ///
2424    /// # Examples
2425    ///
2426    /// ```
2427    /// let mut v = [10, 40, 30, 20, 60, 50];
2428    ///
2429    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2430    ///     group[0] = 1;
2431    /// }
2432    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2433    /// ```
2434    #[stable(feature = "rust1", since = "1.0.0")]
2435    #[inline]
2436    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2437    where
2438        F: FnMut(&T) -> bool,
2439    {
2440        SplitNMut::new(self.split_mut(pred), n)
2441    }
2442
2443    /// Returns an iterator over subslices separated by elements that match
2444    /// `pred` limited to returning at most `n` items. This starts at the end of
2445    /// the slice and works backwards. The matched element is not contained in
2446    /// the subslices.
2447    ///
2448    /// The last element returned, if any, will contain the remainder of the
2449    /// slice.
2450    ///
2451    /// # Examples
2452    ///
2453    /// Print the slice split once, starting from the end, by numbers divisible
2454    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2455    ///
2456    /// ```
2457    /// let v = [10, 40, 30, 20, 60, 50];
2458    ///
2459    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2460    ///     println!("{group:?}");
2461    /// }
2462    /// ```
2463    #[stable(feature = "rust1", since = "1.0.0")]
2464    #[inline]
2465    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2466    where
2467        F: FnMut(&T) -> bool,
2468    {
2469        RSplitN::new(self.rsplit(pred), n)
2470    }
2471
2472    /// Returns an iterator over subslices separated by elements that match
2473    /// `pred` limited to returning at most `n` items. This starts at the end of
2474    /// the slice and works backwards. The matched element is not contained in
2475    /// the subslices.
2476    ///
2477    /// The last element returned, if any, will contain the remainder of the
2478    /// slice.
2479    ///
2480    /// # Examples
2481    ///
2482    /// ```
2483    /// let mut s = [10, 40, 30, 20, 60, 50];
2484    ///
2485    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2486    ///     group[0] = 1;
2487    /// }
2488    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2489    /// ```
2490    #[stable(feature = "rust1", since = "1.0.0")]
2491    #[inline]
2492    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2493    where
2494        F: FnMut(&T) -> bool,
2495    {
2496        RSplitNMut::new(self.rsplit_mut(pred), n)
2497    }
2498
2499    /// Splits the slice on the first element that matches the specified
2500    /// predicate.
2501    ///
2502    /// If any matching elements are present in the slice, returns the prefix
2503    /// before the match and suffix after. The matching element itself is not
2504    /// included. If no elements match, returns `None`.
2505    ///
2506    /// # Examples
2507    ///
2508    /// ```
2509    /// #![feature(slice_split_once)]
2510    /// let s = [1, 2, 3, 2, 4];
2511    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2512    ///     &[1][..],
2513    ///     &[3, 2, 4][..]
2514    /// )));
2515    /// assert_eq!(s.split_once(|&x| x == 0), None);
2516    /// ```
2517    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2518    #[inline]
2519    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2520    where
2521        F: FnMut(&T) -> bool,
2522    {
2523        let index = self.iter().position(pred)?;
2524        Some((&self[..index], &self[index + 1..]))
2525    }
2526
2527    /// Splits the slice on the last element that matches the specified
2528    /// predicate.
2529    ///
2530    /// If any matching elements are present in the slice, returns the prefix
2531    /// before the match and suffix after. The matching element itself is not
2532    /// included. If no elements match, returns `None`.
2533    ///
2534    /// # Examples
2535    ///
2536    /// ```
2537    /// #![feature(slice_split_once)]
2538    /// let s = [1, 2, 3, 2, 4];
2539    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2540    ///     &[1, 2, 3][..],
2541    ///     &[4][..]
2542    /// )));
2543    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2544    /// ```
2545    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2546    #[inline]
2547    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2548    where
2549        F: FnMut(&T) -> bool,
2550    {
2551        let index = self.iter().rposition(pred)?;
2552        Some((&self[..index], &self[index + 1..]))
2553    }
2554
2555    /// Returns `true` if the slice contains an element with the given value.
2556    ///
2557    /// This operation is *O*(*n*).
2558    ///
2559    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2560    ///
2561    /// [`binary_search`]: slice::binary_search
2562    ///
2563    /// # Examples
2564    ///
2565    /// ```
2566    /// let v = [10, 40, 30];
2567    /// assert!(v.contains(&30));
2568    /// assert!(!v.contains(&50));
2569    /// ```
2570    ///
2571    /// If you do not have a `&T`, but some other value that you can compare
2572    /// with one (for example, `String` implements `PartialEq<str>`), you can
2573    /// use `iter().any`:
2574    ///
2575    /// ```
2576    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2577    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2578    /// assert!(!v.iter().any(|e| e == "hi"));
2579    /// ```
2580    #[stable(feature = "rust1", since = "1.0.0")]
2581    #[inline]
2582    #[must_use]
2583    pub fn contains(&self, x: &T) -> bool
2584    where
2585        T: PartialEq,
2586    {
2587        cmp::SliceContains::slice_contains(x, self)
2588    }
2589
2590    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2591    ///
2592    /// # Examples
2593    ///
2594    /// ```
2595    /// let v = [10, 40, 30];
2596    /// assert!(v.starts_with(&[10]));
2597    /// assert!(v.starts_with(&[10, 40]));
2598    /// assert!(v.starts_with(&v));
2599    /// assert!(!v.starts_with(&[50]));
2600    /// assert!(!v.starts_with(&[10, 50]));
2601    /// ```
2602    ///
2603    /// Always returns `true` if `needle` is an empty slice:
2604    ///
2605    /// ```
2606    /// let v = &[10, 40, 30];
2607    /// assert!(v.starts_with(&[]));
2608    /// let v: &[u8] = &[];
2609    /// assert!(v.starts_with(&[]));
2610    /// ```
2611    #[stable(feature = "rust1", since = "1.0.0")]
2612    #[must_use]
2613    pub fn starts_with(&self, needle: &[T]) -> bool
2614    where
2615        T: PartialEq,
2616    {
2617        let n = needle.len();
2618        self.len() >= n && needle == &self[..n]
2619    }
2620
2621    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2622    ///
2623    /// # Examples
2624    ///
2625    /// ```
2626    /// let v = [10, 40, 30];
2627    /// assert!(v.ends_with(&[30]));
2628    /// assert!(v.ends_with(&[40, 30]));
2629    /// assert!(v.ends_with(&v));
2630    /// assert!(!v.ends_with(&[50]));
2631    /// assert!(!v.ends_with(&[50, 30]));
2632    /// ```
2633    ///
2634    /// Always returns `true` if `needle` is an empty slice:
2635    ///
2636    /// ```
2637    /// let v = &[10, 40, 30];
2638    /// assert!(v.ends_with(&[]));
2639    /// let v: &[u8] = &[];
2640    /// assert!(v.ends_with(&[]));
2641    /// ```
2642    #[stable(feature = "rust1", since = "1.0.0")]
2643    #[must_use]
2644    pub fn ends_with(&self, needle: &[T]) -> bool
2645    where
2646        T: PartialEq,
2647    {
2648        let (m, n) = (self.len(), needle.len());
2649        m >= n && needle == &self[m - n..]
2650    }
2651
2652    /// Returns a subslice with the prefix removed.
2653    ///
2654    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2655    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2656    /// original slice, returns an empty slice.
2657    ///
2658    /// If the slice does not start with `prefix`, returns `None`.
2659    ///
2660    /// # Examples
2661    ///
2662    /// ```
2663    /// let v = &[10, 40, 30];
2664    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2665    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2666    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2667    /// assert_eq!(v.strip_prefix(&[50]), None);
2668    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2669    ///
2670    /// let prefix : &str = "he";
2671    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2672    ///            Some(b"llo".as_ref()));
2673    /// ```
2674    #[must_use = "returns the subslice without modifying the original"]
2675    #[stable(feature = "slice_strip", since = "1.51.0")]
2676    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2677    where
2678        T: PartialEq,
2679    {
2680        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2681        let prefix = prefix.as_slice();
2682        let n = prefix.len();
2683        if n <= self.len() {
2684            let (head, tail) = self.split_at(n);
2685            if head == prefix {
2686                return Some(tail);
2687            }
2688        }
2689        None
2690    }
2691
2692    /// Returns a subslice with the suffix removed.
2693    ///
2694    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2695    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2696    /// original slice, returns an empty slice.
2697    ///
2698    /// If the slice does not end with `suffix`, returns `None`.
2699    ///
2700    /// # Examples
2701    ///
2702    /// ```
2703    /// let v = &[10, 40, 30];
2704    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2705    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2706    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2707    /// assert_eq!(v.strip_suffix(&[50]), None);
2708    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2709    /// ```
2710    #[must_use = "returns the subslice without modifying the original"]
2711    #[stable(feature = "slice_strip", since = "1.51.0")]
2712    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2713    where
2714        T: PartialEq,
2715    {
2716        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2717        let suffix = suffix.as_slice();
2718        let (len, n) = (self.len(), suffix.len());
2719        if n <= len {
2720            let (head, tail) = self.split_at(len - n);
2721            if tail == suffix {
2722                return Some(head);
2723            }
2724        }
2725        None
2726    }
2727
2728    /// Returns a subslice with the optional prefix removed.
2729    ///
2730    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2731    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2732    /// If `prefix` is equal to the original slice, returns an empty slice.
2733    ///
2734    /// # Examples
2735    ///
2736    /// ```
2737    /// #![feature(trim_prefix_suffix)]
2738    ///
2739    /// let v = &[10, 40, 30];
2740    ///
2741    /// // Prefix present - removes it
2742    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2743    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2744    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2745    ///
2746    /// // Prefix absent - returns original slice
2747    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2748    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2749    ///
2750    /// let prefix : &str = "he";
2751    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2752    /// ```
2753    #[must_use = "returns the subslice without modifying the original"]
2754    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2755    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2756    where
2757        T: PartialEq,
2758    {
2759        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2760        let prefix = prefix.as_slice();
2761        let n = prefix.len();
2762        if n <= self.len() {
2763            let (head, tail) = self.split_at(n);
2764            if head == prefix {
2765                return tail;
2766            }
2767        }
2768        self
2769    }
2770
2771    /// Returns a subslice with the optional suffix removed.
2772    ///
2773    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2774    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2775    /// If `suffix` is equal to the original slice, returns an empty slice.
2776    ///
2777    /// # Examples
2778    ///
2779    /// ```
2780    /// #![feature(trim_prefix_suffix)]
2781    ///
2782    /// let v = &[10, 40, 30];
2783    ///
2784    /// // Suffix present - removes it
2785    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2786    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2787    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2788    ///
2789    /// // Suffix absent - returns original slice
2790    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2791    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2792    /// ```
2793    #[must_use = "returns the subslice without modifying the original"]
2794    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2795    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2796    where
2797        T: PartialEq,
2798    {
2799        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2800        let suffix = suffix.as_slice();
2801        let (len, n) = (self.len(), suffix.len());
2802        if n <= len {
2803            let (head, tail) = self.split_at(len - n);
2804            if tail == suffix {
2805                return head;
2806            }
2807        }
2808        self
2809    }
2810
2811    /// Binary searches this slice for a given element.
2812    /// If the slice is not sorted, the returned result is unspecified and
2813    /// meaningless.
2814    ///
2815    /// If the value is found then [`Result::Ok`] is returned, containing the
2816    /// index of the matching element. If there are multiple matches, then any
2817    /// one of the matches could be returned. The index is chosen
2818    /// deterministically, but is subject to change in future versions of Rust.
2819    /// If the value is not found then [`Result::Err`] is returned, containing
2820    /// the index where a matching element could be inserted while maintaining
2821    /// sorted order.
2822    ///
2823    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2824    ///
2825    /// [`binary_search_by`]: slice::binary_search_by
2826    /// [`binary_search_by_key`]: slice::binary_search_by_key
2827    /// [`partition_point`]: slice::partition_point
2828    ///
2829    /// # Examples
2830    ///
2831    /// Looks up a series of four elements. The first is found, with a
2832    /// uniquely determined position; the second and third are not
2833    /// found; the fourth could match any position in `[1, 4]`.
2834    ///
2835    /// ```
2836    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2837    ///
2838    /// assert_eq!(s.binary_search(&13),  Ok(9));
2839    /// assert_eq!(s.binary_search(&4),   Err(7));
2840    /// assert_eq!(s.binary_search(&100), Err(13));
2841    /// let r = s.binary_search(&1);
2842    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2843    /// ```
2844    ///
2845    /// If you want to find that whole *range* of matching items, rather than
2846    /// an arbitrary matching one, that can be done using [`partition_point`]:
2847    /// ```
2848    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2849    ///
2850    /// let low = s.partition_point(|x| x < &1);
2851    /// assert_eq!(low, 1);
2852    /// let high = s.partition_point(|x| x <= &1);
2853    /// assert_eq!(high, 5);
2854    /// let r = s.binary_search(&1);
2855    /// assert!((low..high).contains(&r.unwrap()));
2856    ///
2857    /// assert!(s[..low].iter().all(|&x| x < 1));
2858    /// assert!(s[low..high].iter().all(|&x| x == 1));
2859    /// assert!(s[high..].iter().all(|&x| x > 1));
2860    ///
2861    /// // For something not found, the "range" of equal items is empty
2862    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2863    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2864    /// assert_eq!(s.binary_search(&11), Err(9));
2865    /// ```
2866    ///
2867    /// If you want to insert an item to a sorted vector, while maintaining
2868    /// sort order, consider using [`partition_point`]:
2869    ///
2870    /// ```
2871    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2872    /// let num = 42;
2873    /// let idx = s.partition_point(|&x| x <= num);
2874    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2875    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2876    /// // to shift less elements.
2877    /// s.insert(idx, num);
2878    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2879    /// ```
2880    #[stable(feature = "rust1", since = "1.0.0")]
2881    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2882    where
2883        T: Ord,
2884    {
2885        self.binary_search_by(|p| p.cmp(x))
2886    }
2887
2888    /// Binary searches this slice with a comparator function.
2889    ///
2890    /// The comparator function should return an order code that indicates
2891    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2892    /// target.
2893    /// If the slice is not sorted or if the comparator function does not
2894    /// implement an order consistent with the sort order of the underlying
2895    /// slice, the returned result is unspecified and meaningless.
2896    ///
2897    /// If the value is found then [`Result::Ok`] is returned, containing the
2898    /// index of the matching element. If there are multiple matches, then any
2899    /// one of the matches could be returned. The index is chosen
2900    /// deterministically, but is subject to change in future versions of Rust.
2901    /// If the value is not found then [`Result::Err`] is returned, containing
2902    /// the index where a matching element could be inserted while maintaining
2903    /// sorted order.
2904    ///
2905    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2906    ///
2907    /// [`binary_search`]: slice::binary_search
2908    /// [`binary_search_by_key`]: slice::binary_search_by_key
2909    /// [`partition_point`]: slice::partition_point
2910    ///
2911    /// # Examples
2912    ///
2913    /// Looks up a series of four elements. The first is found, with a
2914    /// uniquely determined position; the second and third are not
2915    /// found; the fourth could match any position in `[1, 4]`.
2916    ///
2917    /// ```
2918    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2919    ///
2920    /// let seek = 13;
2921    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2922    /// let seek = 4;
2923    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2924    /// let seek = 100;
2925    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2926    /// let seek = 1;
2927    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2928    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2929    /// ```
2930    #[stable(feature = "rust1", since = "1.0.0")]
2931    #[inline]
2932    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2933    where
2934        F: FnMut(&'a T) -> Ordering,
2935    {
2936        let mut size = self.len();
2937        if size == 0 {
2938            return Err(0);
2939        }
2940        let mut base = 0usize;
2941
2942        // This loop intentionally doesn't have an early exit if the comparison
2943        // returns Equal. We want the number of loop iterations to depend *only*
2944        // on the size of the input slice so that the CPU can reliably predict
2945        // the loop count.
2946        while size > 1 {
2947            let half = size / 2;
2948            let mid = base + half;
2949
2950            // SAFETY: the call is made safe by the following invariants:
2951            // - `mid >= 0`: by definition
2952            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2953            let cmp = f(unsafe { self.get_unchecked(mid) });
2954
2955            // Binary search interacts poorly with branch prediction, so force
2956            // the compiler to use conditional moves if supported by the target
2957            // architecture.
2958            base = hint::select_unpredictable(cmp == Greater, base, mid);
2959
2960            // This is imprecise in the case where `size` is odd and the
2961            // comparison returns Greater: the mid element still gets included
2962            // by `size` even though it's known to be larger than the element
2963            // being searched for.
2964            //
2965            // This is fine though: we gain more performance by keeping the
2966            // loop iteration count invariant (and thus predictable) than we
2967            // lose from considering one additional element.
2968            size -= half;
2969        }
2970
2971        // SAFETY: base is always in [0, size) because base <= mid.
2972        let cmp = f(unsafe { self.get_unchecked(base) });
2973        if cmp == Equal {
2974            // SAFETY: same as the `get_unchecked` above.
2975            unsafe { hint::assert_unchecked(base < self.len()) };
2976            Ok(base)
2977        } else {
2978            let result = base + (cmp == Less) as usize;
2979            // SAFETY: same as the `get_unchecked` above.
2980            // Note that this is `<=`, unlike the assume in the `Ok` path.
2981            unsafe { hint::assert_unchecked(result <= self.len()) };
2982            Err(result)
2983        }
2984    }
2985
2986    /// Binary searches this slice with a key extraction function.
2987    ///
2988    /// Assumes that the slice is sorted by the key, for instance with
2989    /// [`sort_by_key`] using the same key extraction function.
2990    /// If the slice is not sorted by the key, the returned result is
2991    /// unspecified and meaningless.
2992    ///
2993    /// If the value is found then [`Result::Ok`] is returned, containing the
2994    /// index of the matching element. If there are multiple matches, then any
2995    /// one of the matches could be returned. The index is chosen
2996    /// deterministically, but is subject to change in future versions of Rust.
2997    /// If the value is not found then [`Result::Err`] is returned, containing
2998    /// the index where a matching element could be inserted while maintaining
2999    /// sorted order.
3000    ///
3001    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3002    ///
3003    /// [`sort_by_key`]: slice::sort_by_key
3004    /// [`binary_search`]: slice::binary_search
3005    /// [`binary_search_by`]: slice::binary_search_by
3006    /// [`partition_point`]: slice::partition_point
3007    ///
3008    /// # Examples
3009    ///
3010    /// Looks up a series of four elements in a slice of pairs sorted by
3011    /// their second elements. The first is found, with a uniquely
3012    /// determined position; the second and third are not found; the
3013    /// fourth could match any position in `[1, 4]`.
3014    ///
3015    /// ```
3016    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3017    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3018    ///          (1, 21), (2, 34), (4, 55)];
3019    ///
3020    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3021    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3022    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3023    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3024    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3025    /// ```
3026    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3027    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3028    // This breaks links when slice is displayed in core, but changing it to use relative links
3029    // would break when the item is re-exported. So allow the core links to be broken for now.
3030    #[allow(rustdoc::broken_intra_doc_links)]
3031    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3032    #[inline]
3033    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3034    where
3035        F: FnMut(&'a T) -> B,
3036        B: Ord,
3037    {
3038        self.binary_search_by(|k| f(k).cmp(b))
3039    }
3040
3041    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3042    ///
3043    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3044    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3045    ///
3046    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3047    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3048    /// is unspecified. See also the note on panicking below.
3049    ///
3050    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3051    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3052    /// examples see the [`Ord`] documentation.
3053    ///
3054    ///
3055    /// All original elements will remain in the slice and any possible modifications via interior
3056    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3057    ///
3058    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3059    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3060    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3061    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3062    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3063    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3064    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3065    /// a.partial_cmp(b).unwrap())`.
3066    ///
3067    /// # Current implementation
3068    ///
3069    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3070    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3071    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3072    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3073    ///
3074    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3075    /// slice is partially sorted.
3076    ///
3077    /// # Panics
3078    ///
3079    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3080    /// the [`Ord`] implementation panics.
3081    ///
3082    /// # Examples
3083    ///
3084    /// ```
3085    /// let mut v = [4, -5, 1, -3, 2];
3086    ///
3087    /// v.sort_unstable();
3088    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3089    /// ```
3090    ///
3091    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3092    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3093    #[stable(feature = "sort_unstable", since = "1.20.0")]
3094    #[inline]
3095    pub fn sort_unstable(&mut self)
3096    where
3097        T: Ord,
3098    {
3099        sort::unstable::sort(self, &mut T::lt);
3100    }
3101
3102    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3103    /// initial order of equal elements.
3104    ///
3105    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3106    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3107    ///
3108    /// If the comparison function `compare` does not implement a [total order], the function
3109    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3110    /// is unspecified. See also the note on panicking below.
3111    ///
3112    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3113    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3114    /// examples see the [`Ord`] documentation.
3115    ///
3116    /// All original elements will remain in the slice and any possible modifications via interior
3117    /// mutability are observed in the input. Same is true if `compare` panics.
3118    ///
3119    /// # Current implementation
3120    ///
3121    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3122    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3123    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3124    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3125    ///
3126    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3127    /// slice is partially sorted.
3128    ///
3129    /// # Panics
3130    ///
3131    /// May panic if the `compare` does not implement a [total order], or if
3132    /// the `compare` itself panics.
3133    ///
3134    /// # Examples
3135    ///
3136    /// ```
3137    /// let mut v = [4, -5, 1, -3, 2];
3138    /// v.sort_unstable_by(|a, b| a.cmp(b));
3139    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3140    ///
3141    /// // reverse sorting
3142    /// v.sort_unstable_by(|a, b| b.cmp(a));
3143    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3144    /// ```
3145    ///
3146    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3147    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3148    #[stable(feature = "sort_unstable", since = "1.20.0")]
3149    #[inline]
3150    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3151    where
3152        F: FnMut(&T, &T) -> Ordering,
3153    {
3154        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3155    }
3156
3157    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3158    /// the initial order of equal elements.
3159    ///
3160    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3161    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3162    ///
3163    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3164    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3165    /// is unspecified. See also the note on panicking below.
3166    ///
3167    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3168    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3169    /// examples see the [`Ord`] documentation.
3170    ///
3171    /// All original elements will remain in the slice and any possible modifications via interior
3172    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3173    ///
3174    /// # Current implementation
3175    ///
3176    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3177    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3178    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3179    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3180    ///
3181    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3182    /// slice is partially sorted.
3183    ///
3184    /// # Panics
3185    ///
3186    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3187    /// the [`Ord`] implementation panics.
3188    ///
3189    /// # Examples
3190    ///
3191    /// ```
3192    /// let mut v = [4i32, -5, 1, -3, 2];
3193    ///
3194    /// v.sort_unstable_by_key(|k| k.abs());
3195    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3196    /// ```
3197    ///
3198    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3199    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3200    #[stable(feature = "sort_unstable", since = "1.20.0")]
3201    #[inline]
3202    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3203    where
3204        F: FnMut(&T) -> K,
3205        K: Ord,
3206    {
3207        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3208    }
3209
3210    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3211    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3212    /// it.
3213    ///
3214    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3215    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3216    /// function is also known as "kth element" in other libraries.
3217    ///
3218    /// Returns a triple that partitions the reordered slice:
3219    ///
3220    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3221    ///
3222    /// * The element at `index`.
3223    ///
3224    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3225    ///
3226    /// # Current implementation
3227    ///
3228    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3229    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3230    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3231    /// for all inputs.
3232    ///
3233    /// [`sort_unstable`]: slice::sort_unstable
3234    ///
3235    /// # Panics
3236    ///
3237    /// Panics when `index >= len()`, and so always panics on empty slices.
3238    ///
3239    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3240    ///
3241    /// # Examples
3242    ///
3243    /// ```
3244    /// let mut v = [-5i32, 4, 2, -3, 1];
3245    ///
3246    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3247    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3248    ///
3249    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3250    /// assert_eq!(median, &mut 1);
3251    /// assert!(greater == [4, 2] || greater == [2, 4]);
3252    ///
3253    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3254    /// // about the specified index.
3255    /// assert!(v == [-3, -5, 1, 2, 4] ||
3256    ///         v == [-5, -3, 1, 2, 4] ||
3257    ///         v == [-3, -5, 1, 4, 2] ||
3258    ///         v == [-5, -3, 1, 4, 2]);
3259    /// ```
3260    ///
3261    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3262    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3263    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3264    #[inline]
3265    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3266    where
3267        T: Ord,
3268    {
3269        sort::select::partition_at_index(self, index, T::lt)
3270    }
3271
3272    /// Reorders the slice with a comparator function such that the element at `index` is at a
3273    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3274    /// elements after will be `>=` to it, according to the comparator function.
3275    ///
3276    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3277    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3278    /// function is also known as "kth element" in other libraries.
3279    ///
3280    /// Returns a triple partitioning the reordered slice:
3281    ///
3282    /// * The unsorted subslice before `index`, whose elements all satisfy
3283    ///   `compare(x, self[index]).is_le()`.
3284    ///
3285    /// * The element at `index`.
3286    ///
3287    /// * The unsorted subslice after `index`, whose elements all satisfy
3288    ///   `compare(x, self[index]).is_ge()`.
3289    ///
3290    /// # Current implementation
3291    ///
3292    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3293    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3294    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3295    /// for all inputs.
3296    ///
3297    /// [`sort_unstable`]: slice::sort_unstable
3298    ///
3299    /// # Panics
3300    ///
3301    /// Panics when `index >= len()`, and so always panics on empty slices.
3302    ///
3303    /// May panic if `compare` does not implement a [total order].
3304    ///
3305    /// # Examples
3306    ///
3307    /// ```
3308    /// let mut v = [-5i32, 4, 2, -3, 1];
3309    ///
3310    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3311    /// // a reversed comparator.
3312    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3313    ///
3314    /// assert!(before == [4, 2] || before == [2, 4]);
3315    /// assert_eq!(median, &mut 1);
3316    /// assert!(after == [-3, -5] || after == [-5, -3]);
3317    ///
3318    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3319    /// // about the specified index.
3320    /// assert!(v == [2, 4, 1, -5, -3] ||
3321    ///         v == [2, 4, 1, -3, -5] ||
3322    ///         v == [4, 2, 1, -5, -3] ||
3323    ///         v == [4, 2, 1, -3, -5]);
3324    /// ```
3325    ///
3326    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3327    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3328    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3329    #[inline]
3330    pub fn select_nth_unstable_by<F>(
3331        &mut self,
3332        index: usize,
3333        mut compare: F,
3334    ) -> (&mut [T], &mut T, &mut [T])
3335    where
3336        F: FnMut(&T, &T) -> Ordering,
3337    {
3338        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3339    }
3340
3341    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3342    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3343    /// and all elements after will have keys `>=` to it.
3344    ///
3345    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3346    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3347    /// function is also known as "kth element" in other libraries.
3348    ///
3349    /// Returns a triple partitioning the reordered slice:
3350    ///
3351    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3352    ///
3353    /// * The element at `index`.
3354    ///
3355    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3356    ///
3357    /// # Current implementation
3358    ///
3359    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3360    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3361    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3362    /// for all inputs.
3363    ///
3364    /// [`sort_unstable`]: slice::sort_unstable
3365    ///
3366    /// # Panics
3367    ///
3368    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3369    ///
3370    /// May panic if `K: Ord` does not implement a total order.
3371    ///
3372    /// # Examples
3373    ///
3374    /// ```
3375    /// let mut v = [-5i32, 4, 1, -3, 2];
3376    ///
3377    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3378    /// // `>=` to it.
3379    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3380    ///
3381    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3382    /// assert_eq!(median, &mut -3);
3383    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3384    ///
3385    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3386    /// // about the specified index.
3387    /// assert!(v == [1, 2, -3, 4, -5] ||
3388    ///         v == [1, 2, -3, -5, 4] ||
3389    ///         v == [2, 1, -3, 4, -5] ||
3390    ///         v == [2, 1, -3, -5, 4]);
3391    /// ```
3392    ///
3393    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3394    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3395    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3396    #[inline]
3397    pub fn select_nth_unstable_by_key<K, F>(
3398        &mut self,
3399        index: usize,
3400        mut f: F,
3401    ) -> (&mut [T], &mut T, &mut [T])
3402    where
3403        F: FnMut(&T) -> K,
3404        K: Ord,
3405    {
3406        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3407    }
3408
3409    /// Moves all consecutive repeated elements to the end of the slice according to the
3410    /// [`PartialEq`] trait implementation.
3411    ///
3412    /// Returns two slices. The first contains no consecutive repeated elements.
3413    /// The second contains all the duplicates in no specified order.
3414    ///
3415    /// If the slice is sorted, the first returned slice contains no duplicates.
3416    ///
3417    /// # Examples
3418    ///
3419    /// ```
3420    /// #![feature(slice_partition_dedup)]
3421    ///
3422    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3423    ///
3424    /// let (dedup, duplicates) = slice.partition_dedup();
3425    ///
3426    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3427    /// assert_eq!(duplicates, [2, 3, 1]);
3428    /// ```
3429    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3430    #[inline]
3431    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3432    where
3433        T: PartialEq,
3434    {
3435        self.partition_dedup_by(|a, b| a == b)
3436    }
3437
3438    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3439    /// a given equality relation.
3440    ///
3441    /// Returns two slices. The first contains no consecutive repeated elements.
3442    /// The second contains all the duplicates in no specified order.
3443    ///
3444    /// The `same_bucket` function is passed references to two elements from the slice and
3445    /// must determine if the elements compare equal. The elements are passed in opposite order
3446    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3447    /// at the end of the slice.
3448    ///
3449    /// If the slice is sorted, the first returned slice contains no duplicates.
3450    ///
3451    /// # Examples
3452    ///
3453    /// ```
3454    /// #![feature(slice_partition_dedup)]
3455    ///
3456    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3457    ///
3458    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3459    ///
3460    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3461    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3462    /// ```
3463    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3464    #[inline]
3465    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3466    where
3467        F: FnMut(&mut T, &mut T) -> bool,
3468    {
3469        // Although we have a mutable reference to `self`, we cannot make
3470        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3471        // must ensure that the slice is in a valid state at all times.
3472        //
3473        // The way that we handle this is by using swaps; we iterate
3474        // over all the elements, swapping as we go so that at the end
3475        // the elements we wish to keep are in the front, and those we
3476        // wish to reject are at the back. We can then split the slice.
3477        // This operation is still `O(n)`.
3478        //
3479        // Example: We start in this state, where `r` represents "next
3480        // read" and `w` represents "next_write".
3481        //
3482        //           r
3483        //     +---+---+---+---+---+---+
3484        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3485        //     +---+---+---+---+---+---+
3486        //           w
3487        //
3488        // Comparing self[r] against self[w-1], this is not a duplicate, so
3489        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3490        // r and w, leaving us with:
3491        //
3492        //               r
3493        //     +---+---+---+---+---+---+
3494        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3495        //     +---+---+---+---+---+---+
3496        //               w
3497        //
3498        // Comparing self[r] against self[w-1], this value is a duplicate,
3499        // so we increment `r` but leave everything else unchanged:
3500        //
3501        //                   r
3502        //     +---+---+---+---+---+---+
3503        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3504        //     +---+---+---+---+---+---+
3505        //               w
3506        //
3507        // Comparing self[r] against self[w-1], this is not a duplicate,
3508        // so swap self[r] and self[w] and advance r and w:
3509        //
3510        //                       r
3511        //     +---+---+---+---+---+---+
3512        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3513        //     +---+---+---+---+---+---+
3514        //                   w
3515        //
3516        // Not a duplicate, repeat:
3517        //
3518        //                           r
3519        //     +---+---+---+---+---+---+
3520        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3521        //     +---+---+---+---+---+---+
3522        //                       w
3523        //
3524        // Duplicate, advance r. End of slice. Split at w.
3525
3526        let len = self.len();
3527        if len <= 1 {
3528            return (self, &mut []);
3529        }
3530
3531        let ptr = self.as_mut_ptr();
3532        let mut next_read: usize = 1;
3533        let mut next_write: usize = 1;
3534
3535        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3536        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3537        // one element before `ptr_write`, but `next_write` starts at 1, so
3538        // `prev_ptr_write` is never less than 0 and is inside the slice.
3539        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3540        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3541        // and `prev_ptr_write.offset(1)`.
3542        //
3543        // `next_write` is also incremented at most once per loop at most meaning
3544        // no element is skipped when it may need to be swapped.
3545        //
3546        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3547        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3548        // The explanation is simply that `next_read >= next_write` is always true,
3549        // thus `next_read > next_write - 1` is too.
3550        unsafe {
3551            // Avoid bounds checks by using raw pointers.
3552            while next_read < len {
3553                let ptr_read = ptr.add(next_read);
3554                let prev_ptr_write = ptr.add(next_write - 1);
3555                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3556                    if next_read != next_write {
3557                        let ptr_write = prev_ptr_write.add(1);
3558                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3559                    }
3560                    next_write += 1;
3561                }
3562                next_read += 1;
3563            }
3564        }
3565
3566        self.split_at_mut(next_write)
3567    }
3568
3569    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3570    /// to the same key.
3571    ///
3572    /// Returns two slices. The first contains no consecutive repeated elements.
3573    /// The second contains all the duplicates in no specified order.
3574    ///
3575    /// If the slice is sorted, the first returned slice contains no duplicates.
3576    ///
3577    /// # Examples
3578    ///
3579    /// ```
3580    /// #![feature(slice_partition_dedup)]
3581    ///
3582    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3583    ///
3584    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3585    ///
3586    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3587    /// assert_eq!(duplicates, [21, 30, 13]);
3588    /// ```
3589    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3590    #[inline]
3591    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3592    where
3593        F: FnMut(&mut T) -> K,
3594        K: PartialEq,
3595    {
3596        self.partition_dedup_by(|a, b| key(a) == key(b))
3597    }
3598
3599    /// Rotates the slice in-place such that the first `mid` elements of the
3600    /// slice move to the end while the last `self.len() - mid` elements move to
3601    /// the front.
3602    ///
3603    /// After calling `rotate_left`, the element previously at index `mid` will
3604    /// become the first element in the slice.
3605    ///
3606    /// # Panics
3607    ///
3608    /// This function will panic if `mid` is greater than the length of the
3609    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3610    /// rotation.
3611    ///
3612    /// # Complexity
3613    ///
3614    /// Takes linear (in `self.len()`) time.
3615    ///
3616    /// # Examples
3617    ///
3618    /// ```
3619    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3620    /// a.rotate_left(2);
3621    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3622    /// ```
3623    ///
3624    /// Rotating a subslice:
3625    ///
3626    /// ```
3627    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3628    /// a[1..5].rotate_left(1);
3629    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3630    /// ```
3631    #[stable(feature = "slice_rotate", since = "1.26.0")]
3632    #[rustc_const_unstable(feature = "const_slice_rotate", issue = "143812")]
3633    pub const fn rotate_left(&mut self, mid: usize) {
3634        assert!(mid <= self.len());
3635        let k = self.len() - mid;
3636        let p = self.as_mut_ptr();
3637
3638        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3639        // valid for reading and writing, as required by `ptr_rotate`.
3640        unsafe {
3641            rotate::ptr_rotate(mid, p.add(mid), k);
3642        }
3643    }
3644
3645    /// Rotates the slice in-place such that the first `self.len() - k`
3646    /// elements of the slice move to the end while the last `k` elements move
3647    /// to the front.
3648    ///
3649    /// After calling `rotate_right`, the element previously at index
3650    /// `self.len() - k` will become the first element in the slice.
3651    ///
3652    /// # Panics
3653    ///
3654    /// This function will panic if `k` is greater than the length of the
3655    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3656    /// rotation.
3657    ///
3658    /// # Complexity
3659    ///
3660    /// Takes linear (in `self.len()`) time.
3661    ///
3662    /// # Examples
3663    ///
3664    /// ```
3665    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3666    /// a.rotate_right(2);
3667    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3668    /// ```
3669    ///
3670    /// Rotating a subslice:
3671    ///
3672    /// ```
3673    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3674    /// a[1..5].rotate_right(1);
3675    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3676    /// ```
3677    #[stable(feature = "slice_rotate", since = "1.26.0")]
3678    #[rustc_const_unstable(feature = "const_slice_rotate", issue = "143812")]
3679    pub const fn rotate_right(&mut self, k: usize) {
3680        assert!(k <= self.len());
3681        let mid = self.len() - k;
3682        let p = self.as_mut_ptr();
3683
3684        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3685        // valid for reading and writing, as required by `ptr_rotate`.
3686        unsafe {
3687            rotate::ptr_rotate(mid, p.add(mid), k);
3688        }
3689    }
3690
3691    /// Fills `self` with elements by cloning `value`.
3692    ///
3693    /// # Examples
3694    ///
3695    /// ```
3696    /// let mut buf = vec![0; 10];
3697    /// buf.fill(1);
3698    /// assert_eq!(buf, vec![1; 10]);
3699    /// ```
3700    #[doc(alias = "memset")]
3701    #[stable(feature = "slice_fill", since = "1.50.0")]
3702    pub fn fill(&mut self, value: T)
3703    where
3704        T: Clone,
3705    {
3706        specialize::SpecFill::spec_fill(self, value);
3707    }
3708
3709    /// Fills `self` with elements returned by calling a closure repeatedly.
3710    ///
3711    /// This method uses a closure to create new values. If you'd rather
3712    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3713    /// trait to generate values, you can pass [`Default::default`] as the
3714    /// argument.
3715    ///
3716    /// [`fill`]: slice::fill
3717    ///
3718    /// # Examples
3719    ///
3720    /// ```
3721    /// let mut buf = vec![1; 10];
3722    /// buf.fill_with(Default::default);
3723    /// assert_eq!(buf, vec![0; 10]);
3724    /// ```
3725    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3726    pub fn fill_with<F>(&mut self, mut f: F)
3727    where
3728        F: FnMut() -> T,
3729    {
3730        for el in self {
3731            *el = f();
3732        }
3733    }
3734
3735    /// Copies the elements from `src` into `self`.
3736    ///
3737    /// The length of `src` must be the same as `self`.
3738    ///
3739    /// # Panics
3740    ///
3741    /// This function will panic if the two slices have different lengths.
3742    ///
3743    /// # Examples
3744    ///
3745    /// Cloning two elements from a slice into another:
3746    ///
3747    /// ```
3748    /// let src = [1, 2, 3, 4];
3749    /// let mut dst = [0, 0];
3750    ///
3751    /// // Because the slices have to be the same length,
3752    /// // we slice the source slice from four elements
3753    /// // to two. It will panic if we don't do this.
3754    /// dst.clone_from_slice(&src[2..]);
3755    ///
3756    /// assert_eq!(src, [1, 2, 3, 4]);
3757    /// assert_eq!(dst, [3, 4]);
3758    /// ```
3759    ///
3760    /// Rust enforces that there can only be one mutable reference with no
3761    /// immutable references to a particular piece of data in a particular
3762    /// scope. Because of this, attempting to use `clone_from_slice` on a
3763    /// single slice will result in a compile failure:
3764    ///
3765    /// ```compile_fail
3766    /// let mut slice = [1, 2, 3, 4, 5];
3767    ///
3768    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3769    /// ```
3770    ///
3771    /// To work around this, we can use [`split_at_mut`] to create two distinct
3772    /// sub-slices from a slice:
3773    ///
3774    /// ```
3775    /// let mut slice = [1, 2, 3, 4, 5];
3776    ///
3777    /// {
3778    ///     let (left, right) = slice.split_at_mut(2);
3779    ///     left.clone_from_slice(&right[1..]);
3780    /// }
3781    ///
3782    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3783    /// ```
3784    ///
3785    /// [`copy_from_slice`]: slice::copy_from_slice
3786    /// [`split_at_mut`]: slice::split_at_mut
3787    #[stable(feature = "clone_from_slice", since = "1.7.0")]
3788    #[track_caller]
3789    pub fn clone_from_slice(&mut self, src: &[T])
3790    where
3791        T: Clone,
3792    {
3793        self.spec_clone_from(src);
3794    }
3795
3796    /// Copies all elements from `src` into `self`, using a memcpy.
3797    ///
3798    /// The length of `src` must be the same as `self`.
3799    ///
3800    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3801    ///
3802    /// # Panics
3803    ///
3804    /// This function will panic if the two slices have different lengths.
3805    ///
3806    /// # Examples
3807    ///
3808    /// Copying two elements from a slice into another:
3809    ///
3810    /// ```
3811    /// let src = [1, 2, 3, 4];
3812    /// let mut dst = [0, 0];
3813    ///
3814    /// // Because the slices have to be the same length,
3815    /// // we slice the source slice from four elements
3816    /// // to two. It will panic if we don't do this.
3817    /// dst.copy_from_slice(&src[2..]);
3818    ///
3819    /// assert_eq!(src, [1, 2, 3, 4]);
3820    /// assert_eq!(dst, [3, 4]);
3821    /// ```
3822    ///
3823    /// Rust enforces that there can only be one mutable reference with no
3824    /// immutable references to a particular piece of data in a particular
3825    /// scope. Because of this, attempting to use `copy_from_slice` on a
3826    /// single slice will result in a compile failure:
3827    ///
3828    /// ```compile_fail
3829    /// let mut slice = [1, 2, 3, 4, 5];
3830    ///
3831    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3832    /// ```
3833    ///
3834    /// To work around this, we can use [`split_at_mut`] to create two distinct
3835    /// sub-slices from a slice:
3836    ///
3837    /// ```
3838    /// let mut slice = [1, 2, 3, 4, 5];
3839    ///
3840    /// {
3841    ///     let (left, right) = slice.split_at_mut(2);
3842    ///     left.copy_from_slice(&right[1..]);
3843    /// }
3844    ///
3845    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3846    /// ```
3847    ///
3848    /// [`clone_from_slice`]: slice::clone_from_slice
3849    /// [`split_at_mut`]: slice::split_at_mut
3850    #[doc(alias = "memcpy")]
3851    #[inline]
3852    #[stable(feature = "copy_from_slice", since = "1.9.0")]
3853    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3854    #[track_caller]
3855    pub const fn copy_from_slice(&mut self, src: &[T])
3856    where
3857        T: Copy,
3858    {
3859        // The panic code path was put into a cold function to not bloat the
3860        // call site.
3861        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never), cold)]
3862        #[cfg_attr(feature = "panic_immediate_abort", inline)]
3863        #[track_caller]
3864        const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
3865            const_panic!(
3866                "copy_from_slice: source slice length does not match destination slice length",
3867                "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
3868                src_len: usize,
3869                dst_len: usize,
3870            )
3871        }
3872
3873        if self.len() != src.len() {
3874            len_mismatch_fail(self.len(), src.len());
3875        }
3876
3877        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3878        // checked to have the same length. The slices cannot overlap because
3879        // mutable references are exclusive.
3880        unsafe {
3881            ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
3882        }
3883    }
3884
3885    /// Copies elements from one part of the slice to another part of itself,
3886    /// using a memmove.
3887    ///
3888    /// `src` is the range within `self` to copy from. `dest` is the starting
3889    /// index of the range within `self` to copy to, which will have the same
3890    /// length as `src`. The two ranges may overlap. The ends of the two ranges
3891    /// must be less than or equal to `self.len()`.
3892    ///
3893    /// # Panics
3894    ///
3895    /// This function will panic if either range exceeds the end of the slice,
3896    /// or if the end of `src` is before the start.
3897    ///
3898    /// # Examples
3899    ///
3900    /// Copying four bytes within a slice:
3901    ///
3902    /// ```
3903    /// let mut bytes = *b"Hello, World!";
3904    ///
3905    /// bytes.copy_within(1..5, 8);
3906    ///
3907    /// assert_eq!(&bytes, b"Hello, Wello!");
3908    /// ```
3909    #[stable(feature = "copy_within", since = "1.37.0")]
3910    #[track_caller]
3911    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
3912    where
3913        T: Copy,
3914    {
3915        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
3916        let count = src_end - src_start;
3917        assert!(dest <= self.len() - count, "dest is out of bounds");
3918        // SAFETY: the conditions for `ptr::copy` have all been checked above,
3919        // as have those for `ptr::add`.
3920        unsafe {
3921            // Derive both `src_ptr` and `dest_ptr` from the same loan
3922            let ptr = self.as_mut_ptr();
3923            let src_ptr = ptr.add(src_start);
3924            let dest_ptr = ptr.add(dest);
3925            ptr::copy(src_ptr, dest_ptr, count);
3926        }
3927    }
3928
3929    /// Swaps all elements in `self` with those in `other`.
3930    ///
3931    /// The length of `other` must be the same as `self`.
3932    ///
3933    /// # Panics
3934    ///
3935    /// This function will panic if the two slices have different lengths.
3936    ///
3937    /// # Example
3938    ///
3939    /// Swapping two elements across slices:
3940    ///
3941    /// ```
3942    /// let mut slice1 = [0, 0];
3943    /// let mut slice2 = [1, 2, 3, 4];
3944    ///
3945    /// slice1.swap_with_slice(&mut slice2[2..]);
3946    ///
3947    /// assert_eq!(slice1, [3, 4]);
3948    /// assert_eq!(slice2, [1, 2, 0, 0]);
3949    /// ```
3950    ///
3951    /// Rust enforces that there can only be one mutable reference to a
3952    /// particular piece of data in a particular scope. Because of this,
3953    /// attempting to use `swap_with_slice` on a single slice will result in
3954    /// a compile failure:
3955    ///
3956    /// ```compile_fail
3957    /// let mut slice = [1, 2, 3, 4, 5];
3958    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
3959    /// ```
3960    ///
3961    /// To work around this, we can use [`split_at_mut`] to create two distinct
3962    /// mutable sub-slices from a slice:
3963    ///
3964    /// ```
3965    /// let mut slice = [1, 2, 3, 4, 5];
3966    ///
3967    /// {
3968    ///     let (left, right) = slice.split_at_mut(2);
3969    ///     left.swap_with_slice(&mut right[1..]);
3970    /// }
3971    ///
3972    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
3973    /// ```
3974    ///
3975    /// [`split_at_mut`]: slice::split_at_mut
3976    #[stable(feature = "swap_with_slice", since = "1.27.0")]
3977    #[track_caller]
3978    pub fn swap_with_slice(&mut self, other: &mut [T]) {
3979        assert!(self.len() == other.len(), "destination and source slices have different lengths");
3980        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3981        // checked to have the same length. The slices cannot overlap because
3982        // mutable references are exclusive.
3983        unsafe {
3984            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
3985        }
3986    }
3987
3988    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
3989    fn align_to_offsets<U>(&self) -> (usize, usize) {
3990        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
3991        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
3992        //
3993        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
3994        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
3995        // place of every 3 Ts in the `rest` slice. A bit more complicated.
3996        //
3997        // Formula to calculate this is:
3998        //
3999        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4000        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4001        //
4002        // Expanded and simplified:
4003        //
4004        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4005        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4006        //
4007        // Luckily since all this is constant-evaluated... performance here matters not!
4008        const fn gcd(a: usize, b: usize) -> usize {
4009            if b == 0 { a } else { gcd(b, a % b) }
4010        }
4011
4012        // Explicitly wrap the function call in a const block so it gets
4013        // constant-evaluated even in debug mode.
4014        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4015        let ts: usize = size_of::<U>() / gcd;
4016        let us: usize = size_of::<T>() / gcd;
4017
4018        // Armed with this knowledge, we can find how many `U`s we can fit!
4019        let us_len = self.len() / ts * us;
4020        // And how many `T`s will be in the trailing slice!
4021        let ts_len = self.len() % ts;
4022        (us_len, ts_len)
4023    }
4024
4025    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4026    /// maintained.
4027    ///
4028    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4029    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4030    /// the given alignment constraint and element size.
4031    ///
4032    /// This method has no purpose when either input element `T` or output element `U` are
4033    /// zero-sized and will return the original slice without splitting anything.
4034    ///
4035    /// # Safety
4036    ///
4037    /// This method is essentially a `transmute` with respect to the elements in the returned
4038    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4039    ///
4040    /// # Examples
4041    ///
4042    /// Basic usage:
4043    ///
4044    /// ```
4045    /// unsafe {
4046    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4047    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4048    ///     // less_efficient_algorithm_for_bytes(prefix);
4049    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4050    ///     // less_efficient_algorithm_for_bytes(suffix);
4051    /// }
4052    /// ```
4053    #[stable(feature = "slice_align_to", since = "1.30.0")]
4054    #[must_use]
4055    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4056        // Note that most of this function will be constant-evaluated,
4057        if U::IS_ZST || T::IS_ZST {
4058            // handle ZSTs specially, which is – don't handle them at all.
4059            return (self, &[], &[]);
4060        }
4061
4062        // First, find at what point do we split between the first and 2nd slice. Easy with
4063        // ptr.align_offset.
4064        let ptr = self.as_ptr();
4065        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4066        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4067        if offset > self.len() {
4068            (self, &[], &[])
4069        } else {
4070            let (left, rest) = self.split_at(offset);
4071            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4072            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4073            #[cfg(miri)]
4074            crate::intrinsics::miri_promise_symbolic_alignment(
4075                rest.as_ptr().cast(),
4076                align_of::<U>(),
4077            );
4078            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4079            // since the caller guarantees that we can transmute `T` to `U` safely.
4080            unsafe {
4081                (
4082                    left,
4083                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4084                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4085                )
4086            }
4087        }
4088    }
4089
4090    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4091    /// types is maintained.
4092    ///
4093    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4094    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4095    /// the given alignment constraint and element size.
4096    ///
4097    /// This method has no purpose when either input element `T` or output element `U` are
4098    /// zero-sized and will return the original slice without splitting anything.
4099    ///
4100    /// # Safety
4101    ///
4102    /// This method is essentially a `transmute` with respect to the elements in the returned
4103    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4104    ///
4105    /// # Examples
4106    ///
4107    /// Basic usage:
4108    ///
4109    /// ```
4110    /// unsafe {
4111    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4112    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4113    ///     // less_efficient_algorithm_for_bytes(prefix);
4114    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4115    ///     // less_efficient_algorithm_for_bytes(suffix);
4116    /// }
4117    /// ```
4118    #[stable(feature = "slice_align_to", since = "1.30.0")]
4119    #[must_use]
4120    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4121        // Note that most of this function will be constant-evaluated,
4122        if U::IS_ZST || T::IS_ZST {
4123            // handle ZSTs specially, which is – don't handle them at all.
4124            return (self, &mut [], &mut []);
4125        }
4126
4127        // First, find at what point do we split between the first and 2nd slice. Easy with
4128        // ptr.align_offset.
4129        let ptr = self.as_ptr();
4130        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4131        // rest of the method. This is done by passing a pointer to &[T] with an
4132        // alignment targeted for U.
4133        // `crate::ptr::align_offset` is called with a correctly aligned and
4134        // valid pointer `ptr` (it comes from a reference to `self`) and with
4135        // a size that is a power of two (since it comes from the alignment for U),
4136        // satisfying its safety constraints.
4137        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4138        if offset > self.len() {
4139            (self, &mut [], &mut [])
4140        } else {
4141            let (left, rest) = self.split_at_mut(offset);
4142            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4143            let rest_len = rest.len();
4144            let mut_ptr = rest.as_mut_ptr();
4145            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4146            #[cfg(miri)]
4147            crate::intrinsics::miri_promise_symbolic_alignment(
4148                mut_ptr.cast() as *const (),
4149                align_of::<U>(),
4150            );
4151            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4152            // SAFETY: see comments for `align_to`.
4153            unsafe {
4154                (
4155                    left,
4156                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4157                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4158                )
4159            }
4160        }
4161    }
4162
4163    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4164    ///
4165    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4166    /// guarantees as that method.
4167    ///
4168    /// # Panics
4169    ///
4170    /// This will panic if the size of the SIMD type is different from
4171    /// `LANES` times that of the scalar.
4172    ///
4173    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4174    /// that from ever happening, as only power-of-two numbers of lanes are
4175    /// supported.  It's possible that, in the future, those restrictions might
4176    /// be lifted in a way that would make it possible to see panics from this
4177    /// method for something like `LANES == 3`.
4178    ///
4179    /// # Examples
4180    ///
4181    /// ```
4182    /// #![feature(portable_simd)]
4183    /// use core::simd::prelude::*;
4184    ///
4185    /// let short = &[1, 2, 3];
4186    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4187    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4188    ///
4189    /// // They might be split in any possible way between prefix and suffix
4190    /// let it = prefix.iter().chain(suffix).copied();
4191    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4192    ///
4193    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4194    ///     use std::ops::Add;
4195    ///     let (prefix, middle, suffix) = x.as_simd();
4196    ///     let sums = f32x4::from_array([
4197    ///         prefix.iter().copied().sum(),
4198    ///         0.0,
4199    ///         0.0,
4200    ///         suffix.iter().copied().sum(),
4201    ///     ]);
4202    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4203    ///     sums.reduce_sum()
4204    /// }
4205    ///
4206    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4207    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4208    /// ```
4209    #[unstable(feature = "portable_simd", issue = "86656")]
4210    #[must_use]
4211    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4212    where
4213        Simd<T, LANES>: AsRef<[T; LANES]>,
4214        T: simd::SimdElement,
4215        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4216    {
4217        // These are expected to always match, as vector types are laid out like
4218        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4219        // might as well double-check since it'll optimize away anyhow.
4220        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4221
4222        // SAFETY: The simd types have the same layout as arrays, just with
4223        // potentially-higher alignment, so the de-facto transmutes are sound.
4224        unsafe { self.align_to() }
4225    }
4226
4227    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4228    /// and a mutable suffix.
4229    ///
4230    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4231    /// guarantees as that method.
4232    ///
4233    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4234    ///
4235    /// # Panics
4236    ///
4237    /// This will panic if the size of the SIMD type is different from
4238    /// `LANES` times that of the scalar.
4239    ///
4240    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4241    /// that from ever happening, as only power-of-two numbers of lanes are
4242    /// supported.  It's possible that, in the future, those restrictions might
4243    /// be lifted in a way that would make it possible to see panics from this
4244    /// method for something like `LANES == 3`.
4245    #[unstable(feature = "portable_simd", issue = "86656")]
4246    #[must_use]
4247    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4248    where
4249        Simd<T, LANES>: AsMut<[T; LANES]>,
4250        T: simd::SimdElement,
4251        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4252    {
4253        // These are expected to always match, as vector types are laid out like
4254        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4255        // might as well double-check since it'll optimize away anyhow.
4256        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4257
4258        // SAFETY: The simd types have the same layout as arrays, just with
4259        // potentially-higher alignment, so the de-facto transmutes are sound.
4260        unsafe { self.align_to_mut() }
4261    }
4262
4263    /// Checks if the elements of this slice are sorted.
4264    ///
4265    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4266    /// slice yields exactly zero or one element, `true` is returned.
4267    ///
4268    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4269    /// implies that this function returns `false` if any two consecutive items are not
4270    /// comparable.
4271    ///
4272    /// # Examples
4273    ///
4274    /// ```
4275    /// let empty: [i32; 0] = [];
4276    ///
4277    /// assert!([1, 2, 2, 9].is_sorted());
4278    /// assert!(![1, 3, 2, 4].is_sorted());
4279    /// assert!([0].is_sorted());
4280    /// assert!(empty.is_sorted());
4281    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4282    /// ```
4283    #[inline]
4284    #[stable(feature = "is_sorted", since = "1.82.0")]
4285    #[must_use]
4286    pub fn is_sorted(&self) -> bool
4287    where
4288        T: PartialOrd,
4289    {
4290        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4291        const CHUNK_SIZE: usize = 33;
4292        if self.len() < CHUNK_SIZE {
4293            return self.windows(2).all(|w| w[0] <= w[1]);
4294        }
4295        let mut i = 0;
4296        // Check in chunks for autovectorization.
4297        while i < self.len() - CHUNK_SIZE {
4298            let chunk = &self[i..i + CHUNK_SIZE];
4299            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4300                return false;
4301            }
4302            // We need to ensure that chunk boundaries are also sorted.
4303            // Overlap the next chunk with the last element of our last chunk.
4304            i += CHUNK_SIZE - 1;
4305        }
4306        self[i..].windows(2).all(|w| w[0] <= w[1])
4307    }
4308
4309    /// Checks if the elements of this slice are sorted using the given comparator function.
4310    ///
4311    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4312    /// function to determine whether two elements are to be considered in sorted order.
4313    ///
4314    /// # Examples
4315    ///
4316    /// ```
4317    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4318    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4319    ///
4320    /// assert!([0].is_sorted_by(|a, b| true));
4321    /// assert!([0].is_sorted_by(|a, b| false));
4322    ///
4323    /// let empty: [i32; 0] = [];
4324    /// assert!(empty.is_sorted_by(|a, b| false));
4325    /// assert!(empty.is_sorted_by(|a, b| true));
4326    /// ```
4327    #[stable(feature = "is_sorted", since = "1.82.0")]
4328    #[must_use]
4329    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4330    where
4331        F: FnMut(&'a T, &'a T) -> bool,
4332    {
4333        self.array_windows().all(|[a, b]| compare(a, b))
4334    }
4335
4336    /// Checks if the elements of this slice are sorted using the given key extraction function.
4337    ///
4338    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4339    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4340    /// documentation for more information.
4341    ///
4342    /// [`is_sorted`]: slice::is_sorted
4343    ///
4344    /// # Examples
4345    ///
4346    /// ```
4347    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4348    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4349    /// ```
4350    #[inline]
4351    #[stable(feature = "is_sorted", since = "1.82.0")]
4352    #[must_use]
4353    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4354    where
4355        F: FnMut(&'a T) -> K,
4356        K: PartialOrd,
4357    {
4358        self.iter().is_sorted_by_key(f)
4359    }
4360
4361    /// Returns the index of the partition point according to the given predicate
4362    /// (the index of the first element of the second partition).
4363    ///
4364    /// The slice is assumed to be partitioned according to the given predicate.
4365    /// This means that all elements for which the predicate returns true are at the start of the slice
4366    /// and all elements for which the predicate returns false are at the end.
4367    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4368    /// (all odd numbers are at the start, all even at the end).
4369    ///
4370    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4371    /// as this method performs a kind of binary search.
4372    ///
4373    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4374    ///
4375    /// [`binary_search`]: slice::binary_search
4376    /// [`binary_search_by`]: slice::binary_search_by
4377    /// [`binary_search_by_key`]: slice::binary_search_by_key
4378    ///
4379    /// # Examples
4380    ///
4381    /// ```
4382    /// let v = [1, 2, 3, 3, 5, 6, 7];
4383    /// let i = v.partition_point(|&x| x < 5);
4384    ///
4385    /// assert_eq!(i, 4);
4386    /// assert!(v[..i].iter().all(|&x| x < 5));
4387    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4388    /// ```
4389    ///
4390    /// If all elements of the slice match the predicate, including if the slice
4391    /// is empty, then the length of the slice will be returned:
4392    ///
4393    /// ```
4394    /// let a = [2, 4, 8];
4395    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4396    /// let a: [i32; 0] = [];
4397    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4398    /// ```
4399    ///
4400    /// If you want to insert an item to a sorted vector, while maintaining
4401    /// sort order:
4402    ///
4403    /// ```
4404    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4405    /// let num = 42;
4406    /// let idx = s.partition_point(|&x| x <= num);
4407    /// s.insert(idx, num);
4408    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4409    /// ```
4410    #[stable(feature = "partition_point", since = "1.52.0")]
4411    #[must_use]
4412    pub fn partition_point<P>(&self, mut pred: P) -> usize
4413    where
4414        P: FnMut(&T) -> bool,
4415    {
4416        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4417    }
4418
4419    /// Removes the subslice corresponding to the given range
4420    /// and returns a reference to it.
4421    ///
4422    /// Returns `None` and does not modify the slice if the given
4423    /// range is out of bounds.
4424    ///
4425    /// Note that this method only accepts one-sided ranges such as
4426    /// `2..` or `..6`, but not `2..6`.
4427    ///
4428    /// # Examples
4429    ///
4430    /// Splitting off the first three elements of a slice:
4431    ///
4432    /// ```
4433    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4434    /// let mut first_three = slice.split_off(..3).unwrap();
4435    ///
4436    /// assert_eq!(slice, &['d']);
4437    /// assert_eq!(first_three, &['a', 'b', 'c']);
4438    /// ```
4439    ///
4440    /// Splitting off a slice starting with the third element:
4441    ///
4442    /// ```
4443    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4444    /// let mut tail = slice.split_off(2..).unwrap();
4445    ///
4446    /// assert_eq!(slice, &['a', 'b']);
4447    /// assert_eq!(tail, &['c', 'd']);
4448    /// ```
4449    ///
4450    /// Getting `None` when `range` is out of bounds:
4451    ///
4452    /// ```
4453    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4454    ///
4455    /// assert_eq!(None, slice.split_off(5..));
4456    /// assert_eq!(None, slice.split_off(..5));
4457    /// assert_eq!(None, slice.split_off(..=4));
4458    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4459    /// assert_eq!(Some(expected), slice.split_off(..4));
4460    /// ```
4461    #[inline]
4462    #[must_use = "method does not modify the slice if the range is out of bounds"]
4463    #[stable(feature = "slice_take", since = "1.87.0")]
4464    pub fn split_off<'a, R: OneSidedRange<usize>>(
4465        self: &mut &'a Self,
4466        range: R,
4467    ) -> Option<&'a Self> {
4468        let (direction, split_index) = split_point_of(range)?;
4469        if split_index > self.len() {
4470            return None;
4471        }
4472        let (front, back) = self.split_at(split_index);
4473        match direction {
4474            Direction::Front => {
4475                *self = back;
4476                Some(front)
4477            }
4478            Direction::Back => {
4479                *self = front;
4480                Some(back)
4481            }
4482        }
4483    }
4484
4485    /// Removes the subslice corresponding to the given range
4486    /// and returns a mutable reference to it.
4487    ///
4488    /// Returns `None` and does not modify the slice if the given
4489    /// range is out of bounds.
4490    ///
4491    /// Note that this method only accepts one-sided ranges such as
4492    /// `2..` or `..6`, but not `2..6`.
4493    ///
4494    /// # Examples
4495    ///
4496    /// Splitting off the first three elements of a slice:
4497    ///
4498    /// ```
4499    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4500    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4501    ///
4502    /// assert_eq!(slice, &mut ['d']);
4503    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4504    /// ```
4505    ///
4506    /// Splitting off a slice starting with the third element:
4507    ///
4508    /// ```
4509    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4510    /// let mut tail = slice.split_off_mut(2..).unwrap();
4511    ///
4512    /// assert_eq!(slice, &mut ['a', 'b']);
4513    /// assert_eq!(tail, &mut ['c', 'd']);
4514    /// ```
4515    ///
4516    /// Getting `None` when `range` is out of bounds:
4517    ///
4518    /// ```
4519    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4520    ///
4521    /// assert_eq!(None, slice.split_off_mut(5..));
4522    /// assert_eq!(None, slice.split_off_mut(..5));
4523    /// assert_eq!(None, slice.split_off_mut(..=4));
4524    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4525    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4526    /// ```
4527    #[inline]
4528    #[must_use = "method does not modify the slice if the range is out of bounds"]
4529    #[stable(feature = "slice_take", since = "1.87.0")]
4530    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4531        self: &mut &'a mut Self,
4532        range: R,
4533    ) -> Option<&'a mut Self> {
4534        let (direction, split_index) = split_point_of(range)?;
4535        if split_index > self.len() {
4536            return None;
4537        }
4538        let (front, back) = mem::take(self).split_at_mut(split_index);
4539        match direction {
4540            Direction::Front => {
4541                *self = back;
4542                Some(front)
4543            }
4544            Direction::Back => {
4545                *self = front;
4546                Some(back)
4547            }
4548        }
4549    }
4550
4551    /// Removes the first element of the slice and returns a reference
4552    /// to it.
4553    ///
4554    /// Returns `None` if the slice is empty.
4555    ///
4556    /// # Examples
4557    ///
4558    /// ```
4559    /// let mut slice: &[_] = &['a', 'b', 'c'];
4560    /// let first = slice.split_off_first().unwrap();
4561    ///
4562    /// assert_eq!(slice, &['b', 'c']);
4563    /// assert_eq!(first, &'a');
4564    /// ```
4565    #[inline]
4566    #[stable(feature = "slice_take", since = "1.87.0")]
4567    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4568    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4569        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4570        let Some((first, rem)) = self.split_first() else { return None };
4571        *self = rem;
4572        Some(first)
4573    }
4574
4575    /// Removes the first element of the slice and returns a mutable
4576    /// reference to it.
4577    ///
4578    /// Returns `None` if the slice is empty.
4579    ///
4580    /// # Examples
4581    ///
4582    /// ```
4583    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4584    /// let first = slice.split_off_first_mut().unwrap();
4585    /// *first = 'd';
4586    ///
4587    /// assert_eq!(slice, &['b', 'c']);
4588    /// assert_eq!(first, &'d');
4589    /// ```
4590    #[inline]
4591    #[stable(feature = "slice_take", since = "1.87.0")]
4592    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4593    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4594        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4595        // Original: `mem::take(self).split_first_mut()?`
4596        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4597        *self = rem;
4598        Some(first)
4599    }
4600
4601    /// Removes the last element of the slice and returns a reference
4602    /// to it.
4603    ///
4604    /// Returns `None` if the slice is empty.
4605    ///
4606    /// # Examples
4607    ///
4608    /// ```
4609    /// let mut slice: &[_] = &['a', 'b', 'c'];
4610    /// let last = slice.split_off_last().unwrap();
4611    ///
4612    /// assert_eq!(slice, &['a', 'b']);
4613    /// assert_eq!(last, &'c');
4614    /// ```
4615    #[inline]
4616    #[stable(feature = "slice_take", since = "1.87.0")]
4617    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4618    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4619        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4620        let Some((last, rem)) = self.split_last() else { return None };
4621        *self = rem;
4622        Some(last)
4623    }
4624
4625    /// Removes the last element of the slice and returns a mutable
4626    /// reference to it.
4627    ///
4628    /// Returns `None` if the slice is empty.
4629    ///
4630    /// # Examples
4631    ///
4632    /// ```
4633    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4634    /// let last = slice.split_off_last_mut().unwrap();
4635    /// *last = 'd';
4636    ///
4637    /// assert_eq!(slice, &['a', 'b']);
4638    /// assert_eq!(last, &'d');
4639    /// ```
4640    #[inline]
4641    #[stable(feature = "slice_take", since = "1.87.0")]
4642    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4643    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4644        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4645        // Original: `mem::take(self).split_last_mut()?`
4646        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4647        *self = rem;
4648        Some(last)
4649    }
4650
4651    /// Returns mutable references to many indices at once, without doing any checks.
4652    ///
4653    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4654    /// that this method takes an array, so all indices must be of the same type.
4655    /// If passed an array of `usize`s this method gives back an array of mutable references
4656    /// to single elements, while if passed an array of ranges it gives back an array of
4657    /// mutable references to slices.
4658    ///
4659    /// For a safe alternative see [`get_disjoint_mut`].
4660    ///
4661    /// # Safety
4662    ///
4663    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4664    /// even if the resulting references are not used.
4665    ///
4666    /// # Examples
4667    ///
4668    /// ```
4669    /// let x = &mut [1, 2, 4];
4670    ///
4671    /// unsafe {
4672    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4673    ///     *a *= 10;
4674    ///     *b *= 100;
4675    /// }
4676    /// assert_eq!(x, &[10, 2, 400]);
4677    ///
4678    /// unsafe {
4679    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4680    ///     a[0] = 8;
4681    ///     b[0] = 88;
4682    ///     b[1] = 888;
4683    /// }
4684    /// assert_eq!(x, &[8, 88, 888]);
4685    ///
4686    /// unsafe {
4687    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4688    ///     a[0] = 11;
4689    ///     a[1] = 111;
4690    ///     b[0] = 1;
4691    /// }
4692    /// assert_eq!(x, &[1, 11, 111]);
4693    /// ```
4694    ///
4695    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4696    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4697    #[stable(feature = "get_many_mut", since = "1.86.0")]
4698    #[inline]
4699    #[track_caller]
4700    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4701        &mut self,
4702        indices: [I; N],
4703    ) -> [&mut I::Output; N]
4704    where
4705        I: GetDisjointMutIndex + SliceIndex<Self>,
4706    {
4707        // NB: This implementation is written as it is because any variation of
4708        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4709        // or generate worse code otherwise. This is also why we need to go
4710        // through a raw pointer here.
4711        let slice: *mut [T] = self;
4712        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4713        let arr_ptr = arr.as_mut_ptr();
4714
4715        // SAFETY: We expect `indices` to contain disjunct values that are
4716        // in bounds of `self`.
4717        unsafe {
4718            for i in 0..N {
4719                let idx = indices.get_unchecked(i).clone();
4720                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4721            }
4722            arr.assume_init()
4723        }
4724    }
4725
4726    /// Returns mutable references to many indices at once.
4727    ///
4728    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4729    /// that this method takes an array, so all indices must be of the same type.
4730    /// If passed an array of `usize`s this method gives back an array of mutable references
4731    /// to single elements, while if passed an array of ranges it gives back an array of
4732    /// mutable references to slices.
4733    ///
4734    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4735    /// An empty range is not considered to overlap if it is located at the beginning or at
4736    /// the end of another range, but is considered to overlap if it is located in the middle.
4737    ///
4738    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4739    /// when passing many indices.
4740    ///
4741    /// # Examples
4742    ///
4743    /// ```
4744    /// let v = &mut [1, 2, 3];
4745    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4746    ///     *a = 413;
4747    ///     *b = 612;
4748    /// }
4749    /// assert_eq!(v, &[413, 2, 612]);
4750    ///
4751    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4752    ///     a[0] = 8;
4753    ///     b[0] = 88;
4754    ///     b[1] = 888;
4755    /// }
4756    /// assert_eq!(v, &[8, 88, 888]);
4757    ///
4758    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4759    ///     a[0] = 11;
4760    ///     a[1] = 111;
4761    ///     b[0] = 1;
4762    /// }
4763    /// assert_eq!(v, &[1, 11, 111]);
4764    /// ```
4765    #[stable(feature = "get_many_mut", since = "1.86.0")]
4766    #[inline]
4767    pub fn get_disjoint_mut<I, const N: usize>(
4768        &mut self,
4769        indices: [I; N],
4770    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4771    where
4772        I: GetDisjointMutIndex + SliceIndex<Self>,
4773    {
4774        get_disjoint_check_valid(&indices, self.len())?;
4775        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4776        // are disjunct and in bounds.
4777        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4778    }
4779
4780    /// Returns the index that an element reference points to.
4781    ///
4782    /// Returns `None` if `element` does not point to the start of an element within the slice.
4783    ///
4784    /// This method is useful for extending slice iterators like [`slice::split`].
4785    ///
4786    /// Note that this uses pointer arithmetic and **does not compare elements**.
4787    /// To find the index of an element via comparison, use
4788    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4789    ///
4790    /// # Panics
4791    /// Panics if `T` is zero-sized.
4792    ///
4793    /// # Examples
4794    /// Basic usage:
4795    /// ```
4796    /// #![feature(substr_range)]
4797    ///
4798    /// let nums: &[u32] = &[1, 7, 1, 1];
4799    /// let num = &nums[2];
4800    ///
4801    /// assert_eq!(num, &1);
4802    /// assert_eq!(nums.element_offset(num), Some(2));
4803    /// ```
4804    /// Returning `None` with an unaligned element:
4805    /// ```
4806    /// #![feature(substr_range)]
4807    ///
4808    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4809    /// let flat_arr: &[u32] = arr.as_flattened();
4810    ///
4811    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4812    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4813    ///
4814    /// assert_eq!(ok_elm, &[0, 1]);
4815    /// assert_eq!(weird_elm, &[1, 2]);
4816    ///
4817    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4818    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4819    /// ```
4820    #[must_use]
4821    #[unstable(feature = "substr_range", issue = "126769")]
4822    pub fn element_offset(&self, element: &T) -> Option<usize> {
4823        if T::IS_ZST {
4824            panic!("elements are zero-sized");
4825        }
4826
4827        let self_start = self.as_ptr().addr();
4828        let elem_start = ptr::from_ref(element).addr();
4829
4830        let byte_offset = elem_start.wrapping_sub(self_start);
4831
4832        if !byte_offset.is_multiple_of(size_of::<T>()) {
4833            return None;
4834        }
4835
4836        let offset = byte_offset / size_of::<T>();
4837
4838        if offset < self.len() { Some(offset) } else { None }
4839    }
4840
4841    /// Returns the range of indices that a subslice points to.
4842    ///
4843    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4844    /// elements in the slice.
4845    ///
4846    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4847    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4848    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4849    ///
4850    /// This method is useful for extending slice iterators like [`slice::split`].
4851    ///
4852    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4853    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4854    ///
4855    /// # Panics
4856    /// Panics if `T` is zero-sized.
4857    ///
4858    /// # Examples
4859    /// Basic usage:
4860    /// ```
4861    /// #![feature(substr_range)]
4862    ///
4863    /// let nums = &[0, 5, 10, 0, 0, 5];
4864    ///
4865    /// let mut iter = nums
4866    ///     .split(|t| *t == 0)
4867    ///     .map(|n| nums.subslice_range(n).unwrap());
4868    ///
4869    /// assert_eq!(iter.next(), Some(0..0));
4870    /// assert_eq!(iter.next(), Some(1..3));
4871    /// assert_eq!(iter.next(), Some(4..4));
4872    /// assert_eq!(iter.next(), Some(5..6));
4873    /// ```
4874    #[must_use]
4875    #[unstable(feature = "substr_range", issue = "126769")]
4876    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
4877        if T::IS_ZST {
4878            panic!("elements are zero-sized");
4879        }
4880
4881        let self_start = self.as_ptr().addr();
4882        let subslice_start = subslice.as_ptr().addr();
4883
4884        let byte_start = subslice_start.wrapping_sub(self_start);
4885
4886        if !byte_start.is_multiple_of(size_of::<T>()) {
4887            return None;
4888        }
4889
4890        let start = byte_start / size_of::<T>();
4891        let end = start.wrapping_add(subslice.len());
4892
4893        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
4894    }
4895}
4896
4897impl<T> [MaybeUninit<T>] {
4898    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
4899    /// another type, ensuring alignment of the types is maintained.
4900    ///
4901    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4902    /// guarantees as that method.
4903    ///
4904    /// # Examples
4905    ///
4906    /// ```
4907    /// #![feature(align_to_uninit_mut)]
4908    /// use std::mem::MaybeUninit;
4909    ///
4910    /// pub struct BumpAllocator<'scope> {
4911    ///     memory: &'scope mut [MaybeUninit<u8>],
4912    /// }
4913    ///
4914    /// impl<'scope> BumpAllocator<'scope> {
4915    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
4916    ///         Self { memory }
4917    ///     }
4918    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
4919    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
4920    ///         let prefix = self.memory.split_off_mut(..first_end)?;
4921    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
4922    ///     }
4923    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
4924    ///         let uninit = self.try_alloc_uninit()?;
4925    ///         Some(uninit.write(value))
4926    ///     }
4927    /// }
4928    ///
4929    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
4930    /// let mut allocator = BumpAllocator::new(&mut memory);
4931    /// let v = allocator.try_alloc_u32(42);
4932    /// assert_eq!(v, Some(&mut 42));
4933    /// ```
4934    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
4935    #[inline]
4936    #[must_use]
4937    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
4938        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
4939        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
4940        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
4941        // any values are valid, so this operation is safe.
4942        unsafe { self.align_to_mut() }
4943    }
4944}
4945
4946impl<T, const N: usize> [[T; N]] {
4947    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
4948    ///
4949    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
4950    ///
4951    /// [`as_chunks`]: slice::as_chunks
4952    /// [`as_rchunks`]: slice::as_rchunks
4953    ///
4954    /// # Panics
4955    ///
4956    /// This panics if the length of the resulting slice would overflow a `usize`.
4957    ///
4958    /// This is only possible when flattening a slice of arrays of zero-sized
4959    /// types, and thus tends to be irrelevant in practice. If
4960    /// `size_of::<T>() > 0`, this will never panic.
4961    ///
4962    /// # Examples
4963    ///
4964    /// ```
4965    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
4966    ///
4967    /// assert_eq!(
4968    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
4969    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
4970    /// );
4971    ///
4972    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
4973    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
4974    ///
4975    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
4976    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
4977    /// ```
4978    #[stable(feature = "slice_flatten", since = "1.80.0")]
4979    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
4980    pub const fn as_flattened(&self) -> &[T] {
4981        let len = if T::IS_ZST {
4982            self.len().checked_mul(N).expect("slice len overflow")
4983        } else {
4984            // SAFETY: `self.len() * N` cannot overflow because `self` is
4985            // already in the address space.
4986            unsafe { self.len().unchecked_mul(N) }
4987        };
4988        // SAFETY: `[T]` is layout-identical to `[T; N]`
4989        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
4990    }
4991
4992    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
4993    ///
4994    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
4995    ///
4996    /// [`as_chunks_mut`]: slice::as_chunks_mut
4997    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
4998    ///
4999    /// # Panics
5000    ///
5001    /// This panics if the length of the resulting slice would overflow a `usize`.
5002    ///
5003    /// This is only possible when flattening a slice of arrays of zero-sized
5004    /// types, and thus tends to be irrelevant in practice. If
5005    /// `size_of::<T>() > 0`, this will never panic.
5006    ///
5007    /// # Examples
5008    ///
5009    /// ```
5010    /// fn add_5_to_all(slice: &mut [i32]) {
5011    ///     for i in slice {
5012    ///         *i += 5;
5013    ///     }
5014    /// }
5015    ///
5016    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5017    /// add_5_to_all(array.as_flattened_mut());
5018    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5019    /// ```
5020    #[stable(feature = "slice_flatten", since = "1.80.0")]
5021    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5022    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5023        let len = if T::IS_ZST {
5024            self.len().checked_mul(N).expect("slice len overflow")
5025        } else {
5026            // SAFETY: `self.len() * N` cannot overflow because `self` is
5027            // already in the address space.
5028            unsafe { self.len().unchecked_mul(N) }
5029        };
5030        // SAFETY: `[T]` is layout-identical to `[T; N]`
5031        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5032    }
5033}
5034
5035impl [f32] {
5036    /// Sorts the slice of floats.
5037    ///
5038    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5039    /// the ordering defined by [`f32::total_cmp`].
5040    ///
5041    /// # Current implementation
5042    ///
5043    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5044    ///
5045    /// # Examples
5046    ///
5047    /// ```
5048    /// #![feature(sort_floats)]
5049    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5050    ///
5051    /// v.sort_floats();
5052    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5053    /// assert_eq!(&v[..8], &sorted[..8]);
5054    /// assert!(v[8].is_nan());
5055    /// ```
5056    #[unstable(feature = "sort_floats", issue = "93396")]
5057    #[inline]
5058    pub fn sort_floats(&mut self) {
5059        self.sort_unstable_by(f32::total_cmp);
5060    }
5061}
5062
5063impl [f64] {
5064    /// Sorts the slice of floats.
5065    ///
5066    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5067    /// the ordering defined by [`f64::total_cmp`].
5068    ///
5069    /// # Current implementation
5070    ///
5071    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5072    ///
5073    /// # Examples
5074    ///
5075    /// ```
5076    /// #![feature(sort_floats)]
5077    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5078    ///
5079    /// v.sort_floats();
5080    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5081    /// assert_eq!(&v[..8], &sorted[..8]);
5082    /// assert!(v[8].is_nan());
5083    /// ```
5084    #[unstable(feature = "sort_floats", issue = "93396")]
5085    #[inline]
5086    pub fn sort_floats(&mut self) {
5087        self.sort_unstable_by(f64::total_cmp);
5088    }
5089}
5090
5091trait CloneFromSpec<T> {
5092    fn spec_clone_from(&mut self, src: &[T]);
5093}
5094
5095impl<T> CloneFromSpec<T> for [T]
5096where
5097    T: Clone,
5098{
5099    #[track_caller]
5100    default fn spec_clone_from(&mut self, src: &[T]) {
5101        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5102        // NOTE: We need to explicitly slice them to the same length
5103        // to make it easier for the optimizer to elide bounds checking.
5104        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5105        let len = self.len();
5106        let src = &src[..len];
5107        for i in 0..len {
5108            self[i].clone_from(&src[i]);
5109        }
5110    }
5111}
5112
5113impl<T> CloneFromSpec<T> for [T]
5114where
5115    T: Copy,
5116{
5117    #[track_caller]
5118    fn spec_clone_from(&mut self, src: &[T]) {
5119        self.copy_from_slice(src);
5120    }
5121}
5122
5123#[stable(feature = "rust1", since = "1.0.0")]
5124#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5125impl<T> const Default for &[T] {
5126    /// Creates an empty slice.
5127    fn default() -> Self {
5128        &[]
5129    }
5130}
5131
5132#[stable(feature = "mut_slice_default", since = "1.5.0")]
5133#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5134impl<T> const Default for &mut [T] {
5135    /// Creates a mutable empty slice.
5136    fn default() -> Self {
5137        &mut []
5138    }
5139}
5140
5141#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5142/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5143/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5144/// `str`) to slices, and then this trait will be replaced or abolished.
5145pub trait SlicePattern {
5146    /// The element type of the slice being matched on.
5147    type Item;
5148
5149    /// Currently, the consumers of `SlicePattern` need a slice.
5150    fn as_slice(&self) -> &[Self::Item];
5151}
5152
5153#[stable(feature = "slice_strip", since = "1.51.0")]
5154impl<T> SlicePattern for [T] {
5155    type Item = T;
5156
5157    #[inline]
5158    fn as_slice(&self) -> &[Self::Item] {
5159        self
5160    }
5161}
5162
5163#[stable(feature = "slice_strip", since = "1.51.0")]
5164impl<T, const N: usize> SlicePattern for [T; N] {
5165    type Item = T;
5166
5167    #[inline]
5168    fn as_slice(&self) -> &[Self::Item] {
5169        self
5170    }
5171}
5172
5173/// This checks every index against each other, and against `len`.
5174///
5175/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5176/// comparison operations.
5177#[inline]
5178fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5179    indices: &[I; N],
5180    len: usize,
5181) -> Result<(), GetDisjointMutError> {
5182    // NB: The optimizer should inline the loops into a sequence
5183    // of instructions without additional branching.
5184    for (i, idx) in indices.iter().enumerate() {
5185        if !idx.is_in_bounds(len) {
5186            return Err(GetDisjointMutError::IndexOutOfBounds);
5187        }
5188        for idx2 in &indices[..i] {
5189            if idx.is_overlapping(idx2) {
5190                return Err(GetDisjointMutError::OverlappingIndices);
5191            }
5192        }
5193    }
5194    Ok(())
5195}
5196
5197/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5198///
5199/// It indicates one of two possible errors:
5200/// - An index is out-of-bounds.
5201/// - The same index appeared multiple times in the array
5202///   (or different but overlapping indices when ranges are provided).
5203///
5204/// # Examples
5205///
5206/// ```
5207/// use std::slice::GetDisjointMutError;
5208///
5209/// let v = &mut [1, 2, 3];
5210/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5211/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5212/// ```
5213#[stable(feature = "get_many_mut", since = "1.86.0")]
5214#[derive(Debug, Clone, PartialEq, Eq)]
5215pub enum GetDisjointMutError {
5216    /// An index provided was out-of-bounds for the slice.
5217    IndexOutOfBounds,
5218    /// Two indices provided were overlapping.
5219    OverlappingIndices,
5220}
5221
5222#[stable(feature = "get_many_mut", since = "1.86.0")]
5223impl fmt::Display for GetDisjointMutError {
5224    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5225        let msg = match self {
5226            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5227            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5228        };
5229        fmt::Display::fmt(msg, f)
5230    }
5231}
5232
5233mod private_get_disjoint_mut_index {
5234    use super::{Range, RangeInclusive, range};
5235
5236    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5237    pub trait Sealed {}
5238
5239    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5240    impl Sealed for usize {}
5241    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5242    impl Sealed for Range<usize> {}
5243    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5244    impl Sealed for RangeInclusive<usize> {}
5245    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5246    impl Sealed for range::Range<usize> {}
5247    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5248    impl Sealed for range::RangeInclusive<usize> {}
5249}
5250
5251/// A helper trait for `<[T]>::get_disjoint_mut()`.
5252///
5253/// # Safety
5254///
5255/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5256/// it must be safe to index the slice with the indices.
5257#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5258pub unsafe trait GetDisjointMutIndex:
5259    Clone + private_get_disjoint_mut_index::Sealed
5260{
5261    /// Returns `true` if `self` is in bounds for `len` slice elements.
5262    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5263    fn is_in_bounds(&self, len: usize) -> bool;
5264
5265    /// Returns `true` if `self` overlaps with `other`.
5266    ///
5267    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5268    /// but do consider them to overlap in the middle.
5269    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5270    fn is_overlapping(&self, other: &Self) -> bool;
5271}
5272
5273#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5274// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5275unsafe impl GetDisjointMutIndex for usize {
5276    #[inline]
5277    fn is_in_bounds(&self, len: usize) -> bool {
5278        *self < len
5279    }
5280
5281    #[inline]
5282    fn is_overlapping(&self, other: &Self) -> bool {
5283        *self == *other
5284    }
5285}
5286
5287#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5288// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5289unsafe impl GetDisjointMutIndex for Range<usize> {
5290    #[inline]
5291    fn is_in_bounds(&self, len: usize) -> bool {
5292        (self.start <= self.end) & (self.end <= len)
5293    }
5294
5295    #[inline]
5296    fn is_overlapping(&self, other: &Self) -> bool {
5297        (self.start < other.end) & (other.start < self.end)
5298    }
5299}
5300
5301#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5302// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5303unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5304    #[inline]
5305    fn is_in_bounds(&self, len: usize) -> bool {
5306        (self.start <= self.end) & (self.end < len)
5307    }
5308
5309    #[inline]
5310    fn is_overlapping(&self, other: &Self) -> bool {
5311        (self.start <= other.end) & (other.start <= self.end)
5312    }
5313}
5314
5315#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5316// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5317unsafe impl GetDisjointMutIndex for range::Range<usize> {
5318    #[inline]
5319    fn is_in_bounds(&self, len: usize) -> bool {
5320        Range::from(*self).is_in_bounds(len)
5321    }
5322
5323    #[inline]
5324    fn is_overlapping(&self, other: &Self) -> bool {
5325        Range::from(*self).is_overlapping(&Range::from(*other))
5326    }
5327}
5328
5329#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5330// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5331unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5332    #[inline]
5333    fn is_in_bounds(&self, len: usize) -> bool {
5334        RangeInclusive::from(*self).is_in_bounds(len)
5335    }
5336
5337    #[inline]
5338    fn is_overlapping(&self, other: &Self) -> bool {
5339        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5340    }
5341}