core/net/ip_addr.rs
1use super::display_buffer::DisplayBuffer;
2use crate::cmp::Ordering;
3use crate::fmt::{self, Write};
4use crate::hash::{Hash, Hasher};
5use crate::iter;
6use crate::mem::transmute;
7use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
8
9/// An IP address, either IPv4 or IPv6.
10///
11/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
12/// respective documentation for more details.
13///
14/// # Examples
15///
16/// ```
17/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
18///
19/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
20/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
21///
22/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
23/// assert_eq!("::1".parse(), Ok(localhost_v6));
24///
25/// assert_eq!(localhost_v4.is_ipv6(), false);
26/// assert_eq!(localhost_v4.is_ipv4(), true);
27/// ```
28#[rustc_diagnostic_item = "IpAddr"]
29#[stable(feature = "ip_addr", since = "1.7.0")]
30#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
31pub enum IpAddr {
32 /// An IPv4 address.
33 #[stable(feature = "ip_addr", since = "1.7.0")]
34 V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
35 /// An IPv6 address.
36 #[stable(feature = "ip_addr", since = "1.7.0")]
37 V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
38}
39
40/// An IPv4 address.
41///
42/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
43/// They are usually represented as four octets.
44///
45/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
46///
47/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
48///
49/// # Textual representation
50///
51/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
52/// notation, divided by `.` (this is called "dot-decimal notation").
53/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
54/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
55///
56/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
57/// [`FromStr`]: crate::str::FromStr
58///
59/// # Examples
60///
61/// ```
62/// use std::net::Ipv4Addr;
63///
64/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
65/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
66/// assert_eq!(localhost.is_loopback(), true);
67/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
68/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
69/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
70/// ```
71#[rustc_diagnostic_item = "Ipv4Addr"]
72#[derive(Copy, Clone, PartialEq, Eq)]
73#[stable(feature = "rust1", since = "1.0.0")]
74pub struct Ipv4Addr {
75 octets: [u8; 4],
76}
77
78#[stable(feature = "rust1", since = "1.0.0")]
79impl Hash for Ipv4Addr {
80 fn hash<H: Hasher>(&self, state: &mut H) {
81 // Hashers are often more efficient at hashing a fixed-width integer
82 // than a bytestring, so convert before hashing. We don't use to_bits()
83 // here as that may involve a byteswap which is unnecessary.
84 u32::from_ne_bytes(self.octets).hash(state);
85 }
86}
87
88/// An IPv6 address.
89///
90/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
91/// They are usually represented as eight 16-bit segments.
92///
93/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
94///
95/// # Embedding IPv4 Addresses
96///
97/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
98///
99/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
100/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
101///
102/// Both types of addresses are not assigned any special meaning by this implementation,
103/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
104/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
105/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
106///
107/// ### IPv4-Compatible IPv6 Addresses
108///
109/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
110/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
111///
112/// ```text
113/// | 80 bits | 16 | 32 bits |
114/// +--------------------------------------+--------------------------+
115/// |0000..............................0000|0000| IPv4 address |
116/// +--------------------------------------+----+---------------------+
117/// ```
118/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
119///
120/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
121/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
122///
123/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
124///
125/// ### IPv4-Mapped IPv6 Addresses
126///
127/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
128/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
129///
130/// ```text
131/// | 80 bits | 16 | 32 bits |
132/// +--------------------------------------+--------------------------+
133/// |0000..............................0000|FFFF| IPv4 address |
134/// +--------------------------------------+----+---------------------+
135/// ```
136/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
137///
138/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
139/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
140/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
141/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
142///
143/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
144///
145/// # Textual representation
146///
147/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
148/// an IPv6 address in text, but in general, each segments is written in hexadecimal
149/// notation, and segments are separated by `:`. For more information, see
150/// [IETF RFC 5952].
151///
152/// [`FromStr`]: crate::str::FromStr
153/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
154///
155/// # Examples
156///
157/// ```
158/// use std::net::Ipv6Addr;
159///
160/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
161/// assert_eq!("::1".parse(), Ok(localhost));
162/// assert_eq!(localhost.is_loopback(), true);
163/// ```
164#[rustc_diagnostic_item = "Ipv6Addr"]
165#[derive(Copy, Clone, PartialEq, Eq)]
166#[stable(feature = "rust1", since = "1.0.0")]
167pub struct Ipv6Addr {
168 octets: [u8; 16],
169}
170
171#[stable(feature = "rust1", since = "1.0.0")]
172impl Hash for Ipv6Addr {
173 fn hash<H: Hasher>(&self, state: &mut H) {
174 // Hashers are often more efficient at hashing a fixed-width integer
175 // than a bytestring, so convert before hashing. We don't use to_bits()
176 // here as that may involve unnecessary byteswaps.
177 u128::from_ne_bytes(self.octets).hash(state);
178 }
179}
180
181/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
182///
183/// # Stability Guarantees
184///
185/// Not all possible values for a multicast scope have been assigned.
186/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
187/// because of this the enum is marked as `#[non_exhaustive]`.
188///
189/// # Examples
190/// ```
191/// #![feature(ip)]
192///
193/// use std::net::Ipv6Addr;
194/// use std::net::Ipv6MulticastScope::*;
195///
196/// // An IPv6 multicast address with global scope (`ff0e::`).
197/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
198///
199/// // Will print "Global scope".
200/// match address.multicast_scope() {
201/// Some(InterfaceLocal) => println!("Interface-Local scope"),
202/// Some(LinkLocal) => println!("Link-Local scope"),
203/// Some(RealmLocal) => println!("Realm-Local scope"),
204/// Some(AdminLocal) => println!("Admin-Local scope"),
205/// Some(SiteLocal) => println!("Site-Local scope"),
206/// Some(OrganizationLocal) => println!("Organization-Local scope"),
207/// Some(Global) => println!("Global scope"),
208/// Some(_) => println!("Unknown scope"),
209/// None => println!("Not a multicast address!")
210/// }
211///
212/// ```
213///
214/// [IPv6 multicast address]: Ipv6Addr
215/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
216#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
217#[unstable(feature = "ip", issue = "27709")]
218#[non_exhaustive]
219pub enum Ipv6MulticastScope {
220 /// Interface-Local scope.
221 InterfaceLocal,
222 /// Link-Local scope.
223 LinkLocal,
224 /// Realm-Local scope.
225 RealmLocal,
226 /// Admin-Local scope.
227 AdminLocal,
228 /// Site-Local scope.
229 SiteLocal,
230 /// Organization-Local scope.
231 OrganizationLocal,
232 /// Global scope.
233 Global,
234}
235
236impl IpAddr {
237 /// Returns [`true`] for the special 'unspecified' address.
238 ///
239 /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
240 /// [`Ipv6Addr::is_unspecified()`] for more details.
241 ///
242 /// # Examples
243 ///
244 /// ```
245 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
246 ///
247 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
248 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
249 /// ```
250 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
251 #[stable(feature = "ip_shared", since = "1.12.0")]
252 #[must_use]
253 #[inline]
254 pub const fn is_unspecified(&self) -> bool {
255 match self {
256 IpAddr::V4(ip) => ip.is_unspecified(),
257 IpAddr::V6(ip) => ip.is_unspecified(),
258 }
259 }
260
261 /// Returns [`true`] if this is a loopback address.
262 ///
263 /// See the documentation for [`Ipv4Addr::is_loopback()`] and
264 /// [`Ipv6Addr::is_loopback()`] for more details.
265 ///
266 /// # Examples
267 ///
268 /// ```
269 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
270 ///
271 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
272 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
273 /// ```
274 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
275 #[stable(feature = "ip_shared", since = "1.12.0")]
276 #[must_use]
277 #[inline]
278 pub const fn is_loopback(&self) -> bool {
279 match self {
280 IpAddr::V4(ip) => ip.is_loopback(),
281 IpAddr::V6(ip) => ip.is_loopback(),
282 }
283 }
284
285 /// Returns [`true`] if the address appears to be globally routable.
286 ///
287 /// See the documentation for [`Ipv4Addr::is_global()`] and
288 /// [`Ipv6Addr::is_global()`] for more details.
289 ///
290 /// # Examples
291 ///
292 /// ```
293 /// #![feature(ip)]
294 ///
295 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
296 ///
297 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
298 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
299 /// ```
300 #[unstable(feature = "ip", issue = "27709")]
301 #[must_use]
302 #[inline]
303 pub const fn is_global(&self) -> bool {
304 match self {
305 IpAddr::V4(ip) => ip.is_global(),
306 IpAddr::V6(ip) => ip.is_global(),
307 }
308 }
309
310 /// Returns [`true`] if this is a multicast address.
311 ///
312 /// See the documentation for [`Ipv4Addr::is_multicast()`] and
313 /// [`Ipv6Addr::is_multicast()`] for more details.
314 ///
315 /// # Examples
316 ///
317 /// ```
318 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
319 ///
320 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
321 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
322 /// ```
323 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
324 #[stable(feature = "ip_shared", since = "1.12.0")]
325 #[must_use]
326 #[inline]
327 pub const fn is_multicast(&self) -> bool {
328 match self {
329 IpAddr::V4(ip) => ip.is_multicast(),
330 IpAddr::V6(ip) => ip.is_multicast(),
331 }
332 }
333
334 /// Returns [`true`] if this address is in a range designated for documentation.
335 ///
336 /// See the documentation for [`Ipv4Addr::is_documentation()`] and
337 /// [`Ipv6Addr::is_documentation()`] for more details.
338 ///
339 /// # Examples
340 ///
341 /// ```
342 /// #![feature(ip)]
343 ///
344 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
345 ///
346 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
347 /// assert_eq!(
348 /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
349 /// true
350 /// );
351 /// ```
352 #[unstable(feature = "ip", issue = "27709")]
353 #[must_use]
354 #[inline]
355 pub const fn is_documentation(&self) -> bool {
356 match self {
357 IpAddr::V4(ip) => ip.is_documentation(),
358 IpAddr::V6(ip) => ip.is_documentation(),
359 }
360 }
361
362 /// Returns [`true`] if this address is in a range designated for benchmarking.
363 ///
364 /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
365 /// [`Ipv6Addr::is_benchmarking()`] for more details.
366 ///
367 /// # Examples
368 ///
369 /// ```
370 /// #![feature(ip)]
371 ///
372 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
373 ///
374 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
375 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
376 /// ```
377 #[unstable(feature = "ip", issue = "27709")]
378 #[must_use]
379 #[inline]
380 pub const fn is_benchmarking(&self) -> bool {
381 match self {
382 IpAddr::V4(ip) => ip.is_benchmarking(),
383 IpAddr::V6(ip) => ip.is_benchmarking(),
384 }
385 }
386
387 /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
388 /// otherwise.
389 ///
390 /// [`IPv4` address]: IpAddr::V4
391 ///
392 /// # Examples
393 ///
394 /// ```
395 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
396 ///
397 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
398 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
399 /// ```
400 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
401 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
402 #[must_use]
403 #[inline]
404 pub const fn is_ipv4(&self) -> bool {
405 matches!(self, IpAddr::V4(_))
406 }
407
408 /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
409 /// otherwise.
410 ///
411 /// [`IPv6` address]: IpAddr::V6
412 ///
413 /// # Examples
414 ///
415 /// ```
416 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
417 ///
418 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
419 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
420 /// ```
421 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
422 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
423 #[must_use]
424 #[inline]
425 pub const fn is_ipv6(&self) -> bool {
426 matches!(self, IpAddr::V6(_))
427 }
428
429 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6
430 /// address, otherwise returns `self` as-is.
431 ///
432 /// # Examples
433 ///
434 /// ```
435 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
436 ///
437 /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1);
438 ///
439 /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4);
440 /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4);
441 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
442 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
443 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
444 /// ```
445 #[inline]
446 #[must_use = "this returns the result of the operation, \
447 without modifying the original"]
448 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
449 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
450 pub const fn to_canonical(&self) -> IpAddr {
451 match self {
452 IpAddr::V4(_) => *self,
453 IpAddr::V6(v6) => v6.to_canonical(),
454 }
455 }
456
457 /// Returns the eight-bit integers this address consists of as a slice.
458 ///
459 /// # Examples
460 ///
461 /// ```
462 /// #![feature(ip_as_octets)]
463 ///
464 /// use std::net::{Ipv4Addr, Ipv6Addr, IpAddr};
465 ///
466 /// assert_eq!(IpAddr::V4(Ipv4Addr::LOCALHOST).as_octets(), &[127, 0, 0, 1]);
467 /// assert_eq!(IpAddr::V6(Ipv6Addr::LOCALHOST).as_octets(),
468 /// &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
469 /// ```
470 #[unstable(feature = "ip_as_octets", issue = "137259")]
471 #[inline]
472 pub const fn as_octets(&self) -> &[u8] {
473 match self {
474 IpAddr::V4(ip) => ip.as_octets().as_slice(),
475 IpAddr::V6(ip) => ip.as_octets().as_slice(),
476 }
477 }
478}
479
480impl Ipv4Addr {
481 /// Creates a new IPv4 address from four eight-bit octets.
482 ///
483 /// The result will represent the IP address `a`.`b`.`c`.`d`.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// use std::net::Ipv4Addr;
489 ///
490 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
491 /// ```
492 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
493 #[stable(feature = "rust1", since = "1.0.0")]
494 #[must_use]
495 #[inline]
496 pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
497 Ipv4Addr { octets: [a, b, c, d] }
498 }
499
500 /// The size of an IPv4 address in bits.
501 ///
502 /// # Examples
503 ///
504 /// ```
505 /// use std::net::Ipv4Addr;
506 ///
507 /// assert_eq!(Ipv4Addr::BITS, 32);
508 /// ```
509 #[stable(feature = "ip_bits", since = "1.80.0")]
510 pub const BITS: u32 = 32;
511
512 /// Converts an IPv4 address into a `u32` representation using native byte order.
513 ///
514 /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's
515 /// native byte order. That is, the `u32` value is an integer representation of the IPv4
516 /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This
517 /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address
518 /// to 0, regardless of the target platform's endianness.
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// use std::net::Ipv4Addr;
524 ///
525 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
526 /// assert_eq!(0x12345678, addr.to_bits());
527 /// ```
528 ///
529 /// ```
530 /// use std::net::Ipv4Addr;
531 ///
532 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
533 /// let addr_bits = addr.to_bits() & 0xffffff00;
534 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
535 ///
536 /// ```
537 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
538 #[stable(feature = "ip_bits", since = "1.80.0")]
539 #[must_use]
540 #[inline]
541 pub const fn to_bits(self) -> u32 {
542 u32::from_be_bytes(self.octets)
543 }
544
545 /// Converts a native byte order `u32` into an IPv4 address.
546 ///
547 /// See [`Ipv4Addr::to_bits`] for an explanation on endianness.
548 ///
549 /// # Examples
550 ///
551 /// ```
552 /// use std::net::Ipv4Addr;
553 ///
554 /// let addr = Ipv4Addr::from_bits(0x12345678);
555 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
556 /// ```
557 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
558 #[stable(feature = "ip_bits", since = "1.80.0")]
559 #[must_use]
560 #[inline]
561 pub const fn from_bits(bits: u32) -> Ipv4Addr {
562 Ipv4Addr { octets: bits.to_be_bytes() }
563 }
564
565 /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
566 ///
567 /// # Examples
568 ///
569 /// ```
570 /// use std::net::Ipv4Addr;
571 ///
572 /// let addr = Ipv4Addr::LOCALHOST;
573 /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
574 /// ```
575 #[stable(feature = "ip_constructors", since = "1.30.0")]
576 pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
577
578 /// An IPv4 address representing an unspecified address: `0.0.0.0`
579 ///
580 /// This corresponds to the constant `INADDR_ANY` in other languages.
581 ///
582 /// # Examples
583 ///
584 /// ```
585 /// use std::net::Ipv4Addr;
586 ///
587 /// let addr = Ipv4Addr::UNSPECIFIED;
588 /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
589 /// ```
590 #[doc(alias = "INADDR_ANY")]
591 #[stable(feature = "ip_constructors", since = "1.30.0")]
592 pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
593
594 /// An IPv4 address representing the broadcast address: `255.255.255.255`.
595 ///
596 /// # Examples
597 ///
598 /// ```
599 /// use std::net::Ipv4Addr;
600 ///
601 /// let addr = Ipv4Addr::BROADCAST;
602 /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
603 /// ```
604 #[stable(feature = "ip_constructors", since = "1.30.0")]
605 pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
606
607 /// Returns the four eight-bit integers that make up this address.
608 ///
609 /// # Examples
610 ///
611 /// ```
612 /// use std::net::Ipv4Addr;
613 ///
614 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
615 /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
616 /// ```
617 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
618 #[stable(feature = "rust1", since = "1.0.0")]
619 #[must_use]
620 #[inline]
621 pub const fn octets(&self) -> [u8; 4] {
622 self.octets
623 }
624
625 /// Creates an `Ipv4Addr` from a four element byte array.
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// #![feature(ip_from)]
631 /// use std::net::Ipv4Addr;
632 ///
633 /// let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]);
634 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
635 /// ```
636 #[unstable(feature = "ip_from", issue = "131360")]
637 #[must_use]
638 #[inline]
639 pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr {
640 Ipv4Addr { octets }
641 }
642
643 /// Returns the four eight-bit integers that make up this address
644 /// as a slice.
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// #![feature(ip_as_octets)]
650 ///
651 /// use std::net::Ipv4Addr;
652 ///
653 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
654 /// assert_eq!(addr.as_octets(), &[127, 0, 0, 1]);
655 /// ```
656 #[unstable(feature = "ip_as_octets", issue = "137259")]
657 #[inline]
658 pub const fn as_octets(&self) -> &[u8; 4] {
659 &self.octets
660 }
661
662 /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
663 ///
664 /// This property is defined in _UNIX Network Programming, Second Edition_,
665 /// W. Richard Stevens, p. 891; see also [ip7].
666 ///
667 /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
668 ///
669 /// # Examples
670 ///
671 /// ```
672 /// use std::net::Ipv4Addr;
673 ///
674 /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
675 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
676 /// ```
677 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
678 #[stable(feature = "ip_shared", since = "1.12.0")]
679 #[must_use]
680 #[inline]
681 pub const fn is_unspecified(&self) -> bool {
682 u32::from_be_bytes(self.octets) == 0
683 }
684
685 /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
686 ///
687 /// This property is defined by [IETF RFC 1122].
688 ///
689 /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// use std::net::Ipv4Addr;
695 ///
696 /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
697 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
698 /// ```
699 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
700 #[stable(since = "1.7.0", feature = "ip_17")]
701 #[must_use]
702 #[inline]
703 pub const fn is_loopback(&self) -> bool {
704 self.octets()[0] == 127
705 }
706
707 /// Returns [`true`] if this is a private address.
708 ///
709 /// The private address ranges are defined in [IETF RFC 1918] and include:
710 ///
711 /// - `10.0.0.0/8`
712 /// - `172.16.0.0/12`
713 /// - `192.168.0.0/16`
714 ///
715 /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
716 ///
717 /// # Examples
718 ///
719 /// ```
720 /// use std::net::Ipv4Addr;
721 ///
722 /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
723 /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
724 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
725 /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
726 /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
727 /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
728 /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
729 /// ```
730 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
731 #[stable(since = "1.7.0", feature = "ip_17")]
732 #[must_use]
733 #[inline]
734 pub const fn is_private(&self) -> bool {
735 match self.octets() {
736 [10, ..] => true,
737 [172, b, ..] if b >= 16 && b <= 31 => true,
738 [192, 168, ..] => true,
739 _ => false,
740 }
741 }
742
743 /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
744 ///
745 /// This property is defined by [IETF RFC 3927].
746 ///
747 /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
748 ///
749 /// # Examples
750 ///
751 /// ```
752 /// use std::net::Ipv4Addr;
753 ///
754 /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
755 /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
756 /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
757 /// ```
758 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
759 #[stable(since = "1.7.0", feature = "ip_17")]
760 #[must_use]
761 #[inline]
762 pub const fn is_link_local(&self) -> bool {
763 matches!(self.octets(), [169, 254, ..])
764 }
765
766 /// Returns [`true`] if the address appears to be globally reachable
767 /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
768 ///
769 /// Whether or not an address is practically reachable will depend on your
770 /// network configuration. Most IPv4 addresses are globally reachable, unless
771 /// they are specifically defined as *not* globally reachable.
772 ///
773 /// Non-exhaustive list of notable addresses that are not globally reachable:
774 ///
775 /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
776 /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
777 /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
778 /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
779 /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
780 /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
781 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
782 /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
783 /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
784 ///
785 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
786 ///
787 /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
788 /// [unspecified address]: Ipv4Addr::UNSPECIFIED
789 /// [broadcast address]: Ipv4Addr::BROADCAST
790 ///
791 /// # Examples
792 ///
793 /// ```
794 /// #![feature(ip)]
795 ///
796 /// use std::net::Ipv4Addr;
797 ///
798 /// // Most IPv4 addresses are globally reachable:
799 /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
800 ///
801 /// // However some addresses have been assigned a special meaning
802 /// // that makes them not globally reachable. Some examples are:
803 ///
804 /// // The unspecified address (`0.0.0.0`)
805 /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
806 ///
807 /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
808 /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
809 /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
810 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
811 ///
812 /// // Addresses in the shared address space (`100.64.0.0/10`)
813 /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
814 ///
815 /// // The loopback addresses (`127.0.0.0/8`)
816 /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
817 ///
818 /// // Link-local addresses (`169.254.0.0/16`)
819 /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
820 ///
821 /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
822 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
823 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
824 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
825 ///
826 /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
827 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
828 ///
829 /// // Reserved addresses (`240.0.0.0/4`)
830 /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
831 ///
832 /// // The broadcast address (`255.255.255.255`)
833 /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
834 ///
835 /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
836 /// ```
837 #[unstable(feature = "ip", issue = "27709")]
838 #[must_use]
839 #[inline]
840 pub const fn is_global(&self) -> bool {
841 !(self.octets()[0] == 0 // "This network"
842 || self.is_private()
843 || self.is_shared()
844 || self.is_loopback()
845 || self.is_link_local()
846 // addresses reserved for future protocols (`192.0.0.0/24`)
847 // .9 and .10 are documented as globally reachable so they're excluded
848 || (
849 self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
850 && self.octets()[3] != 9 && self.octets()[3] != 10
851 )
852 || self.is_documentation()
853 || self.is_benchmarking()
854 || self.is_reserved()
855 || self.is_broadcast())
856 }
857
858 /// Returns [`true`] if this address is part of the Shared Address Space defined in
859 /// [IETF RFC 6598] (`100.64.0.0/10`).
860 ///
861 /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
862 ///
863 /// # Examples
864 ///
865 /// ```
866 /// #![feature(ip)]
867 /// use std::net::Ipv4Addr;
868 ///
869 /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
870 /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
871 /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
872 /// ```
873 #[unstable(feature = "ip", issue = "27709")]
874 #[must_use]
875 #[inline]
876 pub const fn is_shared(&self) -> bool {
877 self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
878 }
879
880 /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
881 /// network devices benchmarking.
882 ///
883 /// This range is defined in [IETF RFC 2544] as `192.18.0.0` through
884 /// `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
885 ///
886 /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
887 /// [errata 423]: https://www.rfc-editor.org/errata/eid423
888 ///
889 /// # Examples
890 ///
891 /// ```
892 /// #![feature(ip)]
893 /// use std::net::Ipv4Addr;
894 ///
895 /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
896 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
897 /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
898 /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
899 /// ```
900 #[unstable(feature = "ip", issue = "27709")]
901 #[must_use]
902 #[inline]
903 pub const fn is_benchmarking(&self) -> bool {
904 self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
905 }
906
907 /// Returns [`true`] if this address is reserved by IANA for future use.
908 ///
909 /// [IETF RFC 1112] defines the block of reserved addresses as `240.0.0.0/4`.
910 /// This range normally includes the broadcast address `255.255.255.255`, but
911 /// this implementation explicitly excludes it, since it is obviously not
912 /// reserved for future use.
913 ///
914 /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
915 ///
916 /// # Warning
917 ///
918 /// As IANA assigns new addresses, this method will be
919 /// updated. This may result in non-reserved addresses being
920 /// treated as reserved in code that relies on an outdated version
921 /// of this method.
922 ///
923 /// # Examples
924 ///
925 /// ```
926 /// #![feature(ip)]
927 /// use std::net::Ipv4Addr;
928 ///
929 /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
930 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
931 ///
932 /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
933 /// // The broadcast address is not considered as reserved for future use by this implementation
934 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
935 /// ```
936 #[unstable(feature = "ip", issue = "27709")]
937 #[must_use]
938 #[inline]
939 pub const fn is_reserved(&self) -> bool {
940 self.octets()[0] & 240 == 240 && !self.is_broadcast()
941 }
942
943 /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
944 ///
945 /// Multicast addresses have a most significant octet between `224` and `239`,
946 /// and is defined by [IETF RFC 5771].
947 ///
948 /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
949 ///
950 /// # Examples
951 ///
952 /// ```
953 /// use std::net::Ipv4Addr;
954 ///
955 /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
956 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
957 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
958 /// ```
959 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
960 #[stable(since = "1.7.0", feature = "ip_17")]
961 #[must_use]
962 #[inline]
963 pub const fn is_multicast(&self) -> bool {
964 self.octets()[0] >= 224 && self.octets()[0] <= 239
965 }
966
967 /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
968 ///
969 /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
970 ///
971 /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
972 ///
973 /// # Examples
974 ///
975 /// ```
976 /// use std::net::Ipv4Addr;
977 ///
978 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
979 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
980 /// ```
981 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
982 #[stable(since = "1.7.0", feature = "ip_17")]
983 #[must_use]
984 #[inline]
985 pub const fn is_broadcast(&self) -> bool {
986 u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
987 }
988
989 /// Returns [`true`] if this address is in a range designated for documentation.
990 ///
991 /// This is defined in [IETF RFC 5737]:
992 ///
993 /// - `192.0.2.0/24` (TEST-NET-1)
994 /// - `198.51.100.0/24` (TEST-NET-2)
995 /// - `203.0.113.0/24` (TEST-NET-3)
996 ///
997 /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
998 ///
999 /// # Examples
1000 ///
1001 /// ```
1002 /// use std::net::Ipv4Addr;
1003 ///
1004 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
1005 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
1006 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
1007 /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
1008 /// ```
1009 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1010 #[stable(since = "1.7.0", feature = "ip_17")]
1011 #[must_use]
1012 #[inline]
1013 pub const fn is_documentation(&self) -> bool {
1014 matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
1015 }
1016
1017 /// Converts this address to an [IPv4-compatible] [`IPv6` address].
1018 ///
1019 /// `a.b.c.d` becomes `::a.b.c.d`
1020 ///
1021 /// Note that IPv4-compatible addresses have been officially deprecated.
1022 /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
1023 ///
1024 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1025 /// [`IPv6` address]: Ipv6Addr
1026 ///
1027 /// # Examples
1028 ///
1029 /// ```
1030 /// use std::net::{Ipv4Addr, Ipv6Addr};
1031 ///
1032 /// assert_eq!(
1033 /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
1034 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
1035 /// );
1036 /// ```
1037 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1038 #[stable(feature = "rust1", since = "1.0.0")]
1039 #[must_use = "this returns the result of the operation, \
1040 without modifying the original"]
1041 #[inline]
1042 pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
1043 let [a, b, c, d] = self.octets();
1044 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
1045 }
1046
1047 /// Converts this address to an [IPv4-mapped] [`IPv6` address].
1048 ///
1049 /// `a.b.c.d` becomes `::ffff:a.b.c.d`
1050 ///
1051 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1052 /// [`IPv6` address]: Ipv6Addr
1053 ///
1054 /// # Examples
1055 ///
1056 /// ```
1057 /// use std::net::{Ipv4Addr, Ipv6Addr};
1058 ///
1059 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
1060 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
1061 /// ```
1062 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1063 #[stable(feature = "rust1", since = "1.0.0")]
1064 #[must_use = "this returns the result of the operation, \
1065 without modifying the original"]
1066 #[inline]
1067 pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
1068 let [a, b, c, d] = self.octets();
1069 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
1070 }
1071}
1072
1073#[stable(feature = "ip_addr", since = "1.7.0")]
1074impl fmt::Display for IpAddr {
1075 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1076 match self {
1077 IpAddr::V4(ip) => ip.fmt(fmt),
1078 IpAddr::V6(ip) => ip.fmt(fmt),
1079 }
1080 }
1081}
1082
1083#[stable(feature = "ip_addr", since = "1.7.0")]
1084impl fmt::Debug for IpAddr {
1085 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1086 fmt::Display::fmt(self, fmt)
1087 }
1088}
1089
1090#[stable(feature = "ip_from_ip", since = "1.16.0")]
1091#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1092impl const From<Ipv4Addr> for IpAddr {
1093 /// Copies this address to a new `IpAddr::V4`.
1094 ///
1095 /// # Examples
1096 ///
1097 /// ```
1098 /// use std::net::{IpAddr, Ipv4Addr};
1099 ///
1100 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1101 ///
1102 /// assert_eq!(
1103 /// IpAddr::V4(addr),
1104 /// IpAddr::from(addr)
1105 /// )
1106 /// ```
1107 #[inline]
1108 fn from(ipv4: Ipv4Addr) -> IpAddr {
1109 IpAddr::V4(ipv4)
1110 }
1111}
1112
1113#[stable(feature = "ip_from_ip", since = "1.16.0")]
1114#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1115impl const From<Ipv6Addr> for IpAddr {
1116 /// Copies this address to a new `IpAddr::V6`.
1117 ///
1118 /// # Examples
1119 ///
1120 /// ```
1121 /// use std::net::{IpAddr, Ipv6Addr};
1122 ///
1123 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1124 ///
1125 /// assert_eq!(
1126 /// IpAddr::V6(addr),
1127 /// IpAddr::from(addr)
1128 /// );
1129 /// ```
1130 #[inline]
1131 fn from(ipv6: Ipv6Addr) -> IpAddr {
1132 IpAddr::V6(ipv6)
1133 }
1134}
1135
1136#[stable(feature = "rust1", since = "1.0.0")]
1137impl fmt::Display for Ipv4Addr {
1138 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1139 let octets = self.octets();
1140
1141 // If there are no alignment requirements, write the IP address directly to `f`.
1142 // Otherwise, write it to a local buffer and then use `f.pad`.
1143 if fmt.precision().is_none() && fmt.width().is_none() {
1144 write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
1145 } else {
1146 const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
1147
1148 let mut buf = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
1149 // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
1150 write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
1151
1152 fmt.pad(buf.as_str())
1153 }
1154 }
1155}
1156
1157#[stable(feature = "rust1", since = "1.0.0")]
1158impl fmt::Debug for Ipv4Addr {
1159 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1160 fmt::Display::fmt(self, fmt)
1161 }
1162}
1163
1164#[stable(feature = "ip_cmp", since = "1.16.0")]
1165impl PartialEq<Ipv4Addr> for IpAddr {
1166 #[inline]
1167 fn eq(&self, other: &Ipv4Addr) -> bool {
1168 match self {
1169 IpAddr::V4(v4) => v4 == other,
1170 IpAddr::V6(_) => false,
1171 }
1172 }
1173}
1174
1175#[stable(feature = "ip_cmp", since = "1.16.0")]
1176impl PartialEq<IpAddr> for Ipv4Addr {
1177 #[inline]
1178 fn eq(&self, other: &IpAddr) -> bool {
1179 match other {
1180 IpAddr::V4(v4) => self == v4,
1181 IpAddr::V6(_) => false,
1182 }
1183 }
1184}
1185
1186#[stable(feature = "rust1", since = "1.0.0")]
1187impl PartialOrd for Ipv4Addr {
1188 #[inline]
1189 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1190 Some(self.cmp(other))
1191 }
1192}
1193
1194#[stable(feature = "ip_cmp", since = "1.16.0")]
1195impl PartialOrd<Ipv4Addr> for IpAddr {
1196 #[inline]
1197 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1198 match self {
1199 IpAddr::V4(v4) => v4.partial_cmp(other),
1200 IpAddr::V6(_) => Some(Ordering::Greater),
1201 }
1202 }
1203}
1204
1205#[stable(feature = "ip_cmp", since = "1.16.0")]
1206impl PartialOrd<IpAddr> for Ipv4Addr {
1207 #[inline]
1208 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1209 match other {
1210 IpAddr::V4(v4) => self.partial_cmp(v4),
1211 IpAddr::V6(_) => Some(Ordering::Less),
1212 }
1213 }
1214}
1215
1216#[stable(feature = "rust1", since = "1.0.0")]
1217impl Ord for Ipv4Addr {
1218 #[inline]
1219 fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1220 self.octets.cmp(&other.octets)
1221 }
1222}
1223
1224#[stable(feature = "ip_u32", since = "1.1.0")]
1225#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1226impl const From<Ipv4Addr> for u32 {
1227 /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`.
1228 #[inline]
1229 fn from(ip: Ipv4Addr) -> u32 {
1230 ip.to_bits()
1231 }
1232}
1233
1234#[stable(feature = "ip_u32", since = "1.1.0")]
1235#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1236impl const From<u32> for Ipv4Addr {
1237 /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address.
1238 #[inline]
1239 fn from(ip: u32) -> Ipv4Addr {
1240 Ipv4Addr::from_bits(ip)
1241 }
1242}
1243
1244#[stable(feature = "from_slice_v4", since = "1.9.0")]
1245#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1246impl const From<[u8; 4]> for Ipv4Addr {
1247 /// Creates an `Ipv4Addr` from a four element byte array.
1248 ///
1249 /// # Examples
1250 ///
1251 /// ```
1252 /// use std::net::Ipv4Addr;
1253 ///
1254 /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1255 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1256 /// ```
1257 #[inline]
1258 fn from(octets: [u8; 4]) -> Ipv4Addr {
1259 Ipv4Addr { octets }
1260 }
1261}
1262
1263#[stable(feature = "ip_from_slice", since = "1.17.0")]
1264#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1265impl const From<[u8; 4]> for IpAddr {
1266 /// Creates an `IpAddr::V4` from a four element byte array.
1267 ///
1268 /// # Examples
1269 ///
1270 /// ```
1271 /// use std::net::{IpAddr, Ipv4Addr};
1272 ///
1273 /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1274 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1275 /// ```
1276 #[inline]
1277 fn from(octets: [u8; 4]) -> IpAddr {
1278 IpAddr::V4(Ipv4Addr::from(octets))
1279 }
1280}
1281
1282impl Ipv6Addr {
1283 /// Creates a new IPv6 address from eight 16-bit segments.
1284 ///
1285 /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1286 ///
1287 /// # Examples
1288 ///
1289 /// ```
1290 /// use std::net::Ipv6Addr;
1291 ///
1292 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1293 /// ```
1294 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1295 #[stable(feature = "rust1", since = "1.0.0")]
1296 #[must_use]
1297 #[inline]
1298 pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1299 let addr16 = [
1300 a.to_be(),
1301 b.to_be(),
1302 c.to_be(),
1303 d.to_be(),
1304 e.to_be(),
1305 f.to_be(),
1306 g.to_be(),
1307 h.to_be(),
1308 ];
1309 Ipv6Addr {
1310 // All elements in `addr16` are big endian.
1311 // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1312 octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1313 }
1314 }
1315
1316 /// The size of an IPv6 address in bits.
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// use std::net::Ipv6Addr;
1322 ///
1323 /// assert_eq!(Ipv6Addr::BITS, 128);
1324 /// ```
1325 #[stable(feature = "ip_bits", since = "1.80.0")]
1326 pub const BITS: u32 = 128;
1327
1328 /// Converts an IPv6 address into a `u128` representation using native byte order.
1329 ///
1330 /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's
1331 /// native byte order. That is, the `u128` value is an integer representation of the IPv6
1332 /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This
1333 /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set
1334 /// the last segment in the address to 0, regardless of the target platform's endianness.
1335 ///
1336 /// # Examples
1337 ///
1338 /// ```
1339 /// use std::net::Ipv6Addr;
1340 ///
1341 /// let addr = Ipv6Addr::new(
1342 /// 0x1020, 0x3040, 0x5060, 0x7080,
1343 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1344 /// );
1345 /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, addr.to_bits());
1346 /// ```
1347 ///
1348 /// ```
1349 /// use std::net::Ipv6Addr;
1350 ///
1351 /// let addr = Ipv6Addr::new(
1352 /// 0x1020, 0x3040, 0x5060, 0x7080,
1353 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1354 /// );
1355 /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128;
1356 /// assert_eq!(
1357 /// Ipv6Addr::new(
1358 /// 0x1020, 0x3040, 0x5060, 0x7080,
1359 /// 0x90A0, 0xB0C0, 0xD0E0, 0x0000,
1360 /// ),
1361 /// Ipv6Addr::from_bits(addr_bits));
1362 ///
1363 /// ```
1364 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1365 #[stable(feature = "ip_bits", since = "1.80.0")]
1366 #[must_use]
1367 #[inline]
1368 pub const fn to_bits(self) -> u128 {
1369 u128::from_be_bytes(self.octets)
1370 }
1371
1372 /// Converts a native byte order `u128` into an IPv6 address.
1373 ///
1374 /// See [`Ipv6Addr::to_bits`] for an explanation on endianness.
1375 ///
1376 /// # Examples
1377 ///
1378 /// ```
1379 /// use std::net::Ipv6Addr;
1380 ///
1381 /// let addr = Ipv6Addr::from_bits(0x102030405060708090A0B0C0D0E0F00D_u128);
1382 /// assert_eq!(
1383 /// Ipv6Addr::new(
1384 /// 0x1020, 0x3040, 0x5060, 0x7080,
1385 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1386 /// ),
1387 /// addr);
1388 /// ```
1389 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1390 #[stable(feature = "ip_bits", since = "1.80.0")]
1391 #[must_use]
1392 #[inline]
1393 pub const fn from_bits(bits: u128) -> Ipv6Addr {
1394 Ipv6Addr { octets: bits.to_be_bytes() }
1395 }
1396
1397 /// An IPv6 address representing localhost: `::1`.
1398 ///
1399 /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1400 /// languages.
1401 ///
1402 /// # Examples
1403 ///
1404 /// ```
1405 /// use std::net::Ipv6Addr;
1406 ///
1407 /// let addr = Ipv6Addr::LOCALHOST;
1408 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1409 /// ```
1410 #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1411 #[doc(alias = "in6addr_loopback")]
1412 #[stable(feature = "ip_constructors", since = "1.30.0")]
1413 pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1414
1415 /// An IPv6 address representing the unspecified address: `::`.
1416 ///
1417 /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1418 ///
1419 /// # Examples
1420 ///
1421 /// ```
1422 /// use std::net::Ipv6Addr;
1423 ///
1424 /// let addr = Ipv6Addr::UNSPECIFIED;
1425 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1426 /// ```
1427 #[doc(alias = "IN6ADDR_ANY_INIT")]
1428 #[doc(alias = "in6addr_any")]
1429 #[stable(feature = "ip_constructors", since = "1.30.0")]
1430 pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1431
1432 /// Returns the eight 16-bit segments that make up this address.
1433 ///
1434 /// # Examples
1435 ///
1436 /// ```
1437 /// use std::net::Ipv6Addr;
1438 ///
1439 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1440 /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1441 /// ```
1442 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1443 #[stable(feature = "rust1", since = "1.0.0")]
1444 #[must_use]
1445 #[inline]
1446 pub const fn segments(&self) -> [u16; 8] {
1447 // All elements in `self.octets` must be big endian.
1448 // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1449 let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1450 // We want native endian u16
1451 [
1452 u16::from_be(a),
1453 u16::from_be(b),
1454 u16::from_be(c),
1455 u16::from_be(d),
1456 u16::from_be(e),
1457 u16::from_be(f),
1458 u16::from_be(g),
1459 u16::from_be(h),
1460 ]
1461 }
1462
1463 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1464 ///
1465 /// # Examples
1466 ///
1467 /// ```
1468 /// #![feature(ip_from)]
1469 /// use std::net::Ipv6Addr;
1470 ///
1471 /// let addr = Ipv6Addr::from_segments([
1472 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
1473 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
1474 /// ]);
1475 /// assert_eq!(
1476 /// Ipv6Addr::new(
1477 /// 0x20d, 0x20c, 0x20b, 0x20a,
1478 /// 0x209, 0x208, 0x207, 0x206,
1479 /// ),
1480 /// addr
1481 /// );
1482 /// ```
1483 #[unstable(feature = "ip_from", issue = "131360")]
1484 #[must_use]
1485 #[inline]
1486 pub const fn from_segments(segments: [u16; 8]) -> Ipv6Addr {
1487 let [a, b, c, d, e, f, g, h] = segments;
1488 Ipv6Addr::new(a, b, c, d, e, f, g, h)
1489 }
1490
1491 /// Returns [`true`] for the special 'unspecified' address (`::`).
1492 ///
1493 /// This property is defined in [IETF RFC 4291].
1494 ///
1495 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1496 ///
1497 /// # Examples
1498 ///
1499 /// ```
1500 /// use std::net::Ipv6Addr;
1501 ///
1502 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1503 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1504 /// ```
1505 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1506 #[stable(since = "1.7.0", feature = "ip_17")]
1507 #[must_use]
1508 #[inline]
1509 pub const fn is_unspecified(&self) -> bool {
1510 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1511 }
1512
1513 /// Returns [`true`] if this is the [loopback address] (`::1`),
1514 /// as defined in [IETF RFC 4291 section 2.5.3].
1515 ///
1516 /// Contrary to IPv4, in IPv6 there is only one loopback address.
1517 ///
1518 /// [loopback address]: Ipv6Addr::LOCALHOST
1519 /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1520 ///
1521 /// # Examples
1522 ///
1523 /// ```
1524 /// use std::net::Ipv6Addr;
1525 ///
1526 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1527 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1528 /// ```
1529 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1530 #[stable(since = "1.7.0", feature = "ip_17")]
1531 #[must_use]
1532 #[inline]
1533 pub const fn is_loopback(&self) -> bool {
1534 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1535 }
1536
1537 /// Returns [`true`] if the address appears to be globally reachable
1538 /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1539 ///
1540 /// Whether or not an address is practically reachable will depend on your
1541 /// network configuration. Most IPv6 addresses are globally reachable, unless
1542 /// they are specifically defined as *not* globally reachable.
1543 ///
1544 /// Non-exhaustive list of notable addresses that are not globally reachable:
1545 /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1546 /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1547 /// - IPv4-mapped addresses
1548 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking))
1549 /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1550 /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1551 /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1552 ///
1553 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1554 ///
1555 /// Note that an address having global scope is not the same as being globally reachable,
1556 /// and there is no direct relation between the two concepts: There exist addresses with global scope
1557 /// that are not globally reachable (for example unique local addresses),
1558 /// and addresses that are globally reachable without having global scope
1559 /// (multicast addresses with non-global scope).
1560 ///
1561 /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1562 /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1563 /// [loopback address]: Ipv6Addr::LOCALHOST
1564 ///
1565 /// # Examples
1566 ///
1567 /// ```
1568 /// #![feature(ip)]
1569 ///
1570 /// use std::net::Ipv6Addr;
1571 ///
1572 /// // Most IPv6 addresses are globally reachable:
1573 /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1574 ///
1575 /// // However some addresses have been assigned a special meaning
1576 /// // that makes them not globally reachable. Some examples are:
1577 ///
1578 /// // The unspecified address (`::`)
1579 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1580 ///
1581 /// // The loopback address (`::1`)
1582 /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1583 ///
1584 /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1585 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1586 ///
1587 /// // Addresses reserved for benchmarking (`2001:2::/48`)
1588 /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1589 ///
1590 /// // Addresses reserved for documentation (`2001:db8::/32` and `3fff::/20`)
1591 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1592 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_global(), false);
1593 ///
1594 /// // Unique local addresses (`fc00::/7`)
1595 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1596 ///
1597 /// // Unicast addresses with link-local scope (`fe80::/10`)
1598 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1599 ///
1600 /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1601 /// ```
1602 #[unstable(feature = "ip", issue = "27709")]
1603 #[must_use]
1604 #[inline]
1605 pub const fn is_global(&self) -> bool {
1606 !(self.is_unspecified()
1607 || self.is_loopback()
1608 // IPv4-mapped Address (`::ffff:0:0/96`)
1609 || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1610 // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1611 || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1612 // Discard-Only Address Block (`100::/64`)
1613 || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1614 // IETF Protocol Assignments (`2001::/23`)
1615 || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1616 && !(
1617 // Port Control Protocol Anycast (`2001:1::1`)
1618 u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1619 // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1620 || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1621 // AMT (`2001:3::/32`)
1622 || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1623 // AS112-v6 (`2001:4:112::/48`)
1624 || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1625 // ORCHIDv2 (`2001:20::/28`)
1626 // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)`
1627 || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F)
1628 ))
1629 // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable,
1630 // IANA says N/A.
1631 || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _])
1632 || self.is_documentation()
1633 // Segment Routing (SRv6) SIDs (`5f00::/16`)
1634 || matches!(self.segments(), [0x5f00, ..])
1635 || self.is_unique_local()
1636 || self.is_unicast_link_local())
1637 }
1638
1639 /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1640 ///
1641 /// This property is defined in [IETF RFC 4193].
1642 ///
1643 /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1644 ///
1645 /// # Examples
1646 ///
1647 /// ```
1648 /// use std::net::Ipv6Addr;
1649 ///
1650 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1651 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1652 /// ```
1653 #[must_use]
1654 #[inline]
1655 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1656 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1657 pub const fn is_unique_local(&self) -> bool {
1658 (self.segments()[0] & 0xfe00) == 0xfc00
1659 }
1660
1661 /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1662 /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1663 ///
1664 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1665 /// [multicast address]: Ipv6Addr::is_multicast
1666 ///
1667 /// # Examples
1668 ///
1669 /// ```
1670 /// #![feature(ip)]
1671 ///
1672 /// use std::net::Ipv6Addr;
1673 ///
1674 /// // The unspecified and loopback addresses are unicast.
1675 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1676 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1677 ///
1678 /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1679 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1680 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1681 /// ```
1682 #[unstable(feature = "ip", issue = "27709")]
1683 #[must_use]
1684 #[inline]
1685 pub const fn is_unicast(&self) -> bool {
1686 !self.is_multicast()
1687 }
1688
1689 /// Returns `true` if the address is a unicast address with link-local scope,
1690 /// as defined in [RFC 4291].
1691 ///
1692 /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1693 /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1694 /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1695 ///
1696 /// ```text
1697 /// | 10 bits | 54 bits | 64 bits |
1698 /// +----------+-------------------------+----------------------------+
1699 /// |1111111010| 0 | interface ID |
1700 /// +----------+-------------------------+----------------------------+
1701 /// ```
1702 /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1703 /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1704 /// and those addresses will have link-local scope.
1705 ///
1706 /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1707 /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1708 ///
1709 /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1710 /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1711 /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1712 /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1713 /// [loopback address]: Ipv6Addr::LOCALHOST
1714 ///
1715 /// # Examples
1716 ///
1717 /// ```
1718 /// use std::net::Ipv6Addr;
1719 ///
1720 /// // The loopback address (`::1`) does not actually have link-local scope.
1721 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1722 ///
1723 /// // Only addresses in `fe80::/10` have link-local scope.
1724 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1725 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1726 ///
1727 /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1728 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1729 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1730 /// ```
1731 #[must_use]
1732 #[inline]
1733 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1734 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1735 pub const fn is_unicast_link_local(&self) -> bool {
1736 (self.segments()[0] & 0xffc0) == 0xfe80
1737 }
1738
1739 /// Returns [`true`] if this is an address reserved for documentation
1740 /// (`2001:db8::/32` and `3fff::/20`).
1741 ///
1742 /// This property is defined by [IETF RFC 3849] and [IETF RFC 9637].
1743 ///
1744 /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1745 /// [IETF RFC 9637]: https://tools.ietf.org/html/rfc9637
1746 ///
1747 /// # Examples
1748 ///
1749 /// ```
1750 /// #![feature(ip)]
1751 ///
1752 /// use std::net::Ipv6Addr;
1753 ///
1754 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1755 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1756 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1757 /// ```
1758 #[unstable(feature = "ip", issue = "27709")]
1759 #[must_use]
1760 #[inline]
1761 pub const fn is_documentation(&self) -> bool {
1762 matches!(self.segments(), [0x2001, 0xdb8, ..] | [0x3fff, 0..=0x0fff, ..])
1763 }
1764
1765 /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1766 ///
1767 /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1768 /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1769 ///
1770 /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1771 /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1772 ///
1773 /// ```
1774 /// #![feature(ip)]
1775 ///
1776 /// use std::net::Ipv6Addr;
1777 ///
1778 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1779 /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1780 /// ```
1781 #[unstable(feature = "ip", issue = "27709")]
1782 #[must_use]
1783 #[inline]
1784 pub const fn is_benchmarking(&self) -> bool {
1785 (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1786 }
1787
1788 /// Returns [`true`] if the address is a globally routable unicast address.
1789 ///
1790 /// The following return false:
1791 ///
1792 /// - the loopback address
1793 /// - the link-local addresses
1794 /// - unique local addresses
1795 /// - the unspecified address
1796 /// - the address range reserved for documentation
1797 ///
1798 /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1799 ///
1800 /// ```no_rust
1801 /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1802 /// be supported in new implementations (i.e., new implementations must treat this prefix as
1803 /// Global Unicast).
1804 /// ```
1805 ///
1806 /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1807 ///
1808 /// # Examples
1809 ///
1810 /// ```
1811 /// #![feature(ip)]
1812 ///
1813 /// use std::net::Ipv6Addr;
1814 ///
1815 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1816 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1817 /// ```
1818 #[unstable(feature = "ip", issue = "27709")]
1819 #[must_use]
1820 #[inline]
1821 pub const fn is_unicast_global(&self) -> bool {
1822 self.is_unicast()
1823 && !self.is_loopback()
1824 && !self.is_unicast_link_local()
1825 && !self.is_unique_local()
1826 && !self.is_unspecified()
1827 && !self.is_documentation()
1828 && !self.is_benchmarking()
1829 }
1830
1831 /// Returns the address's multicast scope if the address is multicast.
1832 ///
1833 /// # Examples
1834 ///
1835 /// ```
1836 /// #![feature(ip)]
1837 ///
1838 /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1839 ///
1840 /// assert_eq!(
1841 /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1842 /// Some(Ipv6MulticastScope::Global)
1843 /// );
1844 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1845 /// ```
1846 #[unstable(feature = "ip", issue = "27709")]
1847 #[must_use]
1848 #[inline]
1849 pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1850 if self.is_multicast() {
1851 match self.segments()[0] & 0x000f {
1852 1 => Some(Ipv6MulticastScope::InterfaceLocal),
1853 2 => Some(Ipv6MulticastScope::LinkLocal),
1854 3 => Some(Ipv6MulticastScope::RealmLocal),
1855 4 => Some(Ipv6MulticastScope::AdminLocal),
1856 5 => Some(Ipv6MulticastScope::SiteLocal),
1857 8 => Some(Ipv6MulticastScope::OrganizationLocal),
1858 14 => Some(Ipv6MulticastScope::Global),
1859 _ => None,
1860 }
1861 } else {
1862 None
1863 }
1864 }
1865
1866 /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1867 ///
1868 /// This property is defined by [IETF RFC 4291].
1869 ///
1870 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1871 ///
1872 /// # Examples
1873 ///
1874 /// ```
1875 /// use std::net::Ipv6Addr;
1876 ///
1877 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1878 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1879 /// ```
1880 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1881 #[stable(since = "1.7.0", feature = "ip_17")]
1882 #[must_use]
1883 #[inline]
1884 pub const fn is_multicast(&self) -> bool {
1885 (self.segments()[0] & 0xff00) == 0xff00
1886 }
1887
1888 /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`).
1889 ///
1890 /// IPv4-mapped addresses can be converted to their canonical IPv4 address with
1891 /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped).
1892 ///
1893 /// # Examples
1894 /// ```
1895 /// #![feature(ip)]
1896 ///
1897 /// use std::net::{Ipv4Addr, Ipv6Addr};
1898 ///
1899 /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
1900 /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
1901 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);
1902 ///
1903 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1904 /// ```
1905 #[unstable(feature = "ip", issue = "27709")]
1906 #[must_use]
1907 #[inline]
1908 pub const fn is_ipv4_mapped(&self) -> bool {
1909 matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1910 }
1911
1912 /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1913 /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1914 ///
1915 /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1916 /// All addresses *not* starting with `::ffff` will return `None`.
1917 ///
1918 /// [`IPv4` address]: Ipv4Addr
1919 /// [IPv4-mapped]: Ipv6Addr
1920 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1921 ///
1922 /// # Examples
1923 ///
1924 /// ```
1925 /// use std::net::{Ipv4Addr, Ipv6Addr};
1926 ///
1927 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1928 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1929 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1930 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1931 /// ```
1932 #[inline]
1933 #[must_use = "this returns the result of the operation, \
1934 without modifying the original"]
1935 #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
1936 #[rustc_const_stable(feature = "const_ipv6_to_ipv4_mapped", since = "1.75.0")]
1937 pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1938 match self.octets() {
1939 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1940 Some(Ipv4Addr::new(a, b, c, d))
1941 }
1942 _ => None,
1943 }
1944 }
1945
1946 /// Converts this address to an [`IPv4` address] if it is either
1947 /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1948 /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1949 /// otherwise returns [`None`].
1950 ///
1951 /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1952 /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1953 ///
1954 /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1955 /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1956 ///
1957 /// [`IPv4` address]: Ipv4Addr
1958 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1959 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1960 /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1961 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1962 ///
1963 /// # Examples
1964 ///
1965 /// ```
1966 /// use std::net::{Ipv4Addr, Ipv6Addr};
1967 ///
1968 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1969 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1970 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1971 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1972 /// Some(Ipv4Addr::new(0, 0, 0, 1)));
1973 /// ```
1974 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1975 #[stable(feature = "rust1", since = "1.0.0")]
1976 #[must_use = "this returns the result of the operation, \
1977 without modifying the original"]
1978 #[inline]
1979 pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1980 if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1981 let [a, b] = ab.to_be_bytes();
1982 let [c, d] = cd.to_be_bytes();
1983 Some(Ipv4Addr::new(a, b, c, d))
1984 } else {
1985 None
1986 }
1987 }
1988
1989 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped address,
1990 /// otherwise returns self wrapped in an `IpAddr::V6`.
1991 ///
1992 /// # Examples
1993 ///
1994 /// ```
1995 /// use std::net::Ipv6Addr;
1996 ///
1997 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1998 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1999 /// ```
2000 #[inline]
2001 #[must_use = "this returns the result of the operation, \
2002 without modifying the original"]
2003 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
2004 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
2005 pub const fn to_canonical(&self) -> IpAddr {
2006 if let Some(mapped) = self.to_ipv4_mapped() {
2007 return IpAddr::V4(mapped);
2008 }
2009 IpAddr::V6(*self)
2010 }
2011
2012 /// Returns the sixteen eight-bit integers the IPv6 address consists of.
2013 ///
2014 /// ```
2015 /// use std::net::Ipv6Addr;
2016 ///
2017 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
2018 /// [0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
2019 /// ```
2020 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
2021 #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
2022 #[must_use]
2023 #[inline]
2024 pub const fn octets(&self) -> [u8; 16] {
2025 self.octets
2026 }
2027
2028 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2029 ///
2030 /// # Examples
2031 ///
2032 /// ```
2033 /// #![feature(ip_from)]
2034 /// use std::net::Ipv6Addr;
2035 ///
2036 /// let addr = Ipv6Addr::from_octets([
2037 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2038 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2039 /// ]);
2040 /// assert_eq!(
2041 /// Ipv6Addr::new(
2042 /// 0x1918, 0x1716, 0x1514, 0x1312,
2043 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2044 /// ),
2045 /// addr
2046 /// );
2047 /// ```
2048 #[unstable(feature = "ip_from", issue = "131360")]
2049 #[must_use]
2050 #[inline]
2051 pub const fn from_octets(octets: [u8; 16]) -> Ipv6Addr {
2052 Ipv6Addr { octets }
2053 }
2054
2055 /// Returns the sixteen eight-bit integers the IPv6 address consists of
2056 /// as a slice.
2057 ///
2058 /// # Examples
2059 ///
2060 /// ```
2061 /// #![feature(ip_as_octets)]
2062 ///
2063 /// use std::net::Ipv6Addr;
2064 ///
2065 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).as_octets(),
2066 /// &[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
2067 /// ```
2068 #[unstable(feature = "ip_as_octets", issue = "137259")]
2069 #[inline]
2070 pub const fn as_octets(&self) -> &[u8; 16] {
2071 &self.octets
2072 }
2073}
2074
2075/// Writes an Ipv6Addr, conforming to the canonical style described by
2076/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
2077#[stable(feature = "rust1", since = "1.0.0")]
2078impl fmt::Display for Ipv6Addr {
2079 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2080 // If there are no alignment requirements, write the IP address directly to `f`.
2081 // Otherwise, write it to a local buffer and then use `f.pad`.
2082 if f.precision().is_none() && f.width().is_none() {
2083 let segments = self.segments();
2084
2085 if let Some(ipv4) = self.to_ipv4_mapped() {
2086 write!(f, "::ffff:{}", ipv4)
2087 } else {
2088 #[derive(Copy, Clone, Default)]
2089 struct Span {
2090 start: usize,
2091 len: usize,
2092 }
2093
2094 // Find the inner 0 span
2095 let zeroes = {
2096 let mut longest = Span::default();
2097 let mut current = Span::default();
2098
2099 for (i, &segment) in segments.iter().enumerate() {
2100 if segment == 0 {
2101 if current.len == 0 {
2102 current.start = i;
2103 }
2104
2105 current.len += 1;
2106
2107 if current.len > longest.len {
2108 longest = current;
2109 }
2110 } else {
2111 current = Span::default();
2112 }
2113 }
2114
2115 longest
2116 };
2117
2118 /// Writes a colon-separated part of the address.
2119 #[inline]
2120 fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
2121 if let Some((first, tail)) = chunk.split_first() {
2122 write!(f, "{:x}", first)?;
2123 for segment in tail {
2124 f.write_char(':')?;
2125 write!(f, "{:x}", segment)?;
2126 }
2127 }
2128 Ok(())
2129 }
2130
2131 if zeroes.len > 1 {
2132 fmt_subslice(f, &segments[..zeroes.start])?;
2133 f.write_str("::")?;
2134 fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
2135 } else {
2136 fmt_subslice(f, &segments)
2137 }
2138 }
2139 } else {
2140 const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
2141
2142 let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
2143 // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
2144 write!(buf, "{}", self).unwrap();
2145
2146 f.pad(buf.as_str())
2147 }
2148 }
2149}
2150
2151#[stable(feature = "rust1", since = "1.0.0")]
2152impl fmt::Debug for Ipv6Addr {
2153 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2154 fmt::Display::fmt(self, fmt)
2155 }
2156}
2157
2158#[stable(feature = "ip_cmp", since = "1.16.0")]
2159impl PartialEq<IpAddr> for Ipv6Addr {
2160 #[inline]
2161 fn eq(&self, other: &IpAddr) -> bool {
2162 match other {
2163 IpAddr::V4(_) => false,
2164 IpAddr::V6(v6) => self == v6,
2165 }
2166 }
2167}
2168
2169#[stable(feature = "ip_cmp", since = "1.16.0")]
2170impl PartialEq<Ipv6Addr> for IpAddr {
2171 #[inline]
2172 fn eq(&self, other: &Ipv6Addr) -> bool {
2173 match self {
2174 IpAddr::V4(_) => false,
2175 IpAddr::V6(v6) => v6 == other,
2176 }
2177 }
2178}
2179
2180#[stable(feature = "rust1", since = "1.0.0")]
2181impl PartialOrd for Ipv6Addr {
2182 #[inline]
2183 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2184 Some(self.cmp(other))
2185 }
2186}
2187
2188#[stable(feature = "ip_cmp", since = "1.16.0")]
2189impl PartialOrd<Ipv6Addr> for IpAddr {
2190 #[inline]
2191 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2192 match self {
2193 IpAddr::V4(_) => Some(Ordering::Less),
2194 IpAddr::V6(v6) => v6.partial_cmp(other),
2195 }
2196 }
2197}
2198
2199#[stable(feature = "ip_cmp", since = "1.16.0")]
2200impl PartialOrd<IpAddr> for Ipv6Addr {
2201 #[inline]
2202 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
2203 match other {
2204 IpAddr::V4(_) => Some(Ordering::Greater),
2205 IpAddr::V6(v6) => self.partial_cmp(v6),
2206 }
2207 }
2208}
2209
2210#[stable(feature = "rust1", since = "1.0.0")]
2211impl Ord for Ipv6Addr {
2212 #[inline]
2213 fn cmp(&self, other: &Ipv6Addr) -> Ordering {
2214 self.segments().cmp(&other.segments())
2215 }
2216}
2217
2218#[stable(feature = "i128", since = "1.26.0")]
2219#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2220impl const From<Ipv6Addr> for u128 {
2221 /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`.
2222 #[inline]
2223 fn from(ip: Ipv6Addr) -> u128 {
2224 ip.to_bits()
2225 }
2226}
2227#[stable(feature = "i128", since = "1.26.0")]
2228#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2229impl const From<u128> for Ipv6Addr {
2230 /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address.
2231 #[inline]
2232 fn from(ip: u128) -> Ipv6Addr {
2233 Ipv6Addr::from_bits(ip)
2234 }
2235}
2236
2237#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
2238#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2239impl const From<[u8; 16]> for Ipv6Addr {
2240 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2241 ///
2242 /// # Examples
2243 ///
2244 /// ```
2245 /// use std::net::Ipv6Addr;
2246 ///
2247 /// let addr = Ipv6Addr::from([
2248 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2249 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2250 /// ]);
2251 /// assert_eq!(
2252 /// Ipv6Addr::new(
2253 /// 0x1918, 0x1716, 0x1514, 0x1312,
2254 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2255 /// ),
2256 /// addr
2257 /// );
2258 /// ```
2259 #[inline]
2260 fn from(octets: [u8; 16]) -> Ipv6Addr {
2261 Ipv6Addr { octets }
2262 }
2263}
2264
2265#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
2266#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2267impl const From<[u16; 8]> for Ipv6Addr {
2268 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
2269 ///
2270 /// # Examples
2271 ///
2272 /// ```
2273 /// use std::net::Ipv6Addr;
2274 ///
2275 /// let addr = Ipv6Addr::from([
2276 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2277 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2278 /// ]);
2279 /// assert_eq!(
2280 /// Ipv6Addr::new(
2281 /// 0x20d, 0x20c, 0x20b, 0x20a,
2282 /// 0x209, 0x208, 0x207, 0x206,
2283 /// ),
2284 /// addr
2285 /// );
2286 /// ```
2287 #[inline]
2288 fn from(segments: [u16; 8]) -> Ipv6Addr {
2289 let [a, b, c, d, e, f, g, h] = segments;
2290 Ipv6Addr::new(a, b, c, d, e, f, g, h)
2291 }
2292}
2293
2294#[stable(feature = "ip_from_slice", since = "1.17.0")]
2295#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2296impl const From<[u8; 16]> for IpAddr {
2297 /// Creates an `IpAddr::V6` from a sixteen element byte array.
2298 ///
2299 /// # Examples
2300 ///
2301 /// ```
2302 /// use std::net::{IpAddr, Ipv6Addr};
2303 ///
2304 /// let addr = IpAddr::from([
2305 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2306 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2307 /// ]);
2308 /// assert_eq!(
2309 /// IpAddr::V6(Ipv6Addr::new(
2310 /// 0x1918, 0x1716, 0x1514, 0x1312,
2311 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2312 /// )),
2313 /// addr
2314 /// );
2315 /// ```
2316 #[inline]
2317 fn from(octets: [u8; 16]) -> IpAddr {
2318 IpAddr::V6(Ipv6Addr::from(octets))
2319 }
2320}
2321
2322#[stable(feature = "ip_from_slice", since = "1.17.0")]
2323#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2324impl const From<[u16; 8]> for IpAddr {
2325 /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2326 ///
2327 /// # Examples
2328 ///
2329 /// ```
2330 /// use std::net::{IpAddr, Ipv6Addr};
2331 ///
2332 /// let addr = IpAddr::from([
2333 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2334 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2335 /// ]);
2336 /// assert_eq!(
2337 /// IpAddr::V6(Ipv6Addr::new(
2338 /// 0x20d, 0x20c, 0x20b, 0x20a,
2339 /// 0x209, 0x208, 0x207, 0x206,
2340 /// )),
2341 /// addr
2342 /// );
2343 /// ```
2344 #[inline]
2345 fn from(segments: [u16; 8]) -> IpAddr {
2346 IpAddr::V6(Ipv6Addr::from(segments))
2347 }
2348}
2349
2350#[stable(feature = "ip_bitops", since = "1.75.0")]
2351impl Not for Ipv4Addr {
2352 type Output = Ipv4Addr;
2353
2354 #[inline]
2355 fn not(mut self) -> Ipv4Addr {
2356 for octet in &mut self.octets {
2357 *octet = !*octet;
2358 }
2359 self
2360 }
2361}
2362
2363#[stable(feature = "ip_bitops", since = "1.75.0")]
2364impl Not for &'_ Ipv4Addr {
2365 type Output = Ipv4Addr;
2366
2367 #[inline]
2368 fn not(self) -> Ipv4Addr {
2369 !*self
2370 }
2371}
2372
2373#[stable(feature = "ip_bitops", since = "1.75.0")]
2374impl Not for Ipv6Addr {
2375 type Output = Ipv6Addr;
2376
2377 #[inline]
2378 fn not(mut self) -> Ipv6Addr {
2379 for octet in &mut self.octets {
2380 *octet = !*octet;
2381 }
2382 self
2383 }
2384}
2385
2386#[stable(feature = "ip_bitops", since = "1.75.0")]
2387impl Not for &'_ Ipv6Addr {
2388 type Output = Ipv6Addr;
2389
2390 #[inline]
2391 fn not(self) -> Ipv6Addr {
2392 !*self
2393 }
2394}
2395
2396macro_rules! bitop_impls {
2397 ($(
2398 $(#[$attr:meta])*
2399 impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident);
2400 )*) => {
2401 $(
2402 $(#[$attr])*
2403 impl $BitOpAssign for $ty {
2404 fn $bitop_assign(&mut self, rhs: $ty) {
2405 for (lhs, rhs) in iter::zip(&mut self.octets, rhs.octets) {
2406 lhs.$bitop_assign(rhs);
2407 }
2408 }
2409 }
2410
2411 $(#[$attr])*
2412 impl $BitOpAssign<&'_ $ty> for $ty {
2413 fn $bitop_assign(&mut self, rhs: &'_ $ty) {
2414 self.$bitop_assign(*rhs);
2415 }
2416 }
2417
2418 $(#[$attr])*
2419 impl $BitOp for $ty {
2420 type Output = $ty;
2421
2422 #[inline]
2423 fn $bitop(mut self, rhs: $ty) -> $ty {
2424 self.$bitop_assign(rhs);
2425 self
2426 }
2427 }
2428
2429 $(#[$attr])*
2430 impl $BitOp<&'_ $ty> for $ty {
2431 type Output = $ty;
2432
2433 #[inline]
2434 fn $bitop(mut self, rhs: &'_ $ty) -> $ty {
2435 self.$bitop_assign(*rhs);
2436 self
2437 }
2438 }
2439
2440 $(#[$attr])*
2441 impl $BitOp<$ty> for &'_ $ty {
2442 type Output = $ty;
2443
2444 #[inline]
2445 fn $bitop(self, rhs: $ty) -> $ty {
2446 let mut lhs = *self;
2447 lhs.$bitop_assign(rhs);
2448 lhs
2449 }
2450 }
2451
2452 $(#[$attr])*
2453 impl $BitOp<&'_ $ty> for &'_ $ty {
2454 type Output = $ty;
2455
2456 #[inline]
2457 fn $bitop(self, rhs: &'_ $ty) -> $ty {
2458 let mut lhs = *self;
2459 lhs.$bitop_assign(*rhs);
2460 lhs
2461 }
2462 }
2463 )*
2464 };
2465}
2466
2467bitop_impls! {
2468 #[stable(feature = "ip_bitops", since = "1.75.0")]
2469 impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign);
2470 #[stable(feature = "ip_bitops", since = "1.75.0")]
2471 impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign);
2472
2473 #[stable(feature = "ip_bitops", since = "1.75.0")]
2474 impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign);
2475 #[stable(feature = "ip_bitops", since = "1.75.0")]
2476 impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign);
2477}