alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! [`push`]: Vec::push
53
54#![stable(feature = "rust1", since = "1.0.0")]
55
56#[cfg(not(no_global_oom_handling))]
57use core::cmp;
58use core::cmp::Ordering;
59use core::hash::{Hash, Hasher};
60#[cfg(not(no_global_oom_handling))]
61use core::iter;
62use core::marker::PhantomData;
63use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
64use core::ops::{self, Index, IndexMut, Range, RangeBounds};
65use core::ptr::{self, NonNull};
66use core::slice::{self, SliceIndex};
67use core::{fmt, intrinsics, ub_checks};
68
69#[stable(feature = "extract_if", since = "1.87.0")]
70pub use self::extract_if::ExtractIf;
71use crate::alloc::{Allocator, Global};
72use crate::borrow::{Cow, ToOwned};
73use crate::boxed::Box;
74use crate::collections::TryReserveError;
75use crate::raw_vec::RawVec;
76
77mod extract_if;
78
79#[cfg(not(no_global_oom_handling))]
80#[stable(feature = "vec_splice", since = "1.21.0")]
81pub use self::splice::Splice;
82
83#[cfg(not(no_global_oom_handling))]
84mod splice;
85
86#[stable(feature = "drain", since = "1.6.0")]
87pub use self::drain::Drain;
88
89mod drain;
90
91#[cfg(not(no_global_oom_handling))]
92mod cow;
93
94#[cfg(not(no_global_oom_handling))]
95pub(crate) use self::in_place_collect::AsVecIntoIter;
96#[stable(feature = "rust1", since = "1.0.0")]
97pub use self::into_iter::IntoIter;
98
99mod into_iter;
100
101#[cfg(not(no_global_oom_handling))]
102use self::is_zero::IsZero;
103
104#[cfg(not(no_global_oom_handling))]
105mod is_zero;
106
107#[cfg(not(no_global_oom_handling))]
108mod in_place_collect;
109
110mod partial_eq;
111
112#[unstable(feature = "vec_peek_mut", issue = "122742")]
113pub use self::peek_mut::PeekMut;
114
115mod peek_mut;
116
117#[cfg(not(no_global_oom_handling))]
118use self::spec_from_elem::SpecFromElem;
119
120#[cfg(not(no_global_oom_handling))]
121mod spec_from_elem;
122
123#[cfg(not(no_global_oom_handling))]
124use self::set_len_on_drop::SetLenOnDrop;
125
126#[cfg(not(no_global_oom_handling))]
127mod set_len_on_drop;
128
129#[cfg(not(no_global_oom_handling))]
130use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
131
132#[cfg(not(no_global_oom_handling))]
133mod in_place_drop;
134
135#[cfg(not(no_global_oom_handling))]
136use self::spec_from_iter_nested::SpecFromIterNested;
137
138#[cfg(not(no_global_oom_handling))]
139mod spec_from_iter_nested;
140
141#[cfg(not(no_global_oom_handling))]
142use self::spec_from_iter::SpecFromIter;
143
144#[cfg(not(no_global_oom_handling))]
145mod spec_from_iter;
146
147#[cfg(not(no_global_oom_handling))]
148use self::spec_extend::SpecExtend;
149
150#[cfg(not(no_global_oom_handling))]
151mod spec_extend;
152
153/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
154///
155/// # Examples
156///
157/// ```
158/// let mut vec = Vec::new();
159/// vec.push(1);
160/// vec.push(2);
161///
162/// assert_eq!(vec.len(), 2);
163/// assert_eq!(vec[0], 1);
164///
165/// assert_eq!(vec.pop(), Some(2));
166/// assert_eq!(vec.len(), 1);
167///
168/// vec[0] = 7;
169/// assert_eq!(vec[0], 7);
170///
171/// vec.extend([1, 2, 3]);
172///
173/// for x in &vec {
174///     println!("{x}");
175/// }
176/// assert_eq!(vec, [7, 1, 2, 3]);
177/// ```
178///
179/// The [`vec!`] macro is provided for convenient initialization:
180///
181/// ```
182/// let mut vec1 = vec![1, 2, 3];
183/// vec1.push(4);
184/// let vec2 = Vec::from([1, 2, 3, 4]);
185/// assert_eq!(vec1, vec2);
186/// ```
187///
188/// It can also initialize each element of a `Vec<T>` with a given value.
189/// This may be more efficient than performing allocation and initialization
190/// in separate steps, especially when initializing a vector of zeros:
191///
192/// ```
193/// let vec = vec![0; 5];
194/// assert_eq!(vec, [0, 0, 0, 0, 0]);
195///
196/// // The following is equivalent, but potentially slower:
197/// let mut vec = Vec::with_capacity(5);
198/// vec.resize(5, 0);
199/// assert_eq!(vec, [0, 0, 0, 0, 0]);
200/// ```
201///
202/// For more information, see
203/// [Capacity and Reallocation](#capacity-and-reallocation).
204///
205/// Use a `Vec<T>` as an efficient stack:
206///
207/// ```
208/// let mut stack = Vec::new();
209///
210/// stack.push(1);
211/// stack.push(2);
212/// stack.push(3);
213///
214/// while let Some(top) = stack.pop() {
215///     // Prints 3, 2, 1
216///     println!("{top}");
217/// }
218/// ```
219///
220/// # Indexing
221///
222/// The `Vec` type allows access to values by index, because it implements the
223/// [`Index`] trait. An example will be more explicit:
224///
225/// ```
226/// let v = vec![0, 2, 4, 6];
227/// println!("{}", v[1]); // it will display '2'
228/// ```
229///
230/// However be careful: if you try to access an index which isn't in the `Vec`,
231/// your software will panic! You cannot do this:
232///
233/// ```should_panic
234/// let v = vec![0, 2, 4, 6];
235/// println!("{}", v[6]); // it will panic!
236/// ```
237///
238/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
239/// the `Vec`.
240///
241/// # Slicing
242///
243/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
244/// To get a [slice][prim@slice], use [`&`]. Example:
245///
246/// ```
247/// fn read_slice(slice: &[usize]) {
248///     // ...
249/// }
250///
251/// let v = vec![0, 1];
252/// read_slice(&v);
253///
254/// // ... and that's all!
255/// // you can also do it like this:
256/// let u: &[usize] = &v;
257/// // or like this:
258/// let u: &[_] = &v;
259/// ```
260///
261/// In Rust, it's more common to pass slices as arguments rather than vectors
262/// when you just want to provide read access. The same goes for [`String`] and
263/// [`&str`].
264///
265/// # Capacity and reallocation
266///
267/// The capacity of a vector is the amount of space allocated for any future
268/// elements that will be added onto the vector. This is not to be confused with
269/// the *length* of a vector, which specifies the number of actual elements
270/// within the vector. If a vector's length exceeds its capacity, its capacity
271/// will automatically be increased, but its elements will have to be
272/// reallocated.
273///
274/// For example, a vector with capacity 10 and length 0 would be an empty vector
275/// with space for 10 more elements. Pushing 10 or fewer elements onto the
276/// vector will not change its capacity or cause reallocation to occur. However,
277/// if the vector's length is increased to 11, it will have to reallocate, which
278/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
279/// whenever possible to specify how big the vector is expected to get.
280///
281/// # Guarantees
282///
283/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
284/// about its design. This ensures that it's as low-overhead as possible in
285/// the general case, and can be correctly manipulated in primitive ways
286/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
287/// If additional type parameters are added (e.g., to support custom allocators),
288/// overriding their defaults may change the behavior.
289///
290/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
291/// triplet. No more, no less. The order of these fields is completely
292/// unspecified, and you should use the appropriate methods to modify these.
293/// The pointer will never be null, so this type is null-pointer-optimized.
294///
295/// However, the pointer might not actually point to allocated memory. In particular,
296/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
297/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
298/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
299/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
300/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
301/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
302/// details are very subtle --- if you intend to allocate memory using a `Vec`
303/// and use it for something else (either to pass to unsafe code, or to build your
304/// own memory-backed collection), be sure to deallocate this memory by using
305/// `from_raw_parts` to recover the `Vec` and then dropping it.
306///
307/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
308/// (as defined by the allocator Rust is configured to use by default), and its
309/// pointer points to [`len`] initialized, contiguous elements in order (what
310/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
311/// logically uninitialized, contiguous elements.
312///
313/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
314/// visualized as below. The top part is the `Vec` struct, it contains a
315/// pointer to the head of the allocation in the heap, length and capacity.
316/// The bottom part is the allocation on the heap, a contiguous memory block.
317///
318/// ```text
319///             ptr      len  capacity
320///        +--------+--------+--------+
321///        | 0x0123 |      2 |      4 |
322///        +--------+--------+--------+
323///             |
324///             v
325/// Heap   +--------+--------+--------+--------+
326///        |    'a' |    'b' | uninit | uninit |
327///        +--------+--------+--------+--------+
328/// ```
329///
330/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
331/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
332///   layout (including the order of fields).
333///
334/// `Vec` will never perform a "small optimization" where elements are actually
335/// stored on the stack for two reasons:
336///
337/// * It would make it more difficult for unsafe code to correctly manipulate
338///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
339///   only moved, and it would be more difficult to determine if a `Vec` had
340///   actually allocated memory.
341///
342/// * It would penalize the general case, incurring an additional branch
343///   on every access.
344///
345/// `Vec` will never automatically shrink itself, even if completely empty. This
346/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
347/// and then filling it back up to the same [`len`] should incur no calls to
348/// the allocator. If you wish to free up unused memory, use
349/// [`shrink_to_fit`] or [`shrink_to`].
350///
351/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
352/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
353/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
354/// accurate, and can be relied on. It can even be used to manually free the memory
355/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
356/// when not necessary.
357///
358/// `Vec` does not guarantee any particular growth strategy when reallocating
359/// when full, nor when [`reserve`] is called. The current strategy is basic
360/// and it may prove desirable to use a non-constant growth factor. Whatever
361/// strategy is used will of course guarantee *O*(1) amortized [`push`].
362///
363/// It is guaranteed, in order to respect the intentions of the programmer, that
364/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
365/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
366/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
367/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
368///
369/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
370/// and not more than the allocated capacity.
371///
372/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
373/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
374/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
375/// `Vec` exploits this fact as much as reasonable when implementing common conversions
376/// such as [`into_boxed_slice`].
377///
378/// `Vec` will not specifically overwrite any data that is removed from it,
379/// but also won't specifically preserve it. Its uninitialized memory is
380/// scratch space that it may use however it wants. It will generally just do
381/// whatever is most efficient or otherwise easy to implement. Do not rely on
382/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
383/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
384/// first, that might not actually happen because the optimizer does not consider
385/// this a side-effect that must be preserved. There is one case which we will
386/// not break, however: using `unsafe` code to write to the excess capacity,
387/// and then increasing the length to match, is always valid.
388///
389/// Currently, `Vec` does not guarantee the order in which elements are dropped.
390/// The order has changed in the past and may change again.
391///
392/// [`get`]: slice::get
393/// [`get_mut`]: slice::get_mut
394/// [`String`]: crate::string::String
395/// [`&str`]: type@str
396/// [`shrink_to_fit`]: Vec::shrink_to_fit
397/// [`shrink_to`]: Vec::shrink_to
398/// [capacity]: Vec::capacity
399/// [`capacity`]: Vec::capacity
400/// [`Vec::capacity`]: Vec::capacity
401/// [size_of::\<T>]: size_of
402/// [len]: Vec::len
403/// [`len`]: Vec::len
404/// [`push`]: Vec::push
405/// [`insert`]: Vec::insert
406/// [`reserve`]: Vec::reserve
407/// [`Vec::with_capacity(n)`]: Vec::with_capacity
408/// [`MaybeUninit`]: core::mem::MaybeUninit
409/// [owned slice]: Box
410/// [`into_boxed_slice`]: Vec::into_boxed_slice
411#[stable(feature = "rust1", since = "1.0.0")]
412#[rustc_diagnostic_item = "Vec"]
413#[rustc_insignificant_dtor]
414pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
415    buf: RawVec<T, A>,
416    len: usize,
417}
418
419////////////////////////////////////////////////////////////////////////////////
420// Inherent methods
421////////////////////////////////////////////////////////////////////////////////
422
423impl<T> Vec<T> {
424    /// Constructs a new, empty `Vec<T>`.
425    ///
426    /// The vector will not allocate until elements are pushed onto it.
427    ///
428    /// # Examples
429    ///
430    /// ```
431    /// # #![allow(unused_mut)]
432    /// let mut vec: Vec<i32> = Vec::new();
433    /// ```
434    #[inline]
435    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
436    #[rustc_diagnostic_item = "vec_new"]
437    #[stable(feature = "rust1", since = "1.0.0")]
438    #[must_use]
439    pub const fn new() -> Self {
440        Vec { buf: RawVec::new(), len: 0 }
441    }
442
443    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
444    ///
445    /// The vector will be able to hold at least `capacity` elements without
446    /// reallocating. This method is allowed to allocate for more elements than
447    /// `capacity`. If `capacity` is zero, the vector will not allocate.
448    ///
449    /// It is important to note that although the returned vector has the
450    /// minimum *capacity* specified, the vector will have a zero *length*. For
451    /// an explanation of the difference between length and capacity, see
452    /// *[Capacity and reallocation]*.
453    ///
454    /// If it is important to know the exact allocated capacity of a `Vec`,
455    /// always use the [`capacity`] method after construction.
456    ///
457    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
458    /// and the capacity will always be `usize::MAX`.
459    ///
460    /// [Capacity and reallocation]: #capacity-and-reallocation
461    /// [`capacity`]: Vec::capacity
462    ///
463    /// # Panics
464    ///
465    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
466    ///
467    /// # Examples
468    ///
469    /// ```
470    /// let mut vec = Vec::with_capacity(10);
471    ///
472    /// // The vector contains no items, even though it has capacity for more
473    /// assert_eq!(vec.len(), 0);
474    /// assert!(vec.capacity() >= 10);
475    ///
476    /// // These are all done without reallocating...
477    /// for i in 0..10 {
478    ///     vec.push(i);
479    /// }
480    /// assert_eq!(vec.len(), 10);
481    /// assert!(vec.capacity() >= 10);
482    ///
483    /// // ...but this may make the vector reallocate
484    /// vec.push(11);
485    /// assert_eq!(vec.len(), 11);
486    /// assert!(vec.capacity() >= 11);
487    ///
488    /// // A vector of a zero-sized type will always over-allocate, since no
489    /// // allocation is necessary
490    /// let vec_units = Vec::<()>::with_capacity(10);
491    /// assert_eq!(vec_units.capacity(), usize::MAX);
492    /// ```
493    #[cfg(not(no_global_oom_handling))]
494    #[inline]
495    #[stable(feature = "rust1", since = "1.0.0")]
496    #[must_use]
497    #[rustc_diagnostic_item = "vec_with_capacity"]
498    #[track_caller]
499    pub fn with_capacity(capacity: usize) -> Self {
500        Self::with_capacity_in(capacity, Global)
501    }
502
503    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
504    ///
505    /// The vector will be able to hold at least `capacity` elements without
506    /// reallocating. This method is allowed to allocate for more elements than
507    /// `capacity`. If `capacity` is zero, the vector will not allocate.
508    ///
509    /// # Errors
510    ///
511    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
512    /// or if the allocator reports allocation failure.
513    #[inline]
514    #[unstable(feature = "try_with_capacity", issue = "91913")]
515    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
516        Self::try_with_capacity_in(capacity, Global)
517    }
518
519    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
520    ///
521    /// # Safety
522    ///
523    /// This is highly unsafe, due to the number of invariants that aren't
524    /// checked:
525    ///
526    /// * `ptr` must have been allocated using the global allocator, such as via
527    ///   the [`alloc::alloc`] function.
528    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
529    ///   (`T` having a less strict alignment is not sufficient, the alignment really
530    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
531    ///   allocated and deallocated with the same layout.)
532    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
533    ///   to be the same size as the pointer was allocated with. (Because similar to
534    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
535    /// * `length` needs to be less than or equal to `capacity`.
536    /// * The first `length` values must be properly initialized values of type `T`.
537    /// * `capacity` needs to be the capacity that the pointer was allocated with.
538    /// * The allocated size in bytes must be no larger than `isize::MAX`.
539    ///   See the safety documentation of [`pointer::offset`].
540    ///
541    /// These requirements are always upheld by any `ptr` that has been allocated
542    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
543    /// upheld.
544    ///
545    /// Violating these may cause problems like corrupting the allocator's
546    /// internal data structures. For example it is normally **not** safe
547    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
548    /// `size_t`, doing so is only safe if the array was initially allocated by
549    /// a `Vec` or `String`.
550    /// It's also not safe to build one from a `Vec<u16>` and its length, because
551    /// the allocator cares about the alignment, and these two types have different
552    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
553    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
554    /// these issues, it is often preferable to do casting/transmuting using
555    /// [`slice::from_raw_parts`] instead.
556    ///
557    /// The ownership of `ptr` is effectively transferred to the
558    /// `Vec<T>` which may then deallocate, reallocate or change the
559    /// contents of memory pointed to by the pointer at will. Ensure
560    /// that nothing else uses the pointer after calling this
561    /// function.
562    ///
563    /// [`String`]: crate::string::String
564    /// [`alloc::alloc`]: crate::alloc::alloc
565    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
566    ///
567    /// # Examples
568    ///
569    // FIXME Update this when vec_into_raw_parts is stabilized
570    /// ```
571    /// use std::ptr;
572    /// use std::mem;
573    ///
574    /// let v = vec![1, 2, 3];
575    ///
576    /// // Prevent running `v`'s destructor so we are in complete control
577    /// // of the allocation.
578    /// let mut v = mem::ManuallyDrop::new(v);
579    ///
580    /// // Pull out the various important pieces of information about `v`
581    /// let p = v.as_mut_ptr();
582    /// let len = v.len();
583    /// let cap = v.capacity();
584    ///
585    /// unsafe {
586    ///     // Overwrite memory with 4, 5, 6
587    ///     for i in 0..len {
588    ///         ptr::write(p.add(i), 4 + i);
589    ///     }
590    ///
591    ///     // Put everything back together into a Vec
592    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
593    ///     assert_eq!(rebuilt, [4, 5, 6]);
594    /// }
595    /// ```
596    ///
597    /// Using memory that was allocated elsewhere:
598    ///
599    /// ```rust
600    /// use std::alloc::{alloc, Layout};
601    ///
602    /// fn main() {
603    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
604    ///
605    ///     let vec = unsafe {
606    ///         let mem = alloc(layout).cast::<u32>();
607    ///         if mem.is_null() {
608    ///             return;
609    ///         }
610    ///
611    ///         mem.write(1_000_000);
612    ///
613    ///         Vec::from_raw_parts(mem, 1, 16)
614    ///     };
615    ///
616    ///     assert_eq!(vec, &[1_000_000]);
617    ///     assert_eq!(vec.capacity(), 16);
618    /// }
619    /// ```
620    #[inline]
621    #[stable(feature = "rust1", since = "1.0.0")]
622    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
623        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
624    }
625
626    #[doc(alias = "from_non_null_parts")]
627    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
628    ///
629    /// # Safety
630    ///
631    /// This is highly unsafe, due to the number of invariants that aren't
632    /// checked:
633    ///
634    /// * `ptr` must have been allocated using the global allocator, such as via
635    ///   the [`alloc::alloc`] function.
636    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
637    ///   (`T` having a less strict alignment is not sufficient, the alignment really
638    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
639    ///   allocated and deallocated with the same layout.)
640    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
641    ///   to be the same size as the pointer was allocated with. (Because similar to
642    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
643    /// * `length` needs to be less than or equal to `capacity`.
644    /// * The first `length` values must be properly initialized values of type `T`.
645    /// * `capacity` needs to be the capacity that the pointer was allocated with.
646    /// * The allocated size in bytes must be no larger than `isize::MAX`.
647    ///   See the safety documentation of [`pointer::offset`].
648    ///
649    /// These requirements are always upheld by any `ptr` that has been allocated
650    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
651    /// upheld.
652    ///
653    /// Violating these may cause problems like corrupting the allocator's
654    /// internal data structures. For example it is normally **not** safe
655    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
656    /// `size_t`, doing so is only safe if the array was initially allocated by
657    /// a `Vec` or `String`.
658    /// It's also not safe to build one from a `Vec<u16>` and its length, because
659    /// the allocator cares about the alignment, and these two types have different
660    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
661    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
662    /// these issues, it is often preferable to do casting/transmuting using
663    /// [`NonNull::slice_from_raw_parts`] instead.
664    ///
665    /// The ownership of `ptr` is effectively transferred to the
666    /// `Vec<T>` which may then deallocate, reallocate or change the
667    /// contents of memory pointed to by the pointer at will. Ensure
668    /// that nothing else uses the pointer after calling this
669    /// function.
670    ///
671    /// [`String`]: crate::string::String
672    /// [`alloc::alloc`]: crate::alloc::alloc
673    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
674    ///
675    /// # Examples
676    ///
677    // FIXME Update this when vec_into_raw_parts is stabilized
678    /// ```
679    /// #![feature(box_vec_non_null)]
680    ///
681    /// use std::ptr::NonNull;
682    /// use std::mem;
683    ///
684    /// let v = vec![1, 2, 3];
685    ///
686    /// // Prevent running `v`'s destructor so we are in complete control
687    /// // of the allocation.
688    /// let mut v = mem::ManuallyDrop::new(v);
689    ///
690    /// // Pull out the various important pieces of information about `v`
691    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
692    /// let len = v.len();
693    /// let cap = v.capacity();
694    ///
695    /// unsafe {
696    ///     // Overwrite memory with 4, 5, 6
697    ///     for i in 0..len {
698    ///         p.add(i).write(4 + i);
699    ///     }
700    ///
701    ///     // Put everything back together into a Vec
702    ///     let rebuilt = Vec::from_parts(p, len, cap);
703    ///     assert_eq!(rebuilt, [4, 5, 6]);
704    /// }
705    /// ```
706    ///
707    /// Using memory that was allocated elsewhere:
708    ///
709    /// ```rust
710    /// #![feature(box_vec_non_null)]
711    ///
712    /// use std::alloc::{alloc, Layout};
713    /// use std::ptr::NonNull;
714    ///
715    /// fn main() {
716    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
717    ///
718    ///     let vec = unsafe {
719    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
720    ///             return;
721    ///         };
722    ///
723    ///         mem.write(1_000_000);
724    ///
725    ///         Vec::from_parts(mem, 1, 16)
726    ///     };
727    ///
728    ///     assert_eq!(vec, &[1_000_000]);
729    ///     assert_eq!(vec.capacity(), 16);
730    /// }
731    /// ```
732    #[inline]
733    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
734    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
735        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
736    }
737
738    /// Returns a mutable reference to the last item in the vector, or
739    /// `None` if it is empty.
740    ///
741    /// # Examples
742    ///
743    /// Basic usage:
744    ///
745    /// ```
746    /// #![feature(vec_peek_mut)]
747    /// let mut vec = Vec::new();
748    /// assert!(vec.peek_mut().is_none());
749    ///
750    /// vec.push(1);
751    /// vec.push(5);
752    /// vec.push(2);
753    /// assert_eq!(vec.last(), Some(&2));
754    /// if let Some(mut val) = vec.peek_mut() {
755    ///     *val = 0;
756    /// }
757    /// assert_eq!(vec.last(), Some(&0));
758    /// ```
759    #[inline]
760    #[unstable(feature = "vec_peek_mut", issue = "122742")]
761    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
762        PeekMut::new(self)
763    }
764
765    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
766    ///
767    /// Returns the raw pointer to the underlying data, the length of
768    /// the vector (in elements), and the allocated capacity of the
769    /// data (in elements). These are the same arguments in the same
770    /// order as the arguments to [`from_raw_parts`].
771    ///
772    /// After calling this function, the caller is responsible for the
773    /// memory previously managed by the `Vec`. The only way to do
774    /// this is to convert the raw pointer, length, and capacity back
775    /// into a `Vec` with the [`from_raw_parts`] function, allowing
776    /// the destructor to perform the cleanup.
777    ///
778    /// [`from_raw_parts`]: Vec::from_raw_parts
779    ///
780    /// # Examples
781    ///
782    /// ```
783    /// #![feature(vec_into_raw_parts)]
784    /// let v: Vec<i32> = vec![-1, 0, 1];
785    ///
786    /// let (ptr, len, cap) = v.into_raw_parts();
787    ///
788    /// let rebuilt = unsafe {
789    ///     // We can now make changes to the components, such as
790    ///     // transmuting the raw pointer to a compatible type.
791    ///     let ptr = ptr as *mut u32;
792    ///
793    ///     Vec::from_raw_parts(ptr, len, cap)
794    /// };
795    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
796    /// ```
797    #[must_use = "losing the pointer will leak memory"]
798    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
799    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
800        let mut me = ManuallyDrop::new(self);
801        (me.as_mut_ptr(), me.len(), me.capacity())
802    }
803
804    #[doc(alias = "into_non_null_parts")]
805    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
806    ///
807    /// Returns the `NonNull` pointer to the underlying data, the length of
808    /// the vector (in elements), and the allocated capacity of the
809    /// data (in elements). These are the same arguments in the same
810    /// order as the arguments to [`from_parts`].
811    ///
812    /// After calling this function, the caller is responsible for the
813    /// memory previously managed by the `Vec`. The only way to do
814    /// this is to convert the `NonNull` pointer, length, and capacity back
815    /// into a `Vec` with the [`from_parts`] function, allowing
816    /// the destructor to perform the cleanup.
817    ///
818    /// [`from_parts`]: Vec::from_parts
819    ///
820    /// # Examples
821    ///
822    /// ```
823    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
824    ///
825    /// let v: Vec<i32> = vec![-1, 0, 1];
826    ///
827    /// let (ptr, len, cap) = v.into_parts();
828    ///
829    /// let rebuilt = unsafe {
830    ///     // We can now make changes to the components, such as
831    ///     // transmuting the raw pointer to a compatible type.
832    ///     let ptr = ptr.cast::<u32>();
833    ///
834    ///     Vec::from_parts(ptr, len, cap)
835    /// };
836    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
837    /// ```
838    #[must_use = "losing the pointer will leak memory"]
839    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
840    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
841    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
842        let (ptr, len, capacity) = self.into_raw_parts();
843        // SAFETY: A `Vec` always has a non-null pointer.
844        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
845    }
846}
847
848impl<T, A: Allocator> Vec<T, A> {
849    /// Constructs a new, empty `Vec<T, A>`.
850    ///
851    /// The vector will not allocate until elements are pushed onto it.
852    ///
853    /// # Examples
854    ///
855    /// ```
856    /// #![feature(allocator_api)]
857    ///
858    /// use std::alloc::System;
859    ///
860    /// # #[allow(unused_mut)]
861    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
862    /// ```
863    #[inline]
864    #[unstable(feature = "allocator_api", issue = "32838")]
865    pub const fn new_in(alloc: A) -> Self {
866        Vec { buf: RawVec::new_in(alloc), len: 0 }
867    }
868
869    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
870    /// with the provided allocator.
871    ///
872    /// The vector will be able to hold at least `capacity` elements without
873    /// reallocating. This method is allowed to allocate for more elements than
874    /// `capacity`. If `capacity` is zero, the vector will not allocate.
875    ///
876    /// It is important to note that although the returned vector has the
877    /// minimum *capacity* specified, the vector will have a zero *length*. For
878    /// an explanation of the difference between length and capacity, see
879    /// *[Capacity and reallocation]*.
880    ///
881    /// If it is important to know the exact allocated capacity of a `Vec`,
882    /// always use the [`capacity`] method after construction.
883    ///
884    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
885    /// and the capacity will always be `usize::MAX`.
886    ///
887    /// [Capacity and reallocation]: #capacity-and-reallocation
888    /// [`capacity`]: Vec::capacity
889    ///
890    /// # Panics
891    ///
892    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// #![feature(allocator_api)]
898    ///
899    /// use std::alloc::System;
900    ///
901    /// let mut vec = Vec::with_capacity_in(10, System);
902    ///
903    /// // The vector contains no items, even though it has capacity for more
904    /// assert_eq!(vec.len(), 0);
905    /// assert!(vec.capacity() >= 10);
906    ///
907    /// // These are all done without reallocating...
908    /// for i in 0..10 {
909    ///     vec.push(i);
910    /// }
911    /// assert_eq!(vec.len(), 10);
912    /// assert!(vec.capacity() >= 10);
913    ///
914    /// // ...but this may make the vector reallocate
915    /// vec.push(11);
916    /// assert_eq!(vec.len(), 11);
917    /// assert!(vec.capacity() >= 11);
918    ///
919    /// // A vector of a zero-sized type will always over-allocate, since no
920    /// // allocation is necessary
921    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
922    /// assert_eq!(vec_units.capacity(), usize::MAX);
923    /// ```
924    #[cfg(not(no_global_oom_handling))]
925    #[inline]
926    #[unstable(feature = "allocator_api", issue = "32838")]
927    #[track_caller]
928    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
929        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
930    }
931
932    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
933    /// with the provided allocator.
934    ///
935    /// The vector will be able to hold at least `capacity` elements without
936    /// reallocating. This method is allowed to allocate for more elements than
937    /// `capacity`. If `capacity` is zero, the vector will not allocate.
938    ///
939    /// # Errors
940    ///
941    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
942    /// or if the allocator reports allocation failure.
943    #[inline]
944    #[unstable(feature = "allocator_api", issue = "32838")]
945    // #[unstable(feature = "try_with_capacity", issue = "91913")]
946    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
947        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
948    }
949
950    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
951    /// and an allocator.
952    ///
953    /// # Safety
954    ///
955    /// This is highly unsafe, due to the number of invariants that aren't
956    /// checked:
957    ///
958    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
959    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
960    ///   (`T` having a less strict alignment is not sufficient, the alignment really
961    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
962    ///   allocated and deallocated with the same layout.)
963    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
964    ///   to be the same size as the pointer was allocated with. (Because similar to
965    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
966    /// * `length` needs to be less than or equal to `capacity`.
967    /// * The first `length` values must be properly initialized values of type `T`.
968    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
969    /// * The allocated size in bytes must be no larger than `isize::MAX`.
970    ///   See the safety documentation of [`pointer::offset`].
971    ///
972    /// These requirements are always upheld by any `ptr` that has been allocated
973    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
974    /// upheld.
975    ///
976    /// Violating these may cause problems like corrupting the allocator's
977    /// internal data structures. For example it is **not** safe
978    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
979    /// It's also not safe to build one from a `Vec<u16>` and its length, because
980    /// the allocator cares about the alignment, and these two types have different
981    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
982    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
983    ///
984    /// The ownership of `ptr` is effectively transferred to the
985    /// `Vec<T>` which may then deallocate, reallocate or change the
986    /// contents of memory pointed to by the pointer at will. Ensure
987    /// that nothing else uses the pointer after calling this
988    /// function.
989    ///
990    /// [`String`]: crate::string::String
991    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
992    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
993    /// [*fit*]: crate::alloc::Allocator#memory-fitting
994    ///
995    /// # Examples
996    ///
997    // FIXME Update this when vec_into_raw_parts is stabilized
998    /// ```
999    /// #![feature(allocator_api)]
1000    ///
1001    /// use std::alloc::System;
1002    ///
1003    /// use std::ptr;
1004    /// use std::mem;
1005    ///
1006    /// let mut v = Vec::with_capacity_in(3, System);
1007    /// v.push(1);
1008    /// v.push(2);
1009    /// v.push(3);
1010    ///
1011    /// // Prevent running `v`'s destructor so we are in complete control
1012    /// // of the allocation.
1013    /// let mut v = mem::ManuallyDrop::new(v);
1014    ///
1015    /// // Pull out the various important pieces of information about `v`
1016    /// let p = v.as_mut_ptr();
1017    /// let len = v.len();
1018    /// let cap = v.capacity();
1019    /// let alloc = v.allocator();
1020    ///
1021    /// unsafe {
1022    ///     // Overwrite memory with 4, 5, 6
1023    ///     for i in 0..len {
1024    ///         ptr::write(p.add(i), 4 + i);
1025    ///     }
1026    ///
1027    ///     // Put everything back together into a Vec
1028    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1029    ///     assert_eq!(rebuilt, [4, 5, 6]);
1030    /// }
1031    /// ```
1032    ///
1033    /// Using memory that was allocated elsewhere:
1034    ///
1035    /// ```rust
1036    /// #![feature(allocator_api)]
1037    ///
1038    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1039    ///
1040    /// fn main() {
1041    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1042    ///
1043    ///     let vec = unsafe {
1044    ///         let mem = match Global.allocate(layout) {
1045    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1046    ///             Err(AllocError) => return,
1047    ///         };
1048    ///
1049    ///         mem.write(1_000_000);
1050    ///
1051    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1052    ///     };
1053    ///
1054    ///     assert_eq!(vec, &[1_000_000]);
1055    ///     assert_eq!(vec.capacity(), 16);
1056    /// }
1057    /// ```
1058    #[inline]
1059    #[unstable(feature = "allocator_api", issue = "32838")]
1060    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1061        ub_checks::assert_unsafe_precondition!(
1062            check_library_ub,
1063            "Vec::from_raw_parts_in requires that length <= capacity",
1064            (length: usize = length, capacity: usize = capacity) => length <= capacity
1065        );
1066        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1067    }
1068
1069    #[doc(alias = "from_non_null_parts_in")]
1070    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1071    /// and an allocator.
1072    ///
1073    /// # Safety
1074    ///
1075    /// This is highly unsafe, due to the number of invariants that aren't
1076    /// checked:
1077    ///
1078    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1079    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1080    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1081    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1082    ///   allocated and deallocated with the same layout.)
1083    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1084    ///   to be the same size as the pointer was allocated with. (Because similar to
1085    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1086    /// * `length` needs to be less than or equal to `capacity`.
1087    /// * The first `length` values must be properly initialized values of type `T`.
1088    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1089    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1090    ///   See the safety documentation of [`pointer::offset`].
1091    ///
1092    /// These requirements are always upheld by any `ptr` that has been allocated
1093    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1094    /// upheld.
1095    ///
1096    /// Violating these may cause problems like corrupting the allocator's
1097    /// internal data structures. For example it is **not** safe
1098    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1099    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1100    /// the allocator cares about the alignment, and these two types have different
1101    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1102    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1103    ///
1104    /// The ownership of `ptr` is effectively transferred to the
1105    /// `Vec<T>` which may then deallocate, reallocate or change the
1106    /// contents of memory pointed to by the pointer at will. Ensure
1107    /// that nothing else uses the pointer after calling this
1108    /// function.
1109    ///
1110    /// [`String`]: crate::string::String
1111    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1112    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1113    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1114    ///
1115    /// # Examples
1116    ///
1117    // FIXME Update this when vec_into_raw_parts is stabilized
1118    /// ```
1119    /// #![feature(allocator_api, box_vec_non_null)]
1120    ///
1121    /// use std::alloc::System;
1122    ///
1123    /// use std::ptr::NonNull;
1124    /// use std::mem;
1125    ///
1126    /// let mut v = Vec::with_capacity_in(3, System);
1127    /// v.push(1);
1128    /// v.push(2);
1129    /// v.push(3);
1130    ///
1131    /// // Prevent running `v`'s destructor so we are in complete control
1132    /// // of the allocation.
1133    /// let mut v = mem::ManuallyDrop::new(v);
1134    ///
1135    /// // Pull out the various important pieces of information about `v`
1136    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1137    /// let len = v.len();
1138    /// let cap = v.capacity();
1139    /// let alloc = v.allocator();
1140    ///
1141    /// unsafe {
1142    ///     // Overwrite memory with 4, 5, 6
1143    ///     for i in 0..len {
1144    ///         p.add(i).write(4 + i);
1145    ///     }
1146    ///
1147    ///     // Put everything back together into a Vec
1148    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1149    ///     assert_eq!(rebuilt, [4, 5, 6]);
1150    /// }
1151    /// ```
1152    ///
1153    /// Using memory that was allocated elsewhere:
1154    ///
1155    /// ```rust
1156    /// #![feature(allocator_api, box_vec_non_null)]
1157    ///
1158    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1159    ///
1160    /// fn main() {
1161    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1162    ///
1163    ///     let vec = unsafe {
1164    ///         let mem = match Global.allocate(layout) {
1165    ///             Ok(mem) => mem.cast::<u32>(),
1166    ///             Err(AllocError) => return,
1167    ///         };
1168    ///
1169    ///         mem.write(1_000_000);
1170    ///
1171    ///         Vec::from_parts_in(mem, 1, 16, Global)
1172    ///     };
1173    ///
1174    ///     assert_eq!(vec, &[1_000_000]);
1175    ///     assert_eq!(vec.capacity(), 16);
1176    /// }
1177    /// ```
1178    #[inline]
1179    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1180    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1181    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1182        ub_checks::assert_unsafe_precondition!(
1183            check_library_ub,
1184            "Vec::from_parts_in requires that length <= capacity",
1185            (length: usize = length, capacity: usize = capacity) => length <= capacity
1186        );
1187        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1188    }
1189
1190    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1191    ///
1192    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1193    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1194    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1195    ///
1196    /// After calling this function, the caller is responsible for the
1197    /// memory previously managed by the `Vec`. The only way to do
1198    /// this is to convert the raw pointer, length, and capacity back
1199    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1200    /// the destructor to perform the cleanup.
1201    ///
1202    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1203    ///
1204    /// # Examples
1205    ///
1206    /// ```
1207    /// #![feature(allocator_api, vec_into_raw_parts)]
1208    ///
1209    /// use std::alloc::System;
1210    ///
1211    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1212    /// v.push(-1);
1213    /// v.push(0);
1214    /// v.push(1);
1215    ///
1216    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1217    ///
1218    /// let rebuilt = unsafe {
1219    ///     // We can now make changes to the components, such as
1220    ///     // transmuting the raw pointer to a compatible type.
1221    ///     let ptr = ptr as *mut u32;
1222    ///
1223    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1224    /// };
1225    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1226    /// ```
1227    #[must_use = "losing the pointer will leak memory"]
1228    #[unstable(feature = "allocator_api", issue = "32838")]
1229    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1230    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1231        let mut me = ManuallyDrop::new(self);
1232        let len = me.len();
1233        let capacity = me.capacity();
1234        let ptr = me.as_mut_ptr();
1235        let alloc = unsafe { ptr::read(me.allocator()) };
1236        (ptr, len, capacity, alloc)
1237    }
1238
1239    #[doc(alias = "into_non_null_parts_with_alloc")]
1240    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1241    ///
1242    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1243    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1244    /// arguments in the same order as the arguments to [`from_parts_in`].
1245    ///
1246    /// After calling this function, the caller is responsible for the
1247    /// memory previously managed by the `Vec`. The only way to do
1248    /// this is to convert the `NonNull` pointer, length, and capacity back
1249    /// into a `Vec` with the [`from_parts_in`] function, allowing
1250    /// the destructor to perform the cleanup.
1251    ///
1252    /// [`from_parts_in`]: Vec::from_parts_in
1253    ///
1254    /// # Examples
1255    ///
1256    /// ```
1257    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1258    ///
1259    /// use std::alloc::System;
1260    ///
1261    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1262    /// v.push(-1);
1263    /// v.push(0);
1264    /// v.push(1);
1265    ///
1266    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1267    ///
1268    /// let rebuilt = unsafe {
1269    ///     // We can now make changes to the components, such as
1270    ///     // transmuting the raw pointer to a compatible type.
1271    ///     let ptr = ptr.cast::<u32>();
1272    ///
1273    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1274    /// };
1275    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1276    /// ```
1277    #[must_use = "losing the pointer will leak memory"]
1278    #[unstable(feature = "allocator_api", issue = "32838")]
1279    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1280    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1281    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1282        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1283        // SAFETY: A `Vec` always has a non-null pointer.
1284        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1285    }
1286
1287    /// Returns the total number of elements the vector can hold without
1288    /// reallocating.
1289    ///
1290    /// # Examples
1291    ///
1292    /// ```
1293    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1294    /// vec.push(42);
1295    /// assert!(vec.capacity() >= 10);
1296    /// ```
1297    ///
1298    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1299    ///
1300    /// ```
1301    /// #[derive(Clone)]
1302    /// struct ZeroSized;
1303    ///
1304    /// fn main() {
1305    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1306    ///     let v = vec![ZeroSized; 0];
1307    ///     assert_eq!(v.capacity(), usize::MAX);
1308    /// }
1309    /// ```
1310    #[inline]
1311    #[stable(feature = "rust1", since = "1.0.0")]
1312    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1313    pub const fn capacity(&self) -> usize {
1314        self.buf.capacity()
1315    }
1316
1317    /// Reserves capacity for at least `additional` more elements to be inserted
1318    /// in the given `Vec<T>`. The collection may reserve more space to
1319    /// speculatively avoid frequent reallocations. After calling `reserve`,
1320    /// capacity will be greater than or equal to `self.len() + additional`.
1321    /// Does nothing if capacity is already sufficient.
1322    ///
1323    /// # Panics
1324    ///
1325    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1326    ///
1327    /// # Examples
1328    ///
1329    /// ```
1330    /// let mut vec = vec![1];
1331    /// vec.reserve(10);
1332    /// assert!(vec.capacity() >= 11);
1333    /// ```
1334    #[cfg(not(no_global_oom_handling))]
1335    #[stable(feature = "rust1", since = "1.0.0")]
1336    #[track_caller]
1337    #[rustc_diagnostic_item = "vec_reserve"]
1338    pub fn reserve(&mut self, additional: usize) {
1339        self.buf.reserve(self.len, additional);
1340    }
1341
1342    /// Reserves the minimum capacity for at least `additional` more elements to
1343    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1344    /// deliberately over-allocate to speculatively avoid frequent allocations.
1345    /// After calling `reserve_exact`, capacity will be greater than or equal to
1346    /// `self.len() + additional`. Does nothing if the capacity is already
1347    /// sufficient.
1348    ///
1349    /// Note that the allocator may give the collection more space than it
1350    /// requests. Therefore, capacity can not be relied upon to be precisely
1351    /// minimal. Prefer [`reserve`] if future insertions are expected.
1352    ///
1353    /// [`reserve`]: Vec::reserve
1354    ///
1355    /// # Panics
1356    ///
1357    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1358    ///
1359    /// # Examples
1360    ///
1361    /// ```
1362    /// let mut vec = vec![1];
1363    /// vec.reserve_exact(10);
1364    /// assert!(vec.capacity() >= 11);
1365    /// ```
1366    #[cfg(not(no_global_oom_handling))]
1367    #[stable(feature = "rust1", since = "1.0.0")]
1368    #[track_caller]
1369    pub fn reserve_exact(&mut self, additional: usize) {
1370        self.buf.reserve_exact(self.len, additional);
1371    }
1372
1373    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1374    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1375    /// frequent reallocations. After calling `try_reserve`, capacity will be
1376    /// greater than or equal to `self.len() + additional` if it returns
1377    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1378    /// preserves the contents even if an error occurs.
1379    ///
1380    /// # Errors
1381    ///
1382    /// If the capacity overflows, or the allocator reports a failure, then an error
1383    /// is returned.
1384    ///
1385    /// # Examples
1386    ///
1387    /// ```
1388    /// use std::collections::TryReserveError;
1389    ///
1390    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1391    ///     let mut output = Vec::new();
1392    ///
1393    ///     // Pre-reserve the memory, exiting if we can't
1394    ///     output.try_reserve(data.len())?;
1395    ///
1396    ///     // Now we know this can't OOM in the middle of our complex work
1397    ///     output.extend(data.iter().map(|&val| {
1398    ///         val * 2 + 5 // very complicated
1399    ///     }));
1400    ///
1401    ///     Ok(output)
1402    /// }
1403    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1404    /// ```
1405    #[stable(feature = "try_reserve", since = "1.57.0")]
1406    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1407        self.buf.try_reserve(self.len, additional)
1408    }
1409
1410    /// Tries to reserve the minimum capacity for at least `additional`
1411    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1412    /// this will not deliberately over-allocate to speculatively avoid frequent
1413    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1414    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1415    /// Does nothing if the capacity is already sufficient.
1416    ///
1417    /// Note that the allocator may give the collection more space than it
1418    /// requests. Therefore, capacity can not be relied upon to be precisely
1419    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1420    ///
1421    /// [`try_reserve`]: Vec::try_reserve
1422    ///
1423    /// # Errors
1424    ///
1425    /// If the capacity overflows, or the allocator reports a failure, then an error
1426    /// is returned.
1427    ///
1428    /// # Examples
1429    ///
1430    /// ```
1431    /// use std::collections::TryReserveError;
1432    ///
1433    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1434    ///     let mut output = Vec::new();
1435    ///
1436    ///     // Pre-reserve the memory, exiting if we can't
1437    ///     output.try_reserve_exact(data.len())?;
1438    ///
1439    ///     // Now we know this can't OOM in the middle of our complex work
1440    ///     output.extend(data.iter().map(|&val| {
1441    ///         val * 2 + 5 // very complicated
1442    ///     }));
1443    ///
1444    ///     Ok(output)
1445    /// }
1446    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1447    /// ```
1448    #[stable(feature = "try_reserve", since = "1.57.0")]
1449    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1450        self.buf.try_reserve_exact(self.len, additional)
1451    }
1452
1453    /// Shrinks the capacity of the vector as much as possible.
1454    ///
1455    /// The behavior of this method depends on the allocator, which may either shrink the vector
1456    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1457    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1458    ///
1459    /// [`with_capacity`]: Vec::with_capacity
1460    ///
1461    /// # Examples
1462    ///
1463    /// ```
1464    /// let mut vec = Vec::with_capacity(10);
1465    /// vec.extend([1, 2, 3]);
1466    /// assert!(vec.capacity() >= 10);
1467    /// vec.shrink_to_fit();
1468    /// assert!(vec.capacity() >= 3);
1469    /// ```
1470    #[cfg(not(no_global_oom_handling))]
1471    #[stable(feature = "rust1", since = "1.0.0")]
1472    #[track_caller]
1473    #[inline]
1474    pub fn shrink_to_fit(&mut self) {
1475        // The capacity is never less than the length, and there's nothing to do when
1476        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1477        // by only calling it with a greater capacity.
1478        if self.capacity() > self.len {
1479            self.buf.shrink_to_fit(self.len);
1480        }
1481    }
1482
1483    /// Shrinks the capacity of the vector with a lower bound.
1484    ///
1485    /// The capacity will remain at least as large as both the length
1486    /// and the supplied value.
1487    ///
1488    /// If the current capacity is less than the lower limit, this is a no-op.
1489    ///
1490    /// # Examples
1491    ///
1492    /// ```
1493    /// let mut vec = Vec::with_capacity(10);
1494    /// vec.extend([1, 2, 3]);
1495    /// assert!(vec.capacity() >= 10);
1496    /// vec.shrink_to(4);
1497    /// assert!(vec.capacity() >= 4);
1498    /// vec.shrink_to(0);
1499    /// assert!(vec.capacity() >= 3);
1500    /// ```
1501    #[cfg(not(no_global_oom_handling))]
1502    #[stable(feature = "shrink_to", since = "1.56.0")]
1503    #[track_caller]
1504    pub fn shrink_to(&mut self, min_capacity: usize) {
1505        if self.capacity() > min_capacity {
1506            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1507        }
1508    }
1509
1510    /// Converts the vector into [`Box<[T]>`][owned slice].
1511    ///
1512    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1513    ///
1514    /// [owned slice]: Box
1515    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1516    ///
1517    /// # Examples
1518    ///
1519    /// ```
1520    /// let v = vec![1, 2, 3];
1521    ///
1522    /// let slice = v.into_boxed_slice();
1523    /// ```
1524    ///
1525    /// Any excess capacity is removed:
1526    ///
1527    /// ```
1528    /// let mut vec = Vec::with_capacity(10);
1529    /// vec.extend([1, 2, 3]);
1530    ///
1531    /// assert!(vec.capacity() >= 10);
1532    /// let slice = vec.into_boxed_slice();
1533    /// assert_eq!(slice.into_vec().capacity(), 3);
1534    /// ```
1535    #[cfg(not(no_global_oom_handling))]
1536    #[stable(feature = "rust1", since = "1.0.0")]
1537    #[track_caller]
1538    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1539        unsafe {
1540            self.shrink_to_fit();
1541            let me = ManuallyDrop::new(self);
1542            let buf = ptr::read(&me.buf);
1543            let len = me.len();
1544            buf.into_box(len).assume_init()
1545        }
1546    }
1547
1548    /// Shortens the vector, keeping the first `len` elements and dropping
1549    /// the rest.
1550    ///
1551    /// If `len` is greater or equal to the vector's current length, this has
1552    /// no effect.
1553    ///
1554    /// The [`drain`] method can emulate `truncate`, but causes the excess
1555    /// elements to be returned instead of dropped.
1556    ///
1557    /// Note that this method has no effect on the allocated capacity
1558    /// of the vector.
1559    ///
1560    /// # Examples
1561    ///
1562    /// Truncating a five element vector to two elements:
1563    ///
1564    /// ```
1565    /// let mut vec = vec![1, 2, 3, 4, 5];
1566    /// vec.truncate(2);
1567    /// assert_eq!(vec, [1, 2]);
1568    /// ```
1569    ///
1570    /// No truncation occurs when `len` is greater than the vector's current
1571    /// length:
1572    ///
1573    /// ```
1574    /// let mut vec = vec![1, 2, 3];
1575    /// vec.truncate(8);
1576    /// assert_eq!(vec, [1, 2, 3]);
1577    /// ```
1578    ///
1579    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1580    /// method.
1581    ///
1582    /// ```
1583    /// let mut vec = vec![1, 2, 3];
1584    /// vec.truncate(0);
1585    /// assert_eq!(vec, []);
1586    /// ```
1587    ///
1588    /// [`clear`]: Vec::clear
1589    /// [`drain`]: Vec::drain
1590    #[stable(feature = "rust1", since = "1.0.0")]
1591    pub fn truncate(&mut self, len: usize) {
1592        // This is safe because:
1593        //
1594        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1595        //   case avoids creating an invalid slice, and
1596        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1597        //   such that no value will be dropped twice in case `drop_in_place`
1598        //   were to panic once (if it panics twice, the program aborts).
1599        unsafe {
1600            // Note: It's intentional that this is `>` and not `>=`.
1601            //       Changing it to `>=` has negative performance
1602            //       implications in some cases. See #78884 for more.
1603            if len > self.len {
1604                return;
1605            }
1606            let remaining_len = self.len - len;
1607            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1608            self.len = len;
1609            ptr::drop_in_place(s);
1610        }
1611    }
1612
1613    /// Extracts a slice containing the entire vector.
1614    ///
1615    /// Equivalent to `&s[..]`.
1616    ///
1617    /// # Examples
1618    ///
1619    /// ```
1620    /// use std::io::{self, Write};
1621    /// let buffer = vec![1, 2, 3, 5, 8];
1622    /// io::sink().write(buffer.as_slice()).unwrap();
1623    /// ```
1624    #[inline]
1625    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1626    #[rustc_diagnostic_item = "vec_as_slice"]
1627    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1628    pub const fn as_slice(&self) -> &[T] {
1629        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1630        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1631        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1632        // "wrap" through overflowing memory addresses.
1633        //
1634        // * Vec API guarantees that self.buf:
1635        //      * contains only properly-initialized items within 0..len
1636        //      * is aligned, contiguous, and valid for `len` reads
1637        //      * obeys size and address-wrapping constraints
1638        //
1639        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1640        //   check ensures that it is not possible to mutably alias `self.buf` within the
1641        //   returned lifetime.
1642        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1643    }
1644
1645    /// Extracts a mutable slice of the entire vector.
1646    ///
1647    /// Equivalent to `&mut s[..]`.
1648    ///
1649    /// # Examples
1650    ///
1651    /// ```
1652    /// use std::io::{self, Read};
1653    /// let mut buffer = vec![0; 3];
1654    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1655    /// ```
1656    #[inline]
1657    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1658    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1659    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1660    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1661        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1662        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1663        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1664        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1665        //
1666        // * Vec API guarantees that self.buf:
1667        //      * contains only properly-initialized items within 0..len
1668        //      * is aligned, contiguous, and valid for `len` reads
1669        //      * obeys size and address-wrapping constraints
1670        //
1671        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1672        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1673        //   within the returned lifetime.
1674        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1675    }
1676
1677    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1678    /// valid for zero sized reads if the vector didn't allocate.
1679    ///
1680    /// The caller must ensure that the vector outlives the pointer this
1681    /// function returns, or else it will end up dangling.
1682    /// Modifying the vector may cause its buffer to be reallocated,
1683    /// which would also make any pointers to it invalid.
1684    ///
1685    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1686    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1687    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1688    ///
1689    /// This method guarantees that for the purpose of the aliasing model, this method
1690    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1691    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1692    /// and [`as_non_null`].
1693    /// Note that calling other methods that materialize mutable references to the slice,
1694    /// or mutable references to specific elements you are planning on accessing through this pointer,
1695    /// as well as writing to those elements, may still invalidate this pointer.
1696    /// See the second example below for how this guarantee can be used.
1697    ///
1698    ///
1699    /// # Examples
1700    ///
1701    /// ```
1702    /// let x = vec![1, 2, 4];
1703    /// let x_ptr = x.as_ptr();
1704    ///
1705    /// unsafe {
1706    ///     for i in 0..x.len() {
1707    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1708    ///     }
1709    /// }
1710    /// ```
1711    ///
1712    /// Due to the aliasing guarantee, the following code is legal:
1713    ///
1714    /// ```rust
1715    /// unsafe {
1716    ///     let mut v = vec![0, 1, 2];
1717    ///     let ptr1 = v.as_ptr();
1718    ///     let _ = ptr1.read();
1719    ///     let ptr2 = v.as_mut_ptr().offset(2);
1720    ///     ptr2.write(2);
1721    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1722    ///     // because it mutated a different element:
1723    ///     let _ = ptr1.read();
1724    /// }
1725    /// ```
1726    ///
1727    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1728    /// [`as_ptr`]: Vec::as_ptr
1729    /// [`as_non_null`]: Vec::as_non_null
1730    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1731    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1732    #[rustc_never_returns_null_ptr]
1733    #[rustc_as_ptr]
1734    #[inline]
1735    pub const fn as_ptr(&self) -> *const T {
1736        // We shadow the slice method of the same name to avoid going through
1737        // `deref`, which creates an intermediate reference.
1738        self.buf.ptr()
1739    }
1740
1741    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1742    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1743    ///
1744    /// The caller must ensure that the vector outlives the pointer this
1745    /// function returns, or else it will end up dangling.
1746    /// Modifying the vector may cause its buffer to be reallocated,
1747    /// which would also make any pointers to it invalid.
1748    ///
1749    /// This method guarantees that for the purpose of the aliasing model, this method
1750    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1751    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1752    /// and [`as_non_null`].
1753    /// Note that calling other methods that materialize references to the slice,
1754    /// or references to specific elements you are planning on accessing through this pointer,
1755    /// may still invalidate this pointer.
1756    /// See the second example below for how this guarantee can be used.
1757    ///
1758    /// # Examples
1759    ///
1760    /// ```
1761    /// // Allocate vector big enough for 4 elements.
1762    /// let size = 4;
1763    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1764    /// let x_ptr = x.as_mut_ptr();
1765    ///
1766    /// // Initialize elements via raw pointer writes, then set length.
1767    /// unsafe {
1768    ///     for i in 0..size {
1769    ///         *x_ptr.add(i) = i as i32;
1770    ///     }
1771    ///     x.set_len(size);
1772    /// }
1773    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1774    /// ```
1775    ///
1776    /// Due to the aliasing guarantee, the following code is legal:
1777    ///
1778    /// ```rust
1779    /// unsafe {
1780    ///     let mut v = vec![0];
1781    ///     let ptr1 = v.as_mut_ptr();
1782    ///     ptr1.write(1);
1783    ///     let ptr2 = v.as_mut_ptr();
1784    ///     ptr2.write(2);
1785    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1786    ///     ptr1.write(3);
1787    /// }
1788    /// ```
1789    ///
1790    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1791    /// [`as_ptr`]: Vec::as_ptr
1792    /// [`as_non_null`]: Vec::as_non_null
1793    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1794    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1795    #[rustc_never_returns_null_ptr]
1796    #[rustc_as_ptr]
1797    #[inline]
1798    pub const fn as_mut_ptr(&mut self) -> *mut T {
1799        // We shadow the slice method of the same name to avoid going through
1800        // `deref_mut`, which creates an intermediate reference.
1801        self.buf.ptr()
1802    }
1803
1804    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1805    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1806    ///
1807    /// The caller must ensure that the vector outlives the pointer this
1808    /// function returns, or else it will end up dangling.
1809    /// Modifying the vector may cause its buffer to be reallocated,
1810    /// which would also make any pointers to it invalid.
1811    ///
1812    /// This method guarantees that for the purpose of the aliasing model, this method
1813    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1814    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1815    /// and [`as_non_null`].
1816    /// Note that calling other methods that materialize references to the slice,
1817    /// or references to specific elements you are planning on accessing through this pointer,
1818    /// may still invalidate this pointer.
1819    /// See the second example below for how this guarantee can be used.
1820    ///
1821    /// # Examples
1822    ///
1823    /// ```
1824    /// #![feature(box_vec_non_null)]
1825    ///
1826    /// // Allocate vector big enough for 4 elements.
1827    /// let size = 4;
1828    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1829    /// let x_ptr = x.as_non_null();
1830    ///
1831    /// // Initialize elements via raw pointer writes, then set length.
1832    /// unsafe {
1833    ///     for i in 0..size {
1834    ///         x_ptr.add(i).write(i as i32);
1835    ///     }
1836    ///     x.set_len(size);
1837    /// }
1838    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1839    /// ```
1840    ///
1841    /// Due to the aliasing guarantee, the following code is legal:
1842    ///
1843    /// ```rust
1844    /// #![feature(box_vec_non_null)]
1845    ///
1846    /// unsafe {
1847    ///     let mut v = vec![0];
1848    ///     let ptr1 = v.as_non_null();
1849    ///     ptr1.write(1);
1850    ///     let ptr2 = v.as_non_null();
1851    ///     ptr2.write(2);
1852    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1853    ///     ptr1.write(3);
1854    /// }
1855    /// ```
1856    ///
1857    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1858    /// [`as_ptr`]: Vec::as_ptr
1859    /// [`as_non_null`]: Vec::as_non_null
1860    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1861    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1862    #[inline]
1863    pub const fn as_non_null(&mut self) -> NonNull<T> {
1864        self.buf.non_null()
1865    }
1866
1867    /// Returns a reference to the underlying allocator.
1868    #[unstable(feature = "allocator_api", issue = "32838")]
1869    #[inline]
1870    pub fn allocator(&self) -> &A {
1871        self.buf.allocator()
1872    }
1873
1874    /// Forces the length of the vector to `new_len`.
1875    ///
1876    /// This is a low-level operation that maintains none of the normal
1877    /// invariants of the type. Normally changing the length of a vector
1878    /// is done using one of the safe operations instead, such as
1879    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1880    ///
1881    /// [`truncate`]: Vec::truncate
1882    /// [`resize`]: Vec::resize
1883    /// [`extend`]: Extend::extend
1884    /// [`clear`]: Vec::clear
1885    ///
1886    /// # Safety
1887    ///
1888    /// - `new_len` must be less than or equal to [`capacity()`].
1889    /// - The elements at `old_len..new_len` must be initialized.
1890    ///
1891    /// [`capacity()`]: Vec::capacity
1892    ///
1893    /// # Examples
1894    ///
1895    /// See [`spare_capacity_mut()`] for an example with safe
1896    /// initialization of capacity elements and use of this method.
1897    ///
1898    /// `set_len()` can be useful for situations in which the vector
1899    /// is serving as a buffer for other code, particularly over FFI:
1900    ///
1901    /// ```no_run
1902    /// # #![allow(dead_code)]
1903    /// # // This is just a minimal skeleton for the doc example;
1904    /// # // don't use this as a starting point for a real library.
1905    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1906    /// # const Z_OK: i32 = 0;
1907    /// # unsafe extern "C" {
1908    /// #     fn deflateGetDictionary(
1909    /// #         strm: *mut std::ffi::c_void,
1910    /// #         dictionary: *mut u8,
1911    /// #         dictLength: *mut usize,
1912    /// #     ) -> i32;
1913    /// # }
1914    /// # impl StreamWrapper {
1915    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1916    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1917    ///     let mut dict = Vec::with_capacity(32_768);
1918    ///     let mut dict_length = 0;
1919    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1920    ///     // 1. `dict_length` elements were initialized.
1921    ///     // 2. `dict_length` <= the capacity (32_768)
1922    ///     // which makes `set_len` safe to call.
1923    ///     unsafe {
1924    ///         // Make the FFI call...
1925    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1926    ///         if r == Z_OK {
1927    ///             // ...and update the length to what was initialized.
1928    ///             dict.set_len(dict_length);
1929    ///             Some(dict)
1930    ///         } else {
1931    ///             None
1932    ///         }
1933    ///     }
1934    /// }
1935    /// # }
1936    /// ```
1937    ///
1938    /// While the following example is sound, there is a memory leak since
1939    /// the inner vectors were not freed prior to the `set_len` call:
1940    ///
1941    /// ```
1942    /// let mut vec = vec![vec![1, 0, 0],
1943    ///                    vec![0, 1, 0],
1944    ///                    vec![0, 0, 1]];
1945    /// // SAFETY:
1946    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1947    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1948    /// unsafe {
1949    ///     vec.set_len(0);
1950    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1951    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1952    /// #   vec.set_len(3);
1953    /// }
1954    /// ```
1955    ///
1956    /// Normally, here, one would use [`clear`] instead to correctly drop
1957    /// the contents and thus not leak memory.
1958    ///
1959    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1960    #[inline]
1961    #[stable(feature = "rust1", since = "1.0.0")]
1962    pub unsafe fn set_len(&mut self, new_len: usize) {
1963        ub_checks::assert_unsafe_precondition!(
1964            check_library_ub,
1965            "Vec::set_len requires that new_len <= capacity()",
1966            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1967        );
1968
1969        self.len = new_len;
1970    }
1971
1972    /// Removes an element from the vector and returns it.
1973    ///
1974    /// The removed element is replaced by the last element of the vector.
1975    ///
1976    /// This does not preserve ordering of the remaining elements, but is *O*(1).
1977    /// If you need to preserve the element order, use [`remove`] instead.
1978    ///
1979    /// [`remove`]: Vec::remove
1980    ///
1981    /// # Panics
1982    ///
1983    /// Panics if `index` is out of bounds.
1984    ///
1985    /// # Examples
1986    ///
1987    /// ```
1988    /// let mut v = vec!["foo", "bar", "baz", "qux"];
1989    ///
1990    /// assert_eq!(v.swap_remove(1), "bar");
1991    /// assert_eq!(v, ["foo", "qux", "baz"]);
1992    ///
1993    /// assert_eq!(v.swap_remove(0), "foo");
1994    /// assert_eq!(v, ["baz", "qux"]);
1995    /// ```
1996    #[inline]
1997    #[stable(feature = "rust1", since = "1.0.0")]
1998    pub fn swap_remove(&mut self, index: usize) -> T {
1999        #[cold]
2000        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2001        #[track_caller]
2002        #[optimize(size)]
2003        fn assert_failed(index: usize, len: usize) -> ! {
2004            panic!("swap_remove index (is {index}) should be < len (is {len})");
2005        }
2006
2007        let len = self.len();
2008        if index >= len {
2009            assert_failed(index, len);
2010        }
2011        unsafe {
2012            // We replace self[index] with the last element. Note that if the
2013            // bounds check above succeeds there must be a last element (which
2014            // can be self[index] itself).
2015            let value = ptr::read(self.as_ptr().add(index));
2016            let base_ptr = self.as_mut_ptr();
2017            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2018            self.set_len(len - 1);
2019            value
2020        }
2021    }
2022
2023    /// Inserts an element at position `index` within the vector, shifting all
2024    /// elements after it to the right.
2025    ///
2026    /// # Panics
2027    ///
2028    /// Panics if `index > len`.
2029    ///
2030    /// # Examples
2031    ///
2032    /// ```
2033    /// let mut vec = vec!['a', 'b', 'c'];
2034    /// vec.insert(1, 'd');
2035    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2036    /// vec.insert(4, 'e');
2037    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2038    /// ```
2039    ///
2040    /// # Time complexity
2041    ///
2042    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2043    /// shifted to the right. In the worst case, all elements are shifted when
2044    /// the insertion index is 0.
2045    #[cfg(not(no_global_oom_handling))]
2046    #[stable(feature = "rust1", since = "1.0.0")]
2047    #[track_caller]
2048    pub fn insert(&mut self, index: usize, element: T) {
2049        let _ = self.insert_mut(index, element);
2050    }
2051
2052    /// Inserts an element at position `index` within the vector, shifting all
2053    /// elements after it to the right, and returning a reference to the new
2054    /// element.
2055    ///
2056    /// # Panics
2057    ///
2058    /// Panics if `index > len`.
2059    ///
2060    /// # Examples
2061    ///
2062    /// ```
2063    /// #![feature(push_mut)]
2064    /// let mut vec = vec![1, 3, 5, 9];
2065    /// let x = vec.insert_mut(3, 6);
2066    /// *x += 1;
2067    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2068    /// ```
2069    ///
2070    /// # Time complexity
2071    ///
2072    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2073    /// shifted to the right. In the worst case, all elements are shifted when
2074    /// the insertion index is 0.
2075    #[cfg(not(no_global_oom_handling))]
2076    #[inline]
2077    #[unstable(feature = "push_mut", issue = "135974")]
2078    #[track_caller]
2079    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2080    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2081        #[cold]
2082        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2083        #[track_caller]
2084        #[optimize(size)]
2085        fn assert_failed(index: usize, len: usize) -> ! {
2086            panic!("insertion index (is {index}) should be <= len (is {len})");
2087        }
2088
2089        let len = self.len();
2090        if index > len {
2091            assert_failed(index, len);
2092        }
2093
2094        // space for the new element
2095        if len == self.buf.capacity() {
2096            self.buf.grow_one();
2097        }
2098
2099        unsafe {
2100            // infallible
2101            // The spot to put the new value
2102            let p = self.as_mut_ptr().add(index);
2103            {
2104                if index < len {
2105                    // Shift everything over to make space. (Duplicating the
2106                    // `index`th element into two consecutive places.)
2107                    ptr::copy(p, p.add(1), len - index);
2108                }
2109                // Write it in, overwriting the first copy of the `index`th
2110                // element.
2111                ptr::write(p, element);
2112            }
2113            self.set_len(len + 1);
2114            &mut *p
2115        }
2116    }
2117
2118    /// Removes and returns the element at position `index` within the vector,
2119    /// shifting all elements after it to the left.
2120    ///
2121    /// Note: Because this shifts over the remaining elements, it has a
2122    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2123    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2124    /// elements from the beginning of the `Vec`, consider using
2125    /// [`VecDeque::pop_front`] instead.
2126    ///
2127    /// [`swap_remove`]: Vec::swap_remove
2128    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2129    ///
2130    /// # Panics
2131    ///
2132    /// Panics if `index` is out of bounds.
2133    ///
2134    /// # Examples
2135    ///
2136    /// ```
2137    /// let mut v = vec!['a', 'b', 'c'];
2138    /// assert_eq!(v.remove(1), 'b');
2139    /// assert_eq!(v, ['a', 'c']);
2140    /// ```
2141    #[stable(feature = "rust1", since = "1.0.0")]
2142    #[track_caller]
2143    #[rustc_confusables("delete", "take")]
2144    pub fn remove(&mut self, index: usize) -> T {
2145        #[cold]
2146        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2147        #[track_caller]
2148        #[optimize(size)]
2149        fn assert_failed(index: usize, len: usize) -> ! {
2150            panic!("removal index (is {index}) should be < len (is {len})");
2151        }
2152
2153        let len = self.len();
2154        if index >= len {
2155            assert_failed(index, len);
2156        }
2157        unsafe {
2158            // infallible
2159            let ret;
2160            {
2161                // the place we are taking from.
2162                let ptr = self.as_mut_ptr().add(index);
2163                // copy it out, unsafely having a copy of the value on
2164                // the stack and in the vector at the same time.
2165                ret = ptr::read(ptr);
2166
2167                // Shift everything down to fill in that spot.
2168                ptr::copy(ptr.add(1), ptr, len - index - 1);
2169            }
2170            self.set_len(len - 1);
2171            ret
2172        }
2173    }
2174
2175    /// Retains only the elements specified by the predicate.
2176    ///
2177    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2178    /// This method operates in place, visiting each element exactly once in the
2179    /// original order, and preserves the order of the retained elements.
2180    ///
2181    /// # Examples
2182    ///
2183    /// ```
2184    /// let mut vec = vec![1, 2, 3, 4];
2185    /// vec.retain(|&x| x % 2 == 0);
2186    /// assert_eq!(vec, [2, 4]);
2187    /// ```
2188    ///
2189    /// Because the elements are visited exactly once in the original order,
2190    /// external state may be used to decide which elements to keep.
2191    ///
2192    /// ```
2193    /// let mut vec = vec![1, 2, 3, 4, 5];
2194    /// let keep = [false, true, true, false, true];
2195    /// let mut iter = keep.iter();
2196    /// vec.retain(|_| *iter.next().unwrap());
2197    /// assert_eq!(vec, [2, 3, 5]);
2198    /// ```
2199    #[stable(feature = "rust1", since = "1.0.0")]
2200    pub fn retain<F>(&mut self, mut f: F)
2201    where
2202        F: FnMut(&T) -> bool,
2203    {
2204        self.retain_mut(|elem| f(elem));
2205    }
2206
2207    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2208    ///
2209    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2210    /// This method operates in place, visiting each element exactly once in the
2211    /// original order, and preserves the order of the retained elements.
2212    ///
2213    /// # Examples
2214    ///
2215    /// ```
2216    /// let mut vec = vec![1, 2, 3, 4];
2217    /// vec.retain_mut(|x| if *x <= 3 {
2218    ///     *x += 1;
2219    ///     true
2220    /// } else {
2221    ///     false
2222    /// });
2223    /// assert_eq!(vec, [2, 3, 4]);
2224    /// ```
2225    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2226    pub fn retain_mut<F>(&mut self, mut f: F)
2227    where
2228        F: FnMut(&mut T) -> bool,
2229    {
2230        let original_len = self.len();
2231
2232        if original_len == 0 {
2233            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2234            return;
2235        }
2236
2237        // Avoid double drop if the drop guard is not executed,
2238        // since we may make some holes during the process.
2239        unsafe { self.set_len(0) };
2240
2241        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2242        //      |<-              processed len   ->| ^- next to check
2243        //                  |<-  deleted cnt     ->|
2244        //      |<-              original_len                          ->|
2245        // Kept: Elements which predicate returns true on.
2246        // Hole: Moved or dropped element slot.
2247        // Unchecked: Unchecked valid elements.
2248        //
2249        // This drop guard will be invoked when predicate or `drop` of element panicked.
2250        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2251        // In cases when predicate and `drop` never panick, it will be optimized out.
2252        struct BackshiftOnDrop<'a, T, A: Allocator> {
2253            v: &'a mut Vec<T, A>,
2254            processed_len: usize,
2255            deleted_cnt: usize,
2256            original_len: usize,
2257        }
2258
2259        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2260            fn drop(&mut self) {
2261                if self.deleted_cnt > 0 {
2262                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2263                    unsafe {
2264                        ptr::copy(
2265                            self.v.as_ptr().add(self.processed_len),
2266                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2267                            self.original_len - self.processed_len,
2268                        );
2269                    }
2270                }
2271                // SAFETY: After filling holes, all items are in contiguous memory.
2272                unsafe {
2273                    self.v.set_len(self.original_len - self.deleted_cnt);
2274                }
2275            }
2276        }
2277
2278        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2279
2280        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2281            original_len: usize,
2282            f: &mut F,
2283            g: &mut BackshiftOnDrop<'_, T, A>,
2284        ) where
2285            F: FnMut(&mut T) -> bool,
2286        {
2287            while g.processed_len != original_len {
2288                // SAFETY: Unchecked element must be valid.
2289                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2290                if !f(cur) {
2291                    // Advance early to avoid double drop if `drop_in_place` panicked.
2292                    g.processed_len += 1;
2293                    g.deleted_cnt += 1;
2294                    // SAFETY: We never touch this element again after dropped.
2295                    unsafe { ptr::drop_in_place(cur) };
2296                    // We already advanced the counter.
2297                    if DELETED {
2298                        continue;
2299                    } else {
2300                        break;
2301                    }
2302                }
2303                if DELETED {
2304                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2305                    // We use copy for move, and never touch this element again.
2306                    unsafe {
2307                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2308                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2309                    }
2310                }
2311                g.processed_len += 1;
2312            }
2313        }
2314
2315        // Stage 1: Nothing was deleted.
2316        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2317
2318        // Stage 2: Some elements were deleted.
2319        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2320
2321        // All item are processed. This can be optimized to `set_len` by LLVM.
2322        drop(g);
2323    }
2324
2325    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2326    /// key.
2327    ///
2328    /// If the vector is sorted, this removes all duplicates.
2329    ///
2330    /// # Examples
2331    ///
2332    /// ```
2333    /// let mut vec = vec![10, 20, 21, 30, 20];
2334    ///
2335    /// vec.dedup_by_key(|i| *i / 10);
2336    ///
2337    /// assert_eq!(vec, [10, 20, 30, 20]);
2338    /// ```
2339    #[stable(feature = "dedup_by", since = "1.16.0")]
2340    #[inline]
2341    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2342    where
2343        F: FnMut(&mut T) -> K,
2344        K: PartialEq,
2345    {
2346        self.dedup_by(|a, b| key(a) == key(b))
2347    }
2348
2349    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2350    /// relation.
2351    ///
2352    /// The `same_bucket` function is passed references to two elements from the vector and
2353    /// must determine if the elements compare equal. The elements are passed in opposite order
2354    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2355    ///
2356    /// If the vector is sorted, this removes all duplicates.
2357    ///
2358    /// # Examples
2359    ///
2360    /// ```
2361    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2362    ///
2363    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2364    ///
2365    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2366    /// ```
2367    #[stable(feature = "dedup_by", since = "1.16.0")]
2368    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2369    where
2370        F: FnMut(&mut T, &mut T) -> bool,
2371    {
2372        let len = self.len();
2373        if len <= 1 {
2374            return;
2375        }
2376
2377        // Check if we ever want to remove anything.
2378        // This allows to use copy_non_overlapping in next cycle.
2379        // And avoids any memory writes if we don't need to remove anything.
2380        let mut first_duplicate_idx: usize = 1;
2381        let start = self.as_mut_ptr();
2382        while first_duplicate_idx != len {
2383            let found_duplicate = unsafe {
2384                // SAFETY: first_duplicate always in range [1..len)
2385                // Note that we start iteration from 1 so we never overflow.
2386                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2387                let current = start.add(first_duplicate_idx);
2388                // We explicitly say in docs that references are reversed.
2389                same_bucket(&mut *current, &mut *prev)
2390            };
2391            if found_duplicate {
2392                break;
2393            }
2394            first_duplicate_idx += 1;
2395        }
2396        // Don't need to remove anything.
2397        // We cannot get bigger than len.
2398        if first_duplicate_idx == len {
2399            return;
2400        }
2401
2402        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2403        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2404            /* Offset of the element we want to check if it is duplicate */
2405            read: usize,
2406
2407            /* Offset of the place where we want to place the non-duplicate
2408             * when we find it. */
2409            write: usize,
2410
2411            /* The Vec that would need correction if `same_bucket` panicked */
2412            vec: &'a mut Vec<T, A>,
2413        }
2414
2415        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2416            fn drop(&mut self) {
2417                /* This code gets executed when `same_bucket` panics */
2418
2419                /* SAFETY: invariant guarantees that `read - write`
2420                 * and `len - read` never overflow and that the copy is always
2421                 * in-bounds. */
2422                unsafe {
2423                    let ptr = self.vec.as_mut_ptr();
2424                    let len = self.vec.len();
2425
2426                    /* How many items were left when `same_bucket` panicked.
2427                     * Basically vec[read..].len() */
2428                    let items_left = len.wrapping_sub(self.read);
2429
2430                    /* Pointer to first item in vec[write..write+items_left] slice */
2431                    let dropped_ptr = ptr.add(self.write);
2432                    /* Pointer to first item in vec[read..] slice */
2433                    let valid_ptr = ptr.add(self.read);
2434
2435                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2436                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2437                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2438
2439                    /* How many items have been already dropped
2440                     * Basically vec[read..write].len() */
2441                    let dropped = self.read.wrapping_sub(self.write);
2442
2443                    self.vec.set_len(len - dropped);
2444                }
2445            }
2446        }
2447
2448        /* Drop items while going through Vec, it should be more efficient than
2449         * doing slice partition_dedup + truncate */
2450
2451        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2452        let mut gap =
2453            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2454        unsafe {
2455            // SAFETY: we checked that first_duplicate_idx in bounds before.
2456            // If drop panics, `gap` would remove this item without drop.
2457            ptr::drop_in_place(start.add(first_duplicate_idx));
2458        }
2459
2460        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2461         * are always in-bounds and read_ptr never aliases prev_ptr */
2462        unsafe {
2463            while gap.read < len {
2464                let read_ptr = start.add(gap.read);
2465                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2466
2467                // We explicitly say in docs that references are reversed.
2468                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2469                if found_duplicate {
2470                    // Increase `gap.read` now since the drop may panic.
2471                    gap.read += 1;
2472                    /* We have found duplicate, drop it in-place */
2473                    ptr::drop_in_place(read_ptr);
2474                } else {
2475                    let write_ptr = start.add(gap.write);
2476
2477                    /* read_ptr cannot be equal to write_ptr because at this point
2478                     * we guaranteed to skip at least one element (before loop starts).
2479                     */
2480                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2481
2482                    /* We have filled that place, so go further */
2483                    gap.write += 1;
2484                    gap.read += 1;
2485                }
2486            }
2487
2488            /* Technically we could let `gap` clean up with its Drop, but
2489             * when `same_bucket` is guaranteed to not panic, this bloats a little
2490             * the codegen, so we just do it manually */
2491            gap.vec.set_len(gap.write);
2492            mem::forget(gap);
2493        }
2494    }
2495
2496    /// Appends an element to the back of a collection.
2497    ///
2498    /// # Panics
2499    ///
2500    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2501    ///
2502    /// # Examples
2503    ///
2504    /// ```
2505    /// let mut vec = vec![1, 2];
2506    /// vec.push(3);
2507    /// assert_eq!(vec, [1, 2, 3]);
2508    /// ```
2509    ///
2510    /// # Time complexity
2511    ///
2512    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2513    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2514    /// vector's elements to a larger allocation. This expensive operation is
2515    /// offset by the *capacity* *O*(1) insertions it allows.
2516    #[cfg(not(no_global_oom_handling))]
2517    #[inline]
2518    #[stable(feature = "rust1", since = "1.0.0")]
2519    #[rustc_confusables("push_back", "put", "append")]
2520    #[track_caller]
2521    pub fn push(&mut self, value: T) {
2522        let _ = self.push_mut(value);
2523    }
2524
2525    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2526    /// with the element.
2527    ///
2528    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2529    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2530    ///
2531    /// [`push`]: Vec::push
2532    /// [`reserve`]: Vec::reserve
2533    /// [`try_reserve`]: Vec::try_reserve
2534    ///
2535    /// # Examples
2536    ///
2537    /// A manual, panic-free alternative to [`FromIterator`]:
2538    ///
2539    /// ```
2540    /// #![feature(vec_push_within_capacity)]
2541    ///
2542    /// use std::collections::TryReserveError;
2543    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2544    ///     let mut vec = Vec::new();
2545    ///     for value in iter {
2546    ///         if let Err(value) = vec.push_within_capacity(value) {
2547    ///             vec.try_reserve(1)?;
2548    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2549    ///             let _ = vec.push_within_capacity(value);
2550    ///         }
2551    ///     }
2552    ///     Ok(vec)
2553    /// }
2554    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2555    /// ```
2556    ///
2557    /// # Time complexity
2558    ///
2559    /// Takes *O*(1) time.
2560    #[inline]
2561    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2562    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2563        self.push_mut_within_capacity(value).map(|_| ())
2564    }
2565
2566    /// Appends an element to the back of a collection, returning a reference to it.
2567    ///
2568    /// # Panics
2569    ///
2570    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2571    ///
2572    /// # Examples
2573    ///
2574    /// ```
2575    /// #![feature(push_mut)]
2576    ///
2577    ///
2578    /// let mut vec = vec![1, 2];
2579    /// let last = vec.push_mut(3);
2580    /// assert_eq!(*last, 3);
2581    /// assert_eq!(vec, [1, 2, 3]);
2582    ///
2583    /// let last = vec.push_mut(3);
2584    /// *last += 1;
2585    /// assert_eq!(vec, [1, 2, 3, 4]);
2586    /// ```
2587    ///
2588    /// # Time complexity
2589    ///
2590    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2591    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2592    /// vector's elements to a larger allocation. This expensive operation is
2593    /// offset by the *capacity* *O*(1) insertions it allows.
2594    #[cfg(not(no_global_oom_handling))]
2595    #[inline]
2596    #[unstable(feature = "push_mut", issue = "135974")]
2597    #[track_caller]
2598    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2599    pub fn push_mut(&mut self, value: T) -> &mut T {
2600        // Inform codegen that the length does not change across grow_one().
2601        let len = self.len;
2602        // This will panic or abort if we would allocate > isize::MAX bytes
2603        // or if the length increment would overflow for zero-sized types.
2604        if len == self.buf.capacity() {
2605            self.buf.grow_one();
2606        }
2607        unsafe {
2608            let end = self.as_mut_ptr().add(len);
2609            ptr::write(end, value);
2610            self.len = len + 1;
2611            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2612            &mut *end
2613        }
2614    }
2615
2616    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2617    /// otherwise an error is returned with the element.
2618    ///
2619    /// Unlike [`push_mut`] this method will not reallocate when there's insufficient capacity.
2620    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2621    ///
2622    /// [`push_mut`]: Vec::push_mut
2623    /// [`reserve`]: Vec::reserve
2624    /// [`try_reserve`]: Vec::try_reserve
2625    ///
2626    /// # Time complexity
2627    ///
2628    /// Takes *O*(1) time.
2629    #[unstable(feature = "push_mut", issue = "135974")]
2630    // #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2631    #[inline]
2632    #[must_use = "if you don't need a reference to the value, use `Vec::push_within_capacity` instead"]
2633    pub fn push_mut_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2634        if self.len == self.buf.capacity() {
2635            return Err(value);
2636        }
2637        unsafe {
2638            let end = self.as_mut_ptr().add(self.len);
2639            ptr::write(end, value);
2640            self.len += 1;
2641            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2642            Ok(&mut *end)
2643        }
2644    }
2645
2646    /// Removes the last element from a vector and returns it, or [`None`] if it
2647    /// is empty.
2648    ///
2649    /// If you'd like to pop the first element, consider using
2650    /// [`VecDeque::pop_front`] instead.
2651    ///
2652    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2653    ///
2654    /// # Examples
2655    ///
2656    /// ```
2657    /// let mut vec = vec![1, 2, 3];
2658    /// assert_eq!(vec.pop(), Some(3));
2659    /// assert_eq!(vec, [1, 2]);
2660    /// ```
2661    ///
2662    /// # Time complexity
2663    ///
2664    /// Takes *O*(1) time.
2665    #[inline]
2666    #[stable(feature = "rust1", since = "1.0.0")]
2667    #[rustc_diagnostic_item = "vec_pop"]
2668    pub fn pop(&mut self) -> Option<T> {
2669        if self.len == 0 {
2670            None
2671        } else {
2672            unsafe {
2673                self.len -= 1;
2674                core::hint::assert_unchecked(self.len < self.capacity());
2675                Some(ptr::read(self.as_ptr().add(self.len())))
2676            }
2677        }
2678    }
2679
2680    /// Removes and returns the last element from a vector if the predicate
2681    /// returns `true`, or [`None`] if the predicate returns false or the vector
2682    /// is empty (the predicate will not be called in that case).
2683    ///
2684    /// # Examples
2685    ///
2686    /// ```
2687    /// let mut vec = vec![1, 2, 3, 4];
2688    /// let pred = |x: &mut i32| *x % 2 == 0;
2689    ///
2690    /// assert_eq!(vec.pop_if(pred), Some(4));
2691    /// assert_eq!(vec, [1, 2, 3]);
2692    /// assert_eq!(vec.pop_if(pred), None);
2693    /// ```
2694    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2695    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2696        let last = self.last_mut()?;
2697        if predicate(last) { self.pop() } else { None }
2698    }
2699
2700    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2701    ///
2702    /// # Panics
2703    ///
2704    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2705    ///
2706    /// # Examples
2707    ///
2708    /// ```
2709    /// let mut vec = vec![1, 2, 3];
2710    /// let mut vec2 = vec![4, 5, 6];
2711    /// vec.append(&mut vec2);
2712    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2713    /// assert_eq!(vec2, []);
2714    /// ```
2715    #[cfg(not(no_global_oom_handling))]
2716    #[inline]
2717    #[stable(feature = "append", since = "1.4.0")]
2718    #[track_caller]
2719    pub fn append(&mut self, other: &mut Self) {
2720        unsafe {
2721            self.append_elements(other.as_slice() as _);
2722            other.set_len(0);
2723        }
2724    }
2725
2726    /// Appends elements to `self` from other buffer.
2727    #[cfg(not(no_global_oom_handling))]
2728    #[inline]
2729    #[track_caller]
2730    unsafe fn append_elements(&mut self, other: *const [T]) {
2731        let count = other.len();
2732        self.reserve(count);
2733        let len = self.len();
2734        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2735        self.len += count;
2736    }
2737
2738    /// Removes the subslice indicated by the given range from the vector,
2739    /// returning a double-ended iterator over the removed subslice.
2740    ///
2741    /// If the iterator is dropped before being fully consumed,
2742    /// it drops the remaining removed elements.
2743    ///
2744    /// The returned iterator keeps a mutable borrow on the vector to optimize
2745    /// its implementation.
2746    ///
2747    /// # Panics
2748    ///
2749    /// Panics if the starting point is greater than the end point or if
2750    /// the end point is greater than the length of the vector.
2751    ///
2752    /// # Leaking
2753    ///
2754    /// If the returned iterator goes out of scope without being dropped (due to
2755    /// [`mem::forget`], for example), the vector may have lost and leaked
2756    /// elements arbitrarily, including elements outside the range.
2757    ///
2758    /// # Examples
2759    ///
2760    /// ```
2761    /// let mut v = vec![1, 2, 3];
2762    /// let u: Vec<_> = v.drain(1..).collect();
2763    /// assert_eq!(v, &[1]);
2764    /// assert_eq!(u, &[2, 3]);
2765    ///
2766    /// // A full range clears the vector, like `clear()` does
2767    /// v.drain(..);
2768    /// assert_eq!(v, &[]);
2769    /// ```
2770    #[stable(feature = "drain", since = "1.6.0")]
2771    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2772    where
2773        R: RangeBounds<usize>,
2774    {
2775        // Memory safety
2776        //
2777        // When the Drain is first created, it shortens the length of
2778        // the source vector to make sure no uninitialized or moved-from elements
2779        // are accessible at all if the Drain's destructor never gets to run.
2780        //
2781        // Drain will ptr::read out the values to remove.
2782        // When finished, remaining tail of the vec is copied back to cover
2783        // the hole, and the vector length is restored to the new length.
2784        //
2785        let len = self.len();
2786        let Range { start, end } = slice::range(range, ..len);
2787
2788        unsafe {
2789            // set self.vec length's to start, to be safe in case Drain is leaked
2790            self.set_len(start);
2791            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2792            Drain {
2793                tail_start: end,
2794                tail_len: len - end,
2795                iter: range_slice.iter(),
2796                vec: NonNull::from(self),
2797            }
2798        }
2799    }
2800
2801    /// Clears the vector, removing all values.
2802    ///
2803    /// Note that this method has no effect on the allocated capacity
2804    /// of the vector.
2805    ///
2806    /// # Examples
2807    ///
2808    /// ```
2809    /// let mut v = vec![1, 2, 3];
2810    ///
2811    /// v.clear();
2812    ///
2813    /// assert!(v.is_empty());
2814    /// ```
2815    #[inline]
2816    #[stable(feature = "rust1", since = "1.0.0")]
2817    pub fn clear(&mut self) {
2818        let elems: *mut [T] = self.as_mut_slice();
2819
2820        // SAFETY:
2821        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2822        // - Setting `self.len` before calling `drop_in_place` means that,
2823        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2824        //   do nothing (leaking the rest of the elements) instead of dropping
2825        //   some twice.
2826        unsafe {
2827            self.len = 0;
2828            ptr::drop_in_place(elems);
2829        }
2830    }
2831
2832    /// Returns the number of elements in the vector, also referred to
2833    /// as its 'length'.
2834    ///
2835    /// # Examples
2836    ///
2837    /// ```
2838    /// let a = vec![1, 2, 3];
2839    /// assert_eq!(a.len(), 3);
2840    /// ```
2841    #[inline]
2842    #[stable(feature = "rust1", since = "1.0.0")]
2843    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2844    #[rustc_confusables("length", "size")]
2845    pub const fn len(&self) -> usize {
2846        let len = self.len;
2847
2848        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2849        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2850        // matches the definition of `T::MAX_SLICE_LEN`.
2851        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2852
2853        len
2854    }
2855
2856    /// Returns `true` if the vector contains no elements.
2857    ///
2858    /// # Examples
2859    ///
2860    /// ```
2861    /// let mut v = Vec::new();
2862    /// assert!(v.is_empty());
2863    ///
2864    /// v.push(1);
2865    /// assert!(!v.is_empty());
2866    /// ```
2867    #[stable(feature = "rust1", since = "1.0.0")]
2868    #[rustc_diagnostic_item = "vec_is_empty"]
2869    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2870    pub const fn is_empty(&self) -> bool {
2871        self.len() == 0
2872    }
2873
2874    /// Splits the collection into two at the given index.
2875    ///
2876    /// Returns a newly allocated vector containing the elements in the range
2877    /// `[at, len)`. After the call, the original vector will be left containing
2878    /// the elements `[0, at)` with its previous capacity unchanged.
2879    ///
2880    /// - If you want to take ownership of the entire contents and capacity of
2881    ///   the vector, see [`mem::take`] or [`mem::replace`].
2882    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2883    /// - If you want to take ownership of an arbitrary subslice, or you don't
2884    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2885    ///
2886    /// # Panics
2887    ///
2888    /// Panics if `at > len`.
2889    ///
2890    /// # Examples
2891    ///
2892    /// ```
2893    /// let mut vec = vec!['a', 'b', 'c'];
2894    /// let vec2 = vec.split_off(1);
2895    /// assert_eq!(vec, ['a']);
2896    /// assert_eq!(vec2, ['b', 'c']);
2897    /// ```
2898    #[cfg(not(no_global_oom_handling))]
2899    #[inline]
2900    #[must_use = "use `.truncate()` if you don't need the other half"]
2901    #[stable(feature = "split_off", since = "1.4.0")]
2902    #[track_caller]
2903    pub fn split_off(&mut self, at: usize) -> Self
2904    where
2905        A: Clone,
2906    {
2907        #[cold]
2908        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2909        #[track_caller]
2910        #[optimize(size)]
2911        fn assert_failed(at: usize, len: usize) -> ! {
2912            panic!("`at` split index (is {at}) should be <= len (is {len})");
2913        }
2914
2915        if at > self.len() {
2916            assert_failed(at, self.len());
2917        }
2918
2919        let other_len = self.len - at;
2920        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2921
2922        // Unsafely `set_len` and copy items to `other`.
2923        unsafe {
2924            self.set_len(at);
2925            other.set_len(other_len);
2926
2927            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2928        }
2929        other
2930    }
2931
2932    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2933    ///
2934    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2935    /// difference, with each additional slot filled with the result of
2936    /// calling the closure `f`. The return values from `f` will end up
2937    /// in the `Vec` in the order they have been generated.
2938    ///
2939    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2940    ///
2941    /// This method uses a closure to create new values on every push. If
2942    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2943    /// want to use the [`Default`] trait to generate values, you can
2944    /// pass [`Default::default`] as the second argument.
2945    ///
2946    /// # Panics
2947    ///
2948    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2949    ///
2950    /// # Examples
2951    ///
2952    /// ```
2953    /// let mut vec = vec![1, 2, 3];
2954    /// vec.resize_with(5, Default::default);
2955    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2956    ///
2957    /// let mut vec = vec![];
2958    /// let mut p = 1;
2959    /// vec.resize_with(4, || { p *= 2; p });
2960    /// assert_eq!(vec, [2, 4, 8, 16]);
2961    /// ```
2962    #[cfg(not(no_global_oom_handling))]
2963    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2964    #[track_caller]
2965    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2966    where
2967        F: FnMut() -> T,
2968    {
2969        let len = self.len();
2970        if new_len > len {
2971            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2972        } else {
2973            self.truncate(new_len);
2974        }
2975    }
2976
2977    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2978    /// `&'a mut [T]`.
2979    ///
2980    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
2981    /// has only static references, or none at all, then this may be chosen to be
2982    /// `'static`.
2983    ///
2984    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2985    /// so the leaked allocation may include unused capacity that is not part
2986    /// of the returned slice.
2987    ///
2988    /// This function is mainly useful for data that lives for the remainder of
2989    /// the program's life. Dropping the returned reference will cause a memory
2990    /// leak.
2991    ///
2992    /// # Examples
2993    ///
2994    /// Simple usage:
2995    ///
2996    /// ```
2997    /// let x = vec![1, 2, 3];
2998    /// let static_ref: &'static mut [usize] = x.leak();
2999    /// static_ref[0] += 1;
3000    /// assert_eq!(static_ref, &[2, 2, 3]);
3001    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3002    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3003    /// # drop(unsafe { Box::from_raw(static_ref) });
3004    /// ```
3005    #[stable(feature = "vec_leak", since = "1.47.0")]
3006    #[inline]
3007    pub fn leak<'a>(self) -> &'a mut [T]
3008    where
3009        A: 'a,
3010    {
3011        let mut me = ManuallyDrop::new(self);
3012        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3013    }
3014
3015    /// Returns the remaining spare capacity of the vector as a slice of
3016    /// `MaybeUninit<T>`.
3017    ///
3018    /// The returned slice can be used to fill the vector with data (e.g. by
3019    /// reading from a file) before marking the data as initialized using the
3020    /// [`set_len`] method.
3021    ///
3022    /// [`set_len`]: Vec::set_len
3023    ///
3024    /// # Examples
3025    ///
3026    /// ```
3027    /// // Allocate vector big enough for 10 elements.
3028    /// let mut v = Vec::with_capacity(10);
3029    ///
3030    /// // Fill in the first 3 elements.
3031    /// let uninit = v.spare_capacity_mut();
3032    /// uninit[0].write(0);
3033    /// uninit[1].write(1);
3034    /// uninit[2].write(2);
3035    ///
3036    /// // Mark the first 3 elements of the vector as being initialized.
3037    /// unsafe {
3038    ///     v.set_len(3);
3039    /// }
3040    ///
3041    /// assert_eq!(&v, &[0, 1, 2]);
3042    /// ```
3043    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3044    #[inline]
3045    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3046        // Note:
3047        // This method is not implemented in terms of `split_at_spare_mut`,
3048        // to prevent invalidation of pointers to the buffer.
3049        unsafe {
3050            slice::from_raw_parts_mut(
3051                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3052                self.buf.capacity() - self.len,
3053            )
3054        }
3055    }
3056
3057    /// Returns vector content as a slice of `T`, along with the remaining spare
3058    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3059    ///
3060    /// The returned spare capacity slice can be used to fill the vector with data
3061    /// (e.g. by reading from a file) before marking the data as initialized using
3062    /// the [`set_len`] method.
3063    ///
3064    /// [`set_len`]: Vec::set_len
3065    ///
3066    /// Note that this is a low-level API, which should be used with care for
3067    /// optimization purposes. If you need to append data to a `Vec`
3068    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3069    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3070    /// [`resize_with`], depending on your exact needs.
3071    ///
3072    /// [`push`]: Vec::push
3073    /// [`extend`]: Vec::extend
3074    /// [`extend_from_slice`]: Vec::extend_from_slice
3075    /// [`extend_from_within`]: Vec::extend_from_within
3076    /// [`insert`]: Vec::insert
3077    /// [`append`]: Vec::append
3078    /// [`resize`]: Vec::resize
3079    /// [`resize_with`]: Vec::resize_with
3080    ///
3081    /// # Examples
3082    ///
3083    /// ```
3084    /// #![feature(vec_split_at_spare)]
3085    ///
3086    /// let mut v = vec![1, 1, 2];
3087    ///
3088    /// // Reserve additional space big enough for 10 elements.
3089    /// v.reserve(10);
3090    ///
3091    /// let (init, uninit) = v.split_at_spare_mut();
3092    /// let sum = init.iter().copied().sum::<u32>();
3093    ///
3094    /// // Fill in the next 4 elements.
3095    /// uninit[0].write(sum);
3096    /// uninit[1].write(sum * 2);
3097    /// uninit[2].write(sum * 3);
3098    /// uninit[3].write(sum * 4);
3099    ///
3100    /// // Mark the 4 elements of the vector as being initialized.
3101    /// unsafe {
3102    ///     let len = v.len();
3103    ///     v.set_len(len + 4);
3104    /// }
3105    ///
3106    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3107    /// ```
3108    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3109    #[inline]
3110    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3111        // SAFETY:
3112        // - len is ignored and so never changed
3113        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3114        (init, spare)
3115    }
3116
3117    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3118    ///
3119    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3120    unsafe fn split_at_spare_mut_with_len(
3121        &mut self,
3122    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3123        let ptr = self.as_mut_ptr();
3124        // SAFETY:
3125        // - `ptr` is guaranteed to be valid for `self.len` elements
3126        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3127        // uninitialized
3128        let spare_ptr = unsafe { ptr.add(self.len) };
3129        let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
3130        let spare_len = self.buf.capacity() - self.len;
3131
3132        // SAFETY:
3133        // - `ptr` is guaranteed to be valid for `self.len` elements
3134        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3135        unsafe {
3136            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3137            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3138
3139            (initialized, spare, &mut self.len)
3140        }
3141    }
3142
3143    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3144    /// elements in the remainder. `N` must be greater than zero.
3145    ///
3146    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3147    /// nearest multiple with a reallocation or deallocation.
3148    ///
3149    /// This function can be used to reverse [`Vec::into_flattened`].
3150    ///
3151    /// # Examples
3152    ///
3153    /// ```
3154    /// #![feature(vec_into_chunks)]
3155    ///
3156    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3157    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3158    ///
3159    /// let vec = vec![0, 1, 2, 3];
3160    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3161    /// assert!(chunks.is_empty());
3162    ///
3163    /// let flat = vec![0; 8 * 8 * 8];
3164    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3165    /// assert_eq!(reshaped.len(), 1);
3166    /// ```
3167    #[cfg(not(no_global_oom_handling))]
3168    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3169    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3170        const {
3171            assert!(N != 0, "chunk size must be greater than zero");
3172        }
3173
3174        let (len, cap) = (self.len(), self.capacity());
3175
3176        let len_remainder = len % N;
3177        if len_remainder != 0 {
3178            self.truncate(len - len_remainder);
3179        }
3180
3181        let cap_remainder = cap % N;
3182        if !T::IS_ZST && cap_remainder != 0 {
3183            self.buf.shrink_to_fit(cap - cap_remainder);
3184        }
3185
3186        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3187
3188        // SAFETY:
3189        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3190        // - `[T; N]` has the same alignment as `T`
3191        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3192        // - `len / N <= cap / N` because `len <= cap`
3193        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3194        // - `cap / N` fits the size of the allocated memory after shrinking
3195        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3196    }
3197}
3198
3199impl<T: Clone, A: Allocator> Vec<T, A> {
3200    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3201    ///
3202    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3203    /// difference, with each additional slot filled with `value`.
3204    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3205    ///
3206    /// This method requires `T` to implement [`Clone`],
3207    /// in order to be able to clone the passed value.
3208    /// If you need more flexibility (or want to rely on [`Default`] instead of
3209    /// [`Clone`]), use [`Vec::resize_with`].
3210    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3211    ///
3212    /// # Panics
3213    ///
3214    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3215    ///
3216    /// # Examples
3217    ///
3218    /// ```
3219    /// let mut vec = vec!["hello"];
3220    /// vec.resize(3, "world");
3221    /// assert_eq!(vec, ["hello", "world", "world"]);
3222    ///
3223    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3224    /// vec.resize(2, '_');
3225    /// assert_eq!(vec, ['a', 'b']);
3226    /// ```
3227    #[cfg(not(no_global_oom_handling))]
3228    #[stable(feature = "vec_resize", since = "1.5.0")]
3229    #[track_caller]
3230    pub fn resize(&mut self, new_len: usize, value: T) {
3231        let len = self.len();
3232
3233        if new_len > len {
3234            self.extend_with(new_len - len, value)
3235        } else {
3236            self.truncate(new_len);
3237        }
3238    }
3239
3240    /// Clones and appends all elements in a slice to the `Vec`.
3241    ///
3242    /// Iterates over the slice `other`, clones each element, and then appends
3243    /// it to this `Vec`. The `other` slice is traversed in-order.
3244    ///
3245    /// Note that this function is the same as [`extend`],
3246    /// except that it also works with slice elements that are Clone but not Copy.
3247    /// If Rust gets specialization this function may be deprecated.
3248    ///
3249    /// # Examples
3250    ///
3251    /// ```
3252    /// let mut vec = vec![1];
3253    /// vec.extend_from_slice(&[2, 3, 4]);
3254    /// assert_eq!(vec, [1, 2, 3, 4]);
3255    /// ```
3256    ///
3257    /// [`extend`]: Vec::extend
3258    #[cfg(not(no_global_oom_handling))]
3259    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3260    #[track_caller]
3261    pub fn extend_from_slice(&mut self, other: &[T]) {
3262        self.spec_extend(other.iter())
3263    }
3264
3265    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3266    ///
3267    /// `src` must be a range that can form a valid subslice of the `Vec`.
3268    ///
3269    /// # Panics
3270    ///
3271    /// Panics if starting index is greater than the end index
3272    /// or if the index is greater than the length of the vector.
3273    ///
3274    /// # Examples
3275    ///
3276    /// ```
3277    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3278    /// characters.extend_from_within(2..);
3279    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3280    ///
3281    /// let mut numbers = vec![0, 1, 2, 3, 4];
3282    /// numbers.extend_from_within(..2);
3283    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3284    ///
3285    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3286    /// strings.extend_from_within(1..=2);
3287    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3288    /// ```
3289    #[cfg(not(no_global_oom_handling))]
3290    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3291    #[track_caller]
3292    pub fn extend_from_within<R>(&mut self, src: R)
3293    where
3294        R: RangeBounds<usize>,
3295    {
3296        let range = slice::range(src, ..self.len());
3297        self.reserve(range.len());
3298
3299        // SAFETY:
3300        // - `slice::range` guarantees that the given range is valid for indexing self
3301        unsafe {
3302            self.spec_extend_from_within(range);
3303        }
3304    }
3305}
3306
3307impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3308    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3309    ///
3310    /// # Panics
3311    ///
3312    /// Panics if the length of the resulting vector would overflow a `usize`.
3313    ///
3314    /// This is only possible when flattening a vector of arrays of zero-sized
3315    /// types, and thus tends to be irrelevant in practice. If
3316    /// `size_of::<T>() > 0`, this will never panic.
3317    ///
3318    /// # Examples
3319    ///
3320    /// ```
3321    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3322    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3323    ///
3324    /// let mut flattened = vec.into_flattened();
3325    /// assert_eq!(flattened.pop(), Some(6));
3326    /// ```
3327    #[stable(feature = "slice_flatten", since = "1.80.0")]
3328    pub fn into_flattened(self) -> Vec<T, A> {
3329        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3330        let (new_len, new_cap) = if T::IS_ZST {
3331            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3332        } else {
3333            // SAFETY:
3334            // - `cap * N` cannot overflow because the allocation is already in
3335            // the address space.
3336            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3337            // valid elements in the allocation.
3338            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3339        };
3340        // SAFETY:
3341        // - `ptr` was allocated by `self`
3342        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3343        // - `new_cap` refers to the same sized allocation as `cap` because
3344        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3345        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3346        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3347    }
3348}
3349
3350impl<T: Clone, A: Allocator> Vec<T, A> {
3351    #[cfg(not(no_global_oom_handling))]
3352    #[track_caller]
3353    /// Extend the vector by `n` clones of value.
3354    fn extend_with(&mut self, n: usize, value: T) {
3355        self.reserve(n);
3356
3357        unsafe {
3358            let mut ptr = self.as_mut_ptr().add(self.len());
3359            // Use SetLenOnDrop to work around bug where compiler
3360            // might not realize the store through `ptr` through self.set_len()
3361            // don't alias.
3362            let mut local_len = SetLenOnDrop::new(&mut self.len);
3363
3364            // Write all elements except the last one
3365            for _ in 1..n {
3366                ptr::write(ptr, value.clone());
3367                ptr = ptr.add(1);
3368                // Increment the length in every step in case clone() panics
3369                local_len.increment_len(1);
3370            }
3371
3372            if n > 0 {
3373                // We can write the last element directly without cloning needlessly
3374                ptr::write(ptr, value);
3375                local_len.increment_len(1);
3376            }
3377
3378            // len set by scope guard
3379        }
3380    }
3381}
3382
3383impl<T: PartialEq, A: Allocator> Vec<T, A> {
3384    /// Removes consecutive repeated elements in the vector according to the
3385    /// [`PartialEq`] trait implementation.
3386    ///
3387    /// If the vector is sorted, this removes all duplicates.
3388    ///
3389    /// # Examples
3390    ///
3391    /// ```
3392    /// let mut vec = vec![1, 2, 2, 3, 2];
3393    ///
3394    /// vec.dedup();
3395    ///
3396    /// assert_eq!(vec, [1, 2, 3, 2]);
3397    /// ```
3398    #[stable(feature = "rust1", since = "1.0.0")]
3399    #[inline]
3400    pub fn dedup(&mut self) {
3401        self.dedup_by(|a, b| a == b)
3402    }
3403}
3404
3405////////////////////////////////////////////////////////////////////////////////
3406// Internal methods and functions
3407////////////////////////////////////////////////////////////////////////////////
3408
3409#[doc(hidden)]
3410#[cfg(not(no_global_oom_handling))]
3411#[stable(feature = "rust1", since = "1.0.0")]
3412#[rustc_diagnostic_item = "vec_from_elem"]
3413#[track_caller]
3414pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3415    <T as SpecFromElem>::from_elem(elem, n, Global)
3416}
3417
3418#[doc(hidden)]
3419#[cfg(not(no_global_oom_handling))]
3420#[unstable(feature = "allocator_api", issue = "32838")]
3421#[track_caller]
3422pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3423    <T as SpecFromElem>::from_elem(elem, n, alloc)
3424}
3425
3426#[cfg(not(no_global_oom_handling))]
3427trait ExtendFromWithinSpec {
3428    /// # Safety
3429    ///
3430    /// - `src` needs to be valid index
3431    /// - `self.capacity() - self.len()` must be `>= src.len()`
3432    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3433}
3434
3435#[cfg(not(no_global_oom_handling))]
3436impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3437    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3438        // SAFETY:
3439        // - len is increased only after initializing elements
3440        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3441
3442        // SAFETY:
3443        // - caller guarantees that src is a valid index
3444        let to_clone = unsafe { this.get_unchecked(src) };
3445
3446        iter::zip(to_clone, spare)
3447            .map(|(src, dst)| dst.write(src.clone()))
3448            // Note:
3449            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3450            // - len is increased after each element to prevent leaks (see issue #82533)
3451            .for_each(|_| *len += 1);
3452    }
3453}
3454
3455#[cfg(not(no_global_oom_handling))]
3456impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3457    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3458        let count = src.len();
3459        {
3460            let (init, spare) = self.split_at_spare_mut();
3461
3462            // SAFETY:
3463            // - caller guarantees that `src` is a valid index
3464            let source = unsafe { init.get_unchecked(src) };
3465
3466            // SAFETY:
3467            // - Both pointers are created from unique slice references (`&mut [_]`)
3468            //   so they are valid and do not overlap.
3469            // - Elements are :Copy so it's OK to copy them, without doing
3470            //   anything with the original values
3471            // - `count` is equal to the len of `source`, so source is valid for
3472            //   `count` reads
3473            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3474            //   is valid for `count` writes
3475            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3476        }
3477
3478        // SAFETY:
3479        // - The elements were just initialized by `copy_nonoverlapping`
3480        self.len += count;
3481    }
3482}
3483
3484////////////////////////////////////////////////////////////////////////////////
3485// Common trait implementations for Vec
3486////////////////////////////////////////////////////////////////////////////////
3487
3488#[stable(feature = "rust1", since = "1.0.0")]
3489impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3490    type Target = [T];
3491
3492    #[inline]
3493    fn deref(&self) -> &[T] {
3494        self.as_slice()
3495    }
3496}
3497
3498#[stable(feature = "rust1", since = "1.0.0")]
3499impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3500    #[inline]
3501    fn deref_mut(&mut self) -> &mut [T] {
3502        self.as_mut_slice()
3503    }
3504}
3505
3506#[unstable(feature = "deref_pure_trait", issue = "87121")]
3507unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3508
3509#[cfg(not(no_global_oom_handling))]
3510#[stable(feature = "rust1", since = "1.0.0")]
3511impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3512    #[track_caller]
3513    fn clone(&self) -> Self {
3514        let alloc = self.allocator().clone();
3515        <[T]>::to_vec_in(&**self, alloc)
3516    }
3517
3518    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3519    ///
3520    /// This method is preferred over simply assigning `source.clone()` to `self`,
3521    /// as it avoids reallocation if possible. Additionally, if the element type
3522    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3523    /// elements as well.
3524    ///
3525    /// # Examples
3526    ///
3527    /// ```
3528    /// let x = vec![5, 6, 7];
3529    /// let mut y = vec![8, 9, 10];
3530    /// let yp: *const i32 = y.as_ptr();
3531    ///
3532    /// y.clone_from(&x);
3533    ///
3534    /// // The value is the same
3535    /// assert_eq!(x, y);
3536    ///
3537    /// // And no reallocation occurred
3538    /// assert_eq!(yp, y.as_ptr());
3539    /// ```
3540    #[track_caller]
3541    fn clone_from(&mut self, source: &Self) {
3542        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3543    }
3544}
3545
3546/// The hash of a vector is the same as that of the corresponding slice,
3547/// as required by the `core::borrow::Borrow` implementation.
3548///
3549/// ```
3550/// use std::hash::BuildHasher;
3551///
3552/// let b = std::hash::RandomState::new();
3553/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3554/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3555/// assert_eq!(b.hash_one(v), b.hash_one(s));
3556/// ```
3557#[stable(feature = "rust1", since = "1.0.0")]
3558impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3559    #[inline]
3560    fn hash<H: Hasher>(&self, state: &mut H) {
3561        Hash::hash(&**self, state)
3562    }
3563}
3564
3565#[stable(feature = "rust1", since = "1.0.0")]
3566impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3567    type Output = I::Output;
3568
3569    #[inline]
3570    fn index(&self, index: I) -> &Self::Output {
3571        Index::index(&**self, index)
3572    }
3573}
3574
3575#[stable(feature = "rust1", since = "1.0.0")]
3576impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3577    #[inline]
3578    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3579        IndexMut::index_mut(&mut **self, index)
3580    }
3581}
3582
3583/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3584///
3585/// # Allocation behavior
3586///
3587/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3588/// That also applies to this trait impl.
3589///
3590/// **Note:** This section covers implementation details and is therefore exempt from
3591/// stability guarantees.
3592///
3593/// Vec may use any or none of the following strategies,
3594/// depending on the supplied iterator:
3595///
3596/// * preallocate based on [`Iterator::size_hint()`]
3597///   * and panic if the number of items is outside the provided lower/upper bounds
3598/// * use an amortized growth strategy similar to `pushing` one item at a time
3599/// * perform the iteration in-place on the original allocation backing the iterator
3600///
3601/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3602/// consumption and improves cache locality. But when big, short-lived allocations are created,
3603/// only a small fraction of their items get collected, no further use is made of the spare capacity
3604/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3605/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3606/// footprint.
3607///
3608/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3609/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3610/// the size of the long-lived struct.
3611///
3612/// [owned slice]: Box
3613///
3614/// ```rust
3615/// # use std::sync::Mutex;
3616/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3617///
3618/// for i in 0..10 {
3619///     let big_temporary: Vec<u16> = (0..1024).collect();
3620///     // discard most items
3621///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3622///     // without this a lot of unused capacity might be moved into the global
3623///     result.shrink_to_fit();
3624///     LONG_LIVED.lock().unwrap().push(result);
3625/// }
3626/// ```
3627#[cfg(not(no_global_oom_handling))]
3628#[stable(feature = "rust1", since = "1.0.0")]
3629impl<T> FromIterator<T> for Vec<T> {
3630    #[inline]
3631    #[track_caller]
3632    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3633        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3634    }
3635}
3636
3637#[stable(feature = "rust1", since = "1.0.0")]
3638impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3639    type Item = T;
3640    type IntoIter = IntoIter<T, A>;
3641
3642    /// Creates a consuming iterator, that is, one that moves each value out of
3643    /// the vector (from start to end). The vector cannot be used after calling
3644    /// this.
3645    ///
3646    /// # Examples
3647    ///
3648    /// ```
3649    /// let v = vec!["a".to_string(), "b".to_string()];
3650    /// let mut v_iter = v.into_iter();
3651    ///
3652    /// let first_element: Option<String> = v_iter.next();
3653    ///
3654    /// assert_eq!(first_element, Some("a".to_string()));
3655    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3656    /// assert_eq!(v_iter.next(), None);
3657    /// ```
3658    #[inline]
3659    fn into_iter(self) -> Self::IntoIter {
3660        unsafe {
3661            let me = ManuallyDrop::new(self);
3662            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3663            let buf = me.buf.non_null();
3664            let begin = buf.as_ptr();
3665            let end = if T::IS_ZST {
3666                begin.wrapping_byte_add(me.len())
3667            } else {
3668                begin.add(me.len()) as *const T
3669            };
3670            let cap = me.buf.capacity();
3671            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3672        }
3673    }
3674}
3675
3676#[stable(feature = "rust1", since = "1.0.0")]
3677impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3678    type Item = &'a T;
3679    type IntoIter = slice::Iter<'a, T>;
3680
3681    fn into_iter(self) -> Self::IntoIter {
3682        self.iter()
3683    }
3684}
3685
3686#[stable(feature = "rust1", since = "1.0.0")]
3687impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3688    type Item = &'a mut T;
3689    type IntoIter = slice::IterMut<'a, T>;
3690
3691    fn into_iter(self) -> Self::IntoIter {
3692        self.iter_mut()
3693    }
3694}
3695
3696#[cfg(not(no_global_oom_handling))]
3697#[stable(feature = "rust1", since = "1.0.0")]
3698impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3699    #[inline]
3700    #[track_caller]
3701    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3702        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3703    }
3704
3705    #[inline]
3706    #[track_caller]
3707    fn extend_one(&mut self, item: T) {
3708        self.push(item);
3709    }
3710
3711    #[inline]
3712    #[track_caller]
3713    fn extend_reserve(&mut self, additional: usize) {
3714        self.reserve(additional);
3715    }
3716
3717    #[inline]
3718    unsafe fn extend_one_unchecked(&mut self, item: T) {
3719        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3720        unsafe {
3721            let len = self.len();
3722            ptr::write(self.as_mut_ptr().add(len), item);
3723            self.set_len(len + 1);
3724        }
3725    }
3726}
3727
3728impl<T, A: Allocator> Vec<T, A> {
3729    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3730    // they have no further optimizations to apply
3731    #[cfg(not(no_global_oom_handling))]
3732    #[track_caller]
3733    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3734        // This is the case for a general iterator.
3735        //
3736        // This function should be the moral equivalent of:
3737        //
3738        //      for item in iterator {
3739        //          self.push(item);
3740        //      }
3741        while let Some(element) = iterator.next() {
3742            let len = self.len();
3743            if len == self.capacity() {
3744                let (lower, _) = iterator.size_hint();
3745                self.reserve(lower.saturating_add(1));
3746            }
3747            unsafe {
3748                ptr::write(self.as_mut_ptr().add(len), element);
3749                // Since next() executes user code which can panic we have to bump the length
3750                // after each step.
3751                // NB can't overflow since we would have had to alloc the address space
3752                self.set_len(len + 1);
3753            }
3754        }
3755    }
3756
3757    // specific extend for `TrustedLen` iterators, called both by the specializations
3758    // and internal places where resolving specialization makes compilation slower
3759    #[cfg(not(no_global_oom_handling))]
3760    #[track_caller]
3761    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3762        let (low, high) = iterator.size_hint();
3763        if let Some(additional) = high {
3764            debug_assert_eq!(
3765                low,
3766                additional,
3767                "TrustedLen iterator's size hint is not exact: {:?}",
3768                (low, high)
3769            );
3770            self.reserve(additional);
3771            unsafe {
3772                let ptr = self.as_mut_ptr();
3773                let mut local_len = SetLenOnDrop::new(&mut self.len);
3774                iterator.for_each(move |element| {
3775                    ptr::write(ptr.add(local_len.current_len()), element);
3776                    // Since the loop executes user code which can panic we have to update
3777                    // the length every step to correctly drop what we've written.
3778                    // NB can't overflow since we would have had to alloc the address space
3779                    local_len.increment_len(1);
3780                });
3781            }
3782        } else {
3783            // Per TrustedLen contract a `None` upper bound means that the iterator length
3784            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3785            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3786            // This avoids additional codegen for a fallback code path which would eventually
3787            // panic anyway.
3788            panic!("capacity overflow");
3789        }
3790    }
3791
3792    /// Creates a splicing iterator that replaces the specified range in the vector
3793    /// with the given `replace_with` iterator and yields the removed items.
3794    /// `replace_with` does not need to be the same length as `range`.
3795    ///
3796    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3797    ///
3798    /// It is unspecified how many elements are removed from the vector
3799    /// if the `Splice` value is leaked.
3800    ///
3801    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3802    ///
3803    /// This is optimal if:
3804    ///
3805    /// * The tail (elements in the vector after `range`) is empty,
3806    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3807    /// * or the lower bound of its `size_hint()` is exact.
3808    ///
3809    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3810    ///
3811    /// # Panics
3812    ///
3813    /// Panics if the starting point is greater than the end point or if
3814    /// the end point is greater than the length of the vector.
3815    ///
3816    /// # Examples
3817    ///
3818    /// ```
3819    /// let mut v = vec![1, 2, 3, 4];
3820    /// let new = [7, 8, 9];
3821    /// let u: Vec<_> = v.splice(1..3, new).collect();
3822    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3823    /// assert_eq!(u, [2, 3]);
3824    /// ```
3825    ///
3826    /// Using `splice` to insert new items into a vector efficiently at a specific position
3827    /// indicated by an empty range:
3828    ///
3829    /// ```
3830    /// let mut v = vec![1, 5];
3831    /// let new = [2, 3, 4];
3832    /// v.splice(1..1, new);
3833    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3834    /// ```
3835    #[cfg(not(no_global_oom_handling))]
3836    #[inline]
3837    #[stable(feature = "vec_splice", since = "1.21.0")]
3838    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3839    where
3840        R: RangeBounds<usize>,
3841        I: IntoIterator<Item = T>,
3842    {
3843        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3844    }
3845
3846    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3847    ///
3848    /// If the closure returns `true`, the element is removed from the vector
3849    /// and yielded. If the closure returns `false`, or panics, the element
3850    /// remains in the vector and will not be yielded.
3851    ///
3852    /// Only elements that fall in the provided range are considered for extraction, but any elements
3853    /// after the range will still have to be moved if any element has been extracted.
3854    ///
3855    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3856    /// or the iteration short-circuits, then the remaining elements will be retained.
3857    /// Use [`retain_mut`] with a negated predicate if you do not need the returned iterator.
3858    ///
3859    /// [`retain_mut`]: Vec::retain_mut
3860    ///
3861    /// Using this method is equivalent to the following code:
3862    ///
3863    /// ```
3864    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3865    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3866    /// # let mut vec2 = vec.clone();
3867    /// # let range = 1..5;
3868    /// let mut i = range.start;
3869    /// let end_items = vec.len() - range.end;
3870    /// # let mut extracted = vec![];
3871    ///
3872    /// while i < vec.len() - end_items {
3873    ///     if some_predicate(&mut vec[i]) {
3874    ///         let val = vec.remove(i);
3875    ///         // your code here
3876    /// #         extracted.push(val);
3877    ///     } else {
3878    ///         i += 1;
3879    ///     }
3880    /// }
3881    ///
3882    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3883    /// # assert_eq!(vec, vec2);
3884    /// # assert_eq!(extracted, extracted2);
3885    /// ```
3886    ///
3887    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3888    /// because it can backshift the elements of the array in bulk.
3889    ///
3890    /// The iterator also lets you mutate the value of each element in the
3891    /// closure, regardless of whether you choose to keep or remove it.
3892    ///
3893    /// # Panics
3894    ///
3895    /// If `range` is out of bounds.
3896    ///
3897    /// # Examples
3898    ///
3899    /// Splitting a vector into even and odd values, reusing the original vector:
3900    ///
3901    /// ```
3902    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3903    ///
3904    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3905    /// let odds = numbers;
3906    ///
3907    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3908    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3909    /// ```
3910    ///
3911    /// Using the range argument to only process a part of the vector:
3912    ///
3913    /// ```
3914    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3915    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3916    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3917    /// assert_eq!(ones.len(), 3);
3918    /// ```
3919    #[stable(feature = "extract_if", since = "1.87.0")]
3920    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3921    where
3922        F: FnMut(&mut T) -> bool,
3923        R: RangeBounds<usize>,
3924    {
3925        ExtractIf::new(self, filter, range)
3926    }
3927}
3928
3929/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3930///
3931/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3932/// append the entire slice at once.
3933///
3934/// [`copy_from_slice`]: slice::copy_from_slice
3935#[cfg(not(no_global_oom_handling))]
3936#[stable(feature = "extend_ref", since = "1.2.0")]
3937impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3938    #[track_caller]
3939    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3940        self.spec_extend(iter.into_iter())
3941    }
3942
3943    #[inline]
3944    #[track_caller]
3945    fn extend_one(&mut self, &item: &'a T) {
3946        self.push(item);
3947    }
3948
3949    #[inline]
3950    #[track_caller]
3951    fn extend_reserve(&mut self, additional: usize) {
3952        self.reserve(additional);
3953    }
3954
3955    #[inline]
3956    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
3957        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3958        unsafe {
3959            let len = self.len();
3960            ptr::write(self.as_mut_ptr().add(len), item);
3961            self.set_len(len + 1);
3962        }
3963    }
3964}
3965
3966/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3967#[stable(feature = "rust1", since = "1.0.0")]
3968impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3969where
3970    T: PartialOrd,
3971    A1: Allocator,
3972    A2: Allocator,
3973{
3974    #[inline]
3975    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3976        PartialOrd::partial_cmp(&**self, &**other)
3977    }
3978}
3979
3980#[stable(feature = "rust1", since = "1.0.0")]
3981impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3982
3983/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3984#[stable(feature = "rust1", since = "1.0.0")]
3985impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3986    #[inline]
3987    fn cmp(&self, other: &Self) -> Ordering {
3988        Ord::cmp(&**self, &**other)
3989    }
3990}
3991
3992#[stable(feature = "rust1", since = "1.0.0")]
3993unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3994    fn drop(&mut self) {
3995        unsafe {
3996            // use drop for [T]
3997            // use a raw slice to refer to the elements of the vector as weakest necessary type;
3998            // could avoid questions of validity in certain cases
3999            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4000        }
4001        // RawVec handles deallocation
4002    }
4003}
4004
4005#[stable(feature = "rust1", since = "1.0.0")]
4006#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4007impl<T> const Default for Vec<T> {
4008    /// Creates an empty `Vec<T>`.
4009    ///
4010    /// The vector will not allocate until elements are pushed onto it.
4011    fn default() -> Vec<T> {
4012        Vec::new()
4013    }
4014}
4015
4016#[stable(feature = "rust1", since = "1.0.0")]
4017impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4018    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4019        fmt::Debug::fmt(&**self, f)
4020    }
4021}
4022
4023#[stable(feature = "rust1", since = "1.0.0")]
4024impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4025    fn as_ref(&self) -> &Vec<T, A> {
4026        self
4027    }
4028}
4029
4030#[stable(feature = "vec_as_mut", since = "1.5.0")]
4031impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4032    fn as_mut(&mut self) -> &mut Vec<T, A> {
4033        self
4034    }
4035}
4036
4037#[stable(feature = "rust1", since = "1.0.0")]
4038impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4039    fn as_ref(&self) -> &[T] {
4040        self
4041    }
4042}
4043
4044#[stable(feature = "vec_as_mut", since = "1.5.0")]
4045impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4046    fn as_mut(&mut self) -> &mut [T] {
4047        self
4048    }
4049}
4050
4051#[cfg(not(no_global_oom_handling))]
4052#[stable(feature = "rust1", since = "1.0.0")]
4053impl<T: Clone> From<&[T]> for Vec<T> {
4054    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4055    ///
4056    /// # Examples
4057    ///
4058    /// ```
4059    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4060    /// ```
4061    #[track_caller]
4062    fn from(s: &[T]) -> Vec<T> {
4063        s.to_vec()
4064    }
4065}
4066
4067#[cfg(not(no_global_oom_handling))]
4068#[stable(feature = "vec_from_mut", since = "1.19.0")]
4069impl<T: Clone> From<&mut [T]> for Vec<T> {
4070    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4071    ///
4072    /// # Examples
4073    ///
4074    /// ```
4075    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4076    /// ```
4077    #[track_caller]
4078    fn from(s: &mut [T]) -> Vec<T> {
4079        s.to_vec()
4080    }
4081}
4082
4083#[cfg(not(no_global_oom_handling))]
4084#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4085impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4086    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4087    ///
4088    /// # Examples
4089    ///
4090    /// ```
4091    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4092    /// ```
4093    #[track_caller]
4094    fn from(s: &[T; N]) -> Vec<T> {
4095        Self::from(s.as_slice())
4096    }
4097}
4098
4099#[cfg(not(no_global_oom_handling))]
4100#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4101impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4102    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4103    ///
4104    /// # Examples
4105    ///
4106    /// ```
4107    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4108    /// ```
4109    #[track_caller]
4110    fn from(s: &mut [T; N]) -> Vec<T> {
4111        Self::from(s.as_mut_slice())
4112    }
4113}
4114
4115#[cfg(not(no_global_oom_handling))]
4116#[stable(feature = "vec_from_array", since = "1.44.0")]
4117impl<T, const N: usize> From<[T; N]> for Vec<T> {
4118    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4119    ///
4120    /// # Examples
4121    ///
4122    /// ```
4123    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4124    /// ```
4125    #[track_caller]
4126    fn from(s: [T; N]) -> Vec<T> {
4127        <[T]>::into_vec(Box::new(s))
4128    }
4129}
4130
4131#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4132impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4133where
4134    [T]: ToOwned<Owned = Vec<T>>,
4135{
4136    /// Converts a clone-on-write slice into a vector.
4137    ///
4138    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4139    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4140    /// filled by cloning `s`'s items into it.
4141    ///
4142    /// # Examples
4143    ///
4144    /// ```
4145    /// # use std::borrow::Cow;
4146    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4147    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4148    /// assert_eq!(Vec::from(o), Vec::from(b));
4149    /// ```
4150    #[track_caller]
4151    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4152        s.into_owned()
4153    }
4154}
4155
4156// note: test pulls in std, which causes errors here
4157#[stable(feature = "vec_from_box", since = "1.18.0")]
4158impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4159    /// Converts a boxed slice into a vector by transferring ownership of
4160    /// the existing heap allocation.
4161    ///
4162    /// # Examples
4163    ///
4164    /// ```
4165    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4166    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4167    /// ```
4168    fn from(s: Box<[T], A>) -> Self {
4169        s.into_vec()
4170    }
4171}
4172
4173// note: test pulls in std, which causes errors here
4174#[cfg(not(no_global_oom_handling))]
4175#[stable(feature = "box_from_vec", since = "1.20.0")]
4176impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4177    /// Converts a vector into a boxed slice.
4178    ///
4179    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4180    ///
4181    /// [owned slice]: Box
4182    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4183    ///
4184    /// # Examples
4185    ///
4186    /// ```
4187    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4188    /// ```
4189    ///
4190    /// Any excess capacity is removed:
4191    /// ```
4192    /// let mut vec = Vec::with_capacity(10);
4193    /// vec.extend([1, 2, 3]);
4194    ///
4195    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4196    /// ```
4197    #[track_caller]
4198    fn from(v: Vec<T, A>) -> Self {
4199        v.into_boxed_slice()
4200    }
4201}
4202
4203#[cfg(not(no_global_oom_handling))]
4204#[stable(feature = "rust1", since = "1.0.0")]
4205impl From<&str> for Vec<u8> {
4206    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4207    ///
4208    /// # Examples
4209    ///
4210    /// ```
4211    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4212    /// ```
4213    #[track_caller]
4214    fn from(s: &str) -> Vec<u8> {
4215        From::from(s.as_bytes())
4216    }
4217}
4218
4219#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4220impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4221    type Error = Vec<T, A>;
4222
4223    /// Gets the entire contents of the `Vec<T>` as an array,
4224    /// if its size exactly matches that of the requested array.
4225    ///
4226    /// # Examples
4227    ///
4228    /// ```
4229    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4230    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4231    /// ```
4232    ///
4233    /// If the length doesn't match, the input comes back in `Err`:
4234    /// ```
4235    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4236    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4237    /// ```
4238    ///
4239    /// If you're fine with just getting a prefix of the `Vec<T>`,
4240    /// you can call [`.truncate(N)`](Vec::truncate) first.
4241    /// ```
4242    /// let mut v = String::from("hello world").into_bytes();
4243    /// v.sort();
4244    /// v.truncate(2);
4245    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4246    /// assert_eq!(a, b' ');
4247    /// assert_eq!(b, b'd');
4248    /// ```
4249    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4250        if vec.len() != N {
4251            return Err(vec);
4252        }
4253
4254        // SAFETY: `.set_len(0)` is always sound.
4255        unsafe { vec.set_len(0) };
4256
4257        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4258        // the alignment the array needs is the same as the items.
4259        // We checked earlier that we have sufficient items.
4260        // The items will not double-drop as the `set_len`
4261        // tells the `Vec` not to also drop them.
4262        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4263        Ok(array)
4264    }
4265}