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Abstract The aim of this work is to present a reduced mathematical model for
describing fluid flow in porous media featuring open channels or fractures. The Darcy’s
law is assumed in the porous domain while the Stokes—Brinkman equations are con-
sidered in the fractures. We address the case of fractures whose thickness is very small
compared to the characteristic diameter of the computational domain, and describe the
fracture as if it were an interface between porous regions. We derive the corresponding
interface model governing the fluid flow in the fracture and in the porous media, and
establish the well-posedness of the coupled problem. Further, we introduce a finite
element scheme for the approximation of the coupled problem, and discuss solution
strategies. We conclude by showing the numerical results related to several test cases
and compare the accuracy of the reduced model compared with the non-reduced one.

Mathematics Subject Classification (2000) 76D07 - 76S05 - 35Q86 - 65L.60

1 Introduction

Reduced models of fluid flow in fractured media have an intrinsic interest due to
their potential applications in different domains, and have been studied by a number
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718 M. Lesinigo et al.

of authors; see, for example, [2,21,24,30] and references therein. Typically, Darcy’s
equations are used to model the fluid flow in the porous media, a heterogeneous
N-dimensional domain, made of regions featuring different permeabilities. Thin
regions in the form of “inclusions” are called fractures; in the numerical approxi-
mation they might require excessive mesh refining and increased computational costs
when treated as fully N dimensional regions. For this reason, reduced models in which
fractures are represented as N — 1 manifolds are often used; then suitable fracture flow
equations are derived and coupled with classical porous media flow equations [21,25].
Such model reduction is obviously intended to represent the heterogeneity of the per-
meability field; in fact, the basic model of both the porous domain and the fracture
domain is the Darcy’s model.

In this work, we focus on highly-permeable or even open fractures, in which flow
can be described by the Stokes—Brinkman equations: more specifically, we address
the coupling of a Darcy model for fluid flow in a porous domain, with a reduced
Stokes—Brinkman model of fluid flow within a fracture of the domain. This problem
has obvious applications in fields like geophysics or hydrogeology. For instance, it
may describe hydrocarbon migration, or groundwater flows, or more generally two-
phase flows in fractured soils [7]. The intrinsic interest in having both accurate and
computationally cheap models describing such phenomena is still promoting the inves-
tigation of advanced numerical techniques. Fractures can substantially modify the flow
pattern, acting as either barriers or highly permeable channels, in which most of the
fluid is collected and redistributed. Recent works [3] confirm that reduced models
can accurately capture such effects. Finally, let us mention that incompressible flow
models are used also in medicine to describe tissue perfusion, transport of nutrients
from arterial vessels to cells, or heat transfer with application to hyperthermia [15]
and other clinical treatments [20].

Often, transverse dimensions of fractures or vessels are negligible when compared
to the dimensions of the considered porous matrices. For this reason geometrical mul-
tiscale models treating fractures or vessels as entities with lower dimension are very
interesting. Those reduced models may lead to significant computational advantages
as it is not necessary to solve the full Brinkman model at the small spatial scale in the
fracture or in the vessel. Moreover, our approach makes it possible to treat different
geometrical multiscale couplings, such as the classical 2D porous domain with a 1D
fracture (see Fig. 1a), a 3D porous domain with a 2D fracture (see Fig. 1b) or a more
exotic 3D porous domain with a 1D fracture (see Fig. 1c), modeling, for instance,
blood vessels surrounded by biological tissues [13,20].

We warn the reader that the distinction between “fracture” and “vessel” uniquely
refers to the geometry of the problem (see Fig. 1). More particularly, in both cases
we consider a direct interaction between a free fluid and a porous medium. Therefore
the effects that, e.g., the physiological structure of blood vessel (multiple layers of
poro-elastic materials) have on the fluid motion are not taken into account. The only
difference between the two situations is that in the case of the fracture the reduced
model lives on a bi-dimensional surface (2D/3D coupling) whereas in the case of the
vessel it is one-dimensional and lives on the mean line of the vessel (1D/3D coupling).

The paper is organized as follows. In Sect. 2 we provide the basic equations of our
mathematical model. In Sect. 3 we derive the reduced model for a fracture in a 2D
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(c)

Fig. 1 Reference geometries for the problems considered. a 1D fracture in a 2D domain. b 2D fracture in
a 3D domain. ¢ 1D vessel in a 3D domain

domain, and present the analysis of the coupled problem. In Sect. 4 we briefly explain
how the model can be extended to the case of a planar fracture in a 3D domain or of
a vessel in a 3D domain. Section 5 is devoted to the numerical approximation of the
reduced coupled problem while in Sect. 7 we provide numerical simulations on a test
case. Finally we present some conclusions in Sect. 8.

2 The coupled Darcy-Brinkman model

In this introductory section we wish to briefly recall the Darcy and the Brinkman
model, and discuss the coupling conditions.

The Darcy model is often used to describe the motion of an incompressible fluid
in a porous medium. Indeed, it is a widely accepted approximation of the filtration
problem for low velocity flow in which inertial effects can be neglected. It can be
written as:

= —KVp inQ,, (2.1a)
V.-u=gq in Q,, (2.1b)

where €2, is the domain occupied by the porous media, K is a bounded symmetric
positive definite permeability tensor, and u and p are respectively the velocity and
the pressure in the porous medium. Equation (2.1a) is the Darcy law (see [14]) while
(2.1b) is the equation of mass balance. Usually the source term ¢ is equal to 0.

The Brinkman model we will use to describe the flow motion in the fracture or
in the vessel is instead a generalization of the Stokes model that represents a valid
approximation of the Navier—Stokes equations at low Reynolds numbers. It reads:

pu—ecAu+Vp =1f inQy, (2.2a)
V.u=0 inQy, (2.2b)

where Q ¢ is the domain that describes the fracture, u and p represent the velocity and
the pressure in the fracture, respectively, B is a scalar, ¢ is the inverse of the Reynolds
number and f is a momentum source term. More precisely, we are interested in a
slightly different formulation in which the scalar B is replaced by K7!, the inverse of
a permeability tensor and in which a mass source term can be present in Eq. (2.2b),
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ie.:

K;lu—eAu+vp =f inQy, (2.32)
Viou=g inQy. (2.3b)

The model (2.3) is interesting because it contains as special cases both the Darcy and
the Brinkman model.

Remark 1 Equations (2.3) arise in the time discretization of the classical Stokes model
with Ky = IAt, being I the identity matrix and At the time step.

When coupling the (2.1) with (2.3), suitable coupling conditions have to be provided
at the interface, say I'p g, of the two subregions in order to ensure the well-posedness
of the coupled problem. A first classical choice is to require the normal flux to be
continuous:

up -nNp =up - -Np on FDB, (24)

where up is the Darcy velocity at the interface, up the Brinkman one and np is the
external normal unit vector to the Darcy domain. Equation (2.4) is not sufficient to
close the model. Many proposals for additional coupling conditions have been made;
in this paper we consider a variant of the well known Beavers, Joseph and Saffman
conditions [5,39]. Starting from the works by Jager and Mikelic [26] and Discacciati
and Quarteroni [16], we first simplify the Beavers, Joseph and Saffman conditions.
Let us suppose that the interface I'pp is smooth enough to allow for the definition of
a unique unit vector ng perpendicular to the interface and oriented from the fracture
towards the porous medium. Introducing also a generic unit vector t belonging to the
uniquely defined tangential plane at a generic point of fracture-medium interface, the
simplified Beavers, Joseph and Saffman equations may be written as:

ad
82 -t=0 onlpg, (2.5a)
anB
3[13
pPB—&— -ng=pp onlpg, (2.5b)
Bng

where the subscript D stands for quantity to refer to the Darcy model, B to the
Brinkman one. In particular, tangential viscous losses are neglected in (2.5a), whose
general form is eg%ﬁ -T =aup - T,a > 0. However, this simplification does not alter
the generality of the presentation. Moving from this set of equations, in the first part
of this work, we will derive a reduced model in which the fracture problem is aver-
aged along the cross-sections of the fracture and is replaced by a lower dimensional
problem. Such technique applies to the case of a bi-dimensional (or tri-dimensional)
porous domain with a thin fracture, which yields after model reduction a 2D-1D (or
3D-2D) coupled problem, or to the case of a three-dimensional porous domain includ-
ing a vessel fracture, giving rise to a reduced 3D-1D coupled model. In each case, the
strategy that we adopt to obtain a reduced model for the coupled problem (2.1), (2.3),
(2.4) and (2.5) can be schematically summarized through the following steps:
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Fig. 2 Domains, boundaries
and interfaces

n

(i) Atevery point of the average line/surface of the fracture or vessel, introduce a

local orthonormal reference system.

(i) Project the Brinkman equations on the coordinate system introduced at step (i).

(iii) Average the resulting equations over every cross section.

(iv) Introduce suitable closure conditions based on convenient assumptions on the
profile of pressure and normal flux in the fracture or in the vessel.

(v) Obtain the weak formulation of the problem by eliminating the flux on the
Darcy—Brinkman interface with the closure conditions introduced at step (iv).

After the derivation of the reduced model, we will investigate its well-posedness, then
we will present some numerical results, showing that the relevant features of fluid flow
in a fractured porous domain are well captured by our model.

3 A fracture in a bi-dimensional domain

In this section we provide a detailed description of the reduced model for a fracture
in a bi-dimensional domain.

3.1 Geometry of the problem

Let Q C R? be a bounded domain consisting of three open bi-dimensional subsets
Q1, Q2 and Q¢ such that Q@ = Q| U Q; U Q/ (see Fig. 1a). Moreover suppose that
Q¢ separates 21 from £2;. Under these assumptions 1 N Qy =@, Qo N Qy = ¢
and Q| N Q; = @. In particular, Q ¢ corresponds to the fracture while €21 and Q2
correspond to two regions occupied by the porous medium. We also suppose that 9€2 ¢
and 0€2; are Lipschitz continuous boundaries. We call the Stokes—Brinkman interfaces
y1 = Q1 NQand y, = QN Qy. We denote by I'y the remaining part of 9Q, with
I'; the remaining part of 32, and with I' ; the remaining part of €2 . We denote with
I'1, p the part of I'y where a Dirichlet boundary condition is assigned and Iy y that
where a Neumann boundary condition is given. Same considerations hold for I'; and
I" 7. Note that I" y is made of two separate segments. We suppose that on each of these
segments either a Dirichlet or a Neumann boundary condition is assigned (mixed
Dirichlet/Neumann conditions on the same segment are not allowed). For the sake
of simplicity we suppose that I'y p, I'; p and I ;, p are nonempty subsets of 'y, I',
and I' 7, respectively. Moreover we introduce ny, ny and n s, the external normal unit
vectors to €21, Q22 and Q2 ¢ respectively. Figure 2 shows the nomenclature introduced.
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Furthermore we suppose that the distance separating €27 from €2, is small with
respect to the size of the porous media. In this sense we can think that 2y develops
along aline y. More precisely we canrepresent 2 y = {x eR?:x=y+ é%n} where
y € y,disthe widthof Q ¢, & € [—1; 1] and nis the unit vector normal to y at the point
y directed from 21 to QL If y is smooth enough [41] we can introduce an intrinsic
curvilinear reference system, whose variables are the arc length s € [0, L] (which
uniquely identifies the points of y, L being the total length) and &. The corresponding
unit vectors are the normal unit vector n and the tangential unit vector 7. At every point
s on y, the unit vector n uniquely identifies a section of the subdomain €2 . Moreover,
at every s, n and T may be used to define a local orthogonal reference system. With
little abuse of notation, in this work we denote by the same symbol different functions
defined on y, y; or y», if they have the same values at each section. For example, for
a given function f defined on one of the three lines, say y;, we may define a new
function f whose value at a given point of another line, say y», is equal to the value of
f at the corresponding point at the same s-section. When it is clear from the context
on which line such a function is defined, we may use the same symbol for f and its
“projection” f. Moreover, it is useful to refer the integral of f on y; to the integral of
f on ys, using the associated change of variables. Assume that there exists 7 > §/2
such that the curvature radius r of y is larger than or equal to  for every s; then, the
Jacobian J for such change of variable satisfies

rmin_(s/z rmin+5/2

0 < tmin = <|J <
= fmin Fmin + 8/2 =M= Fmin — 8/2

= I'max;

where rmpin is the minimum curvature radius of y.

Before getting into the details of the derivation of the reduced model, let us introduce
some useful transformations. Let R be the orthonormal matrix mapping the canonical
basis [ej, e;] onto the local basis [n, 7], and its normal and tangential projectors:

T T T
R:[:T}z[gr}+[27}=N+T. 3.1

We will need to refer the differential operators to the local coordinates. Notice that,
for a given scalar field u and unit vector v, we have du/dv = Vu - v: hence, using this
identity with v =n and v = 7, we get

ou ou T

—n+ —1 = (R'R)Vu =Vu.

on ot
Similarly, for a vector field u, the trace of a tensor being invariant under changes of
variables, we have

ou

ou T
— -n+ — -t = trace(RJR") = trace(J) = V - u,
on ot

! The choice of the orientation is arbitrary.
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where J = du; /dx; is the Jacobian matrix of u. As regards second order operators of
a scalar field, we observe that for each unit vector v we have 8%u/3?v = v- Hv, where
H=09%u /0x;0x; is the Hessian matrix of u. Using this identity we have

u  3%u T

ot s = trace(RHR" ) = trace(H) = Au.

o‘n  0°t

We point out that these relationships are only meant to refer the above differential
operators to derivatives along orthogonal directions (n and 7, in our case) different
from those of the canonical basis. In particular, we are not considering any change of
variables. Instead, we will use such expressions in order to separate the normal and
tangential components of the model variables in the derivation of the reduced model.

3.2 Mathematical formulation of the original problem

With the notations introduced in Sect. 3.1 the mathematical formulation of the full
coupled problem reads as: find u, uy, uy, p, p1 and py such that (i =1, 2):

u = —K,'Vpi in Q,’

V-l.li =dqi in Q,’
K;lu—eAquVp:g in Qy
V.ou=gq in Qr
u-n =u; -n; on y;
—8a—u-r =0 on y;,
ong (3.2)
Ju
P_gm‘nf=l7i on y;
pi = Di on I'i p
KiVpi-nj = h; on I'; y
u=u on I'rp
ou —
8E—pnf=h on I'pn

where p; and u are assigned Dirichlet boundary conditions and /; and h are assigned
Neumann boundary conditions. We denote by K; ., the maximum absolute value of
the elements of the tensor K; and A, (K;) the minimum eigenvalue of the same tensor
which is strictly positive by assumption.

3.3 Derivation of the reduced model

As anticipated in Sect. 2, to obtain a reduced model we project the Brinkman equation
in the fracture on the local orthogonal reference system at every s on y, and then we
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average the resulting equations on the corresponding s-cross-section of 2. Let us
consider the mass conservation equation in £,

V.u=gq.

Projecting this equation on the reference system made of unit vectors n and t
leads to:

Integrating the resulting equation over the segment [y — (§/2)n,y + (6/2)n] where
y € y yields:

0
u-nlyz—u~n|yl+85U,=6Q,

where we have set U, = %ff{izu -Tdnand Q = %ffgzqdn. Finally, using
Eq. (2.4) and given that % = % we obtain a one-dimensional mass balance law on

y with an additional term that accounts for the interaction with the Darcy problem in
Q1 and Q5:

d
up-nyly, +w-mly, =4 (gUr - Q) on y. (3.3)

Remark 2 If the domain is fractureless (i.e. § = 0) Eq. (3.3) states the continuity of
the normal flux at the interface between the two porous media.

Let us apply the matrix R defined in (3.1) to Eq. (2.3a), yielding:

RK;IRTRu — ¢RAuU+RVp =Rg. (3.4)

Given two vectors a and b in R? we define My, = aTK;lb. Using such notation we
can split Eq. (3.4) as:

9%u 9%u ap
Mnn(u-n)+Mm(u~r)—8m~n—£m-n+£=gn, (3.5a)
9%u 9%u 9
Mn(@-m) +Mer (U 7) — 6o T —6o T+ L =g, (3.5b)
on 0T 0T

where we have set gn, = g-n, g; = g- t. Averaging Eq. (3.5a) across y as we did for
the mass balance equation we obtain:

du 32Un
” +85 -n v —SEW +p|V2 - p|y1 = SGn,

9
SMynUp + SMye Uy — aa—“ 0
n
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where we have set Uy, = % ff{iz u-ndnand G, = % ffgz g - ndn. Using coupling

conditions (2.5b) we obtain a one-dimensional law for the flux between the two Darcy
domains:

3%y,
p2ly, — Pily, =8 (Gn — MpnUn — MnUr +¢ 8s2n). (3.6)

Remark 3 If the domain is fractureless (i.e. § = 0), Eq. (3.6) expresses the continuity
of pressure, i.e. the natural Darcy—Darcy coupling condition.

Analogously, by averaging Eq. (3.5b) across y we obtain:

4elu ’ 5o U L 52P _ oo
E— - T —0¢& —_— = s
» an  ly 912 ot *

Ju
d(MznUn + My Uz) — 3% T

where P = % ffgz pdnand G, = % ff{iz g - 7 dn. Using coupling conditions (2.5)

we obtain a one-dimensional balance law for the momentum on y:

92U, 9P
S (MpnUn + Mz Uy, —6—— + — — G, ) =0. 3.7)
ds2 ds

Remark 4 1f the domain is fractureless, Eq. (3.7) vanishes. This is coherent with the
fact that for a Darcy—Darcy coupled model only two coupling conditions are required.

Remark 5 The lines y; and y» are distinct and do not coincide with y. In particular,
the reduced one-dimensional model lives on the “mid-line” y and the geometry of
the porous medium remains unaltered. Our approach is new with respect to what has
usually been proposed in other works, where the two lines y; and y» are collapsed in
order to obtain a single interface problem [13,21,30]. In particular, for the case of a
1D vessel in a 3D domain, we can avoid the difficulties of treating singular solutions.

3.4 Closure conditions

The coupling of the Darcy equations in €2 and €2, with the reduced model for the
fracture flow just derived takes place by means of interface data. Precisely, on one
hand the normal velocities of the Darcy model appear as source terms in the fluid
mass balance Eq. (3.3) of the fracture model; on the other, the values of the normal
velocities and fluid pressure of the fracture model over the interfaces y;,i = 1, 2, are
needed to solve the Darcy flow to impose the interface conditions on y; in Eq. (3.2).
Unfortunately, the reduced model is unable to extrapolate the fracture boundary values
Ply; and uy, - n; (referred to as FBV) from the corresponding average values P and
Un, so that suitable closure assumptions are needed. The idea, taken from [19,20,36],
is to make some a priori hypotheses on the profiles of pressure and normal velocity
on a generic s-section of € y. More specifically, the profiles are given by interpola-
tion of the FBV. Once the profiles are known, the average values P, U, are easily
expressed in terms of the FBV, that we can further eliminate in favour of the Darcy’s
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Table 1 List of closure conditions depending on the profile associated to P and Uy on a generic section
of 2 and the corresponding tuning parameter 6 for the closure model introduced

Profiles Closure conditions 0
P C 0="35(P - paly) NA
Un C 0=5(P*P1|y1)

P C —2euy -nyly, = —2eUn +8(P — p2ly,) 0
Un L —2¢eu -mp|y, = +2eUn + (P — pily;)

P L 8pily, — 4euy -nyly, =8P —4elUn +8(P — palyy) 5
Un L 3p2ly, —4euy -mply, =8P +4eUn +3(P — pily)

P C 28p1ly; —6euy -nyly, =28P — 6eUn +8(P — paly,) z
Un Q 28paly, — 6eu - My, = 28P + 6eUn + 8(P — pily;)

P C 38p1ly, — 8eup -nyly, =38P —8Un +8(P — paly,) 3
Un PCL 38paly, — 8eup - maly, =38P + 8eUn + 8(P — pily)

Relations are valid section by section. Labels have the following meaning: C=constant, L=linear,
Q=quadratic, PCL =piecewice continuous linear (linear between y| and y and between y and y,)

variables p; and w; - n; using the coupling conditions (2.4), (2.5b). The interface
conditions on y; in Eq. (3.2) can thus be recast as algebraic equations coupling the
Darcy’s variables p;, u; - n;, with the reduced model variables P, U,. We consid-
ered different profiles: a constant or linear pressure profile, and a constant, linear,
quadratic or piecewise linear normal velocity profile. Note that not all the possible
combinations may be used to obtain the number of closure conditions required. The
closure conditions for the combinations considered are reported in Table 1. We can see
that they are equivalent, since all of them (except for the CC case) may be rewritten
as:

Opily, —aup-mily, = 0P —aUn + (1 = 6)(P — p2ly,), (3.8a)
Op2ly, —oawy -ma|y, = 0P +alUy + (1 —0)(P — pily), (3.8b)
where o = 23—8 and 6 € [0, 1] is a nondimensional parameter depending on the

profile. Table 1 also reports the different values of 6 for the closure models con-
sidered.

Remark 6 The units of « are those of a hydraulic resistance. More precisely, « relates
the s-section net balance of normal fluxes entering in (or exiting from) the fracture
to the average pressure P on y and to the pressures p; and p> in the porous media
through the relation:

a(a -nly, +uz -mly,) = pily, + p2ly, —2P.

Note that if the average pressure P exceeds the average of p; and p> there is a net
flux exiting from the fracture at the s-section considered while if P is lower than the
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A multiscale Darcy—Brinkman model for fluid flow 727

average of pj and p; there is a net flux entering in the fracture at the s-section consid-
ered. From now on, we suppose that ¢ 7 0 so that also & % 0. Under this assumption,
fluxes u; - n and u, - N may be expressed as:

0 1-6
u-nl, =Uy+ E(Pl|y| - P)+ T(P2|y2 - P),
0 1-6
u -m|y, = Uy + a(p2|yz - P)+ T(Pl|y1 - P).

Note that interface fluxes uj - nj and u; - ny are obtained from the average normal flux
U, through pressure corrections depending on 6.

3.5 Weak formulation of the reduced coupled problem

Let us start considering just the problem in the porous media, supposing for the time
being that P and oU, are known. We want to propose a variational formulation for
the pressure in the porous media. Particularly we want to find a couple (p1, p2) such
that ( =1, 2):

=V - (K;Vpi) = gi in Q;,
pi = Di on T’ p,
Kini N = h,‘ on Fi,Ny (310)

Opily, —ouwy -nyly, =0P —alUny+ (1 —0)(P — p2ly,) onyi,
Op2ly, —awy -mly, = 0P +aUy + (1 —0)(P — p1ly,) on y,.

First, we introduce the following spaces:
Vi =Hp, (@) ={ve H(Q) v, =0},

Va=H (@) =(ve H () :vlr,, =0).

and assume that the boundary data are p; € H%(Fi,D), h; € H’%(Fi,N), i=1,2.
AsT'1.p #@Wand Iy p # ¥ by assumption, we can use the gradient seminorm in such
spaces and the Poincaré inequality holds with constant Cp, (for the domain £2;). Let us
consider a vector function v = (v, vp) belongingto V = V| x V5. On the Hilbert space
V we use the graph norm [[v][3, = [[villy, + 2y, = [Vo1ll72,) + V0207, -
Multiplying the first Equation in (3.10) by a test function r = (r1,72) € V and
integrating over the considered domains we obtain:

- Z/V-(Kiwnndx: >, /qiridx,

i:l,ZQi [:1,29i
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728 M. Lesinigo et al.

where p = (p1, p2) € H' (Q1) x H'(Q»). Integrating by parts and using the boundary
conditions we have:

Z /K,’Vpi 'Vridx—/K,-Vpi ~nirl-dx

i=1,28, i
= Z/qiridx—l-/hir,-dx. (3.11)
i=12q, Tin
Given that —K;Vp; - n; = u; - n; we can use closure conditions (3.8a) and (3.8b)

in order to eliminate the normal fluxes on the interface from the (3.11). Finally we
obtain:

/K1Vp1-VrldX-l—/Kszz-VVde

Q Q)
0 1-6 0 1-0
+—/P1r1dx+—/Pzrldx-i-—/Pzrde-l-—/Pﬂde
[07 [07 (07 07
% % 72 %)
1
=/q1r1dx+ / hlrldX—/UnndX—i-—/Prldx
o
Q) WY 12! Vi
1
+/qzr2dX+ / hzrzdx+/Unr2dx+—/Pr2dx.
o
1953 Fon 72 2)

Let us introduce the bilinear forms a(-, -), f2(-, -) and e (-, -) and the linear functional
L(-), defined as:

%
a(p,r) =/K1Vp1 -V dX—‘,—/Kszz-Vrde—I——/p] ry dx
o

Q Q Vi

1-06 0 1-0
+— pzrldx—l——/pgrgdx—}——/plrgdx,

o o o
Vi 72 V2
Lv(r)=/q1r1dx+/hlrldx+/q2rzdx+/hmdx,
Q 'y Q) Ion
fU,r) =/Unr2dx—/Unr1 dax,

72 %

8 8
eg(P,r):—/Prldx—i——/Prgdx.
2¢e 2¢e

71 %)

Owing to the surjectivity of the trace operator, introducing a lifting R, € H LQ) x
H' () of the Dirichlet data (p1, p,) the problem can be rewritten as: find p — Ry =
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P €V such that:
a(p,r) =Ly(r)+ (U, r)+ex(P,r) —a(Rg,r) VreV. (3.12)

The bilinear form a(-, -) and the linear functionals Ly (-), f>(U, -) and e>(P, -) are
continuous on V. Moreover, a(-, -) is coercive under the assumption:

> & (3.13)

- Imax + fmin
In fact, we have:

0
a9 2) = hmin KO + Amin K21+ [ 9
Y1

1-6 0 1—-06
+—/p2p1dX+—/p%dx+—/p1pzdx.
o o o

Y1 Y2 V2

Therefore, to prove the coercivity of the form a(-, -), a sufficient condition is that:

0 1—-6 0 1-0
—/p%dx—i——/p2p1dx+—/p§dx+—/p1 p2dx > 0. (3.14)
o o o o

Y1 Y1 V2 Y2
As
0 2 0 2 6 2 2
;/pl dX+ ;/pz dx = atmin(”Pl ”LZ(V) + ||P2||L2(y))7 and
V1 V2
1-6 1—6 1-6
_/Pzpldx+_/P1P2dX < 2—— fmax /PIPZdX
o o o
Y1 2 v
2 2
<2l_9t ”Pl ||L2(y)+||P2||L2(V)
— max 9
o 2

to verify the condition (3.14) it is sufficient to impose:

128 Upil2a,, + Ip2l? )< Lt UpilZa,, + Ip21%2,)
o max L2(y) L2(y)) = , ‘i L2(y) L2(y)””

which solved for 6 yields (3.13).

Note that if y is a straight line (3.13) becomes 8 > 1/2. Moreover, if the assump-
tion (3.13) is satisfied then the solution of problem (3.12) exists and is unique and the
following bound holds:

1 -
Ipllv = K—IILVIIV/,

a
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730 M. Lesinigo et al.

where K, = min{Amnin (K1), Amin(K2)} is the coercivity constant of a(-, -) and:
Ly(r)=Ly(r) + (U, r) + ex(P,r) — a(Rg. ).

Indeed these results follow from the Lax—Milgram Lemma.
Let us now focus on the reduced problem on y, supposing that the Darcy’s pressures

pi and velocities u; = —K;Vp; in Q1 and 2, are known:
0
) aUT—Q = (ug -myly, + w2 -myly,) ony,
82Un
8 | MynUn + My Uy — ¢ 952 =8Gn+p1|y1 _P2|y2 ony,
22U, 9P
S\ MynUn + M Up — ¢ +—)1=6G, ony,
ds2 s
+ Boundary Conditions on dy. (3.15)

As T'y p # ¥ by assumption, by averaging u over that segment we obtain a Dirichlet
boundary condition U for [Up, U;]”. We denote with dyp the boundary/ies of y where
the averaged Dirichlet condition is assigned. Let us define the following spaces,

X = (Hy,, () ={ve H @) Vo, =0, M=L©).

Equip X with the gradient seminorm (the latter is indeed a norm, thanks to the Poincaré

inequality), and assume the boundary dataU € H 2 (I" ¢, p). Multiplying the Eq. (3.15)
times test functions R € M, V,, € HalyD (y)and V; € Halyg (y) and integrating over
y we obtain:

9 3*Un
§—UrRds+ [ § [ MunUn +Mn: Uy — 6 —— ) Vads
as ds2
Y Y

32U,
+ (S(MrnUn+M-[rU1 —EW

4 (3.16)
:/(3Q+ll1 -npfy, +u2~n2|y2)Rds
Y

oP
+ —) Vi ds
as

+/(8Gn+pl|y1 _p2|y2) Vnds+/8Gr Ve ds.
14 14

Introducing the matrix M and the vectors U, V and G defined as:

Mnn Ml’l‘[ Un Vl'l Gl’l
M = s U = s V = y G =
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A multiscale Darcy—Brinkman model for fluid flow 731

the Eq. (3.16) can be rewritten as:

9 3°U aP
/8—U1Rds+/6MU-Vds—/8£—~Vds+/8—V,ds
s ds2 s

14 Y Y 14
:/(5Q+ll1 ‘npy, +ll2-112|y2)RdS
Y
+/(p1|y1 — p2ly,) Vads +/8G-Vds. (3.17)
14 14

Let us introduce an averaged Neumann boundary term H = [Hj, H,]T that is obtained
by integrating over I' 7, (in the case the latter is a nonempty set) the Neumann bound-

ary data h € H: (I f,n) as follows, where s may be 0 or L:

. y&)+(5/2)n { y(&)+(6/2)n
Ha(3) = 3 / h(s) -ndx, H;(3) = 3 / h(3) - T dx.
YE®—(5/2)n YE®—(5/2)n

By integrating by parts the Eq. (3.17), exploiting the property that V has null trace on
dyp we obtain:

ds 0s
Y Y 4 Y

0 oU oV 0
/88—U1Rds+/8MU~Vds+/88—~—ds—/88—V,Pds
s s

= /(8 0 +u-ny|y, +w-mly,) Rds +/(Pl|y1 — p2ly) Vnds
Y Y

+/8G~Vds+8[H-V]3yN, (3.18)
Y

where we denoted dyy C {0, L} the boundary of y where the averaged Neumann
condition is assigned.

Remark 7 InEq. (3.18) there is a term containing uy -ny |y, and uz -nz|,,. Asuy -ny|,,
and u; - mz|,, belong to H - 2(y,-), their duality with a function belonging to Lz(y)
is not well defined. To avoid using ad hoc variational spaces we use again the closure
conditions (3.8a) and (3.8b) and express the fluxes in terms of pressures and Uy,.
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Accordingly, using (3.8a) and (3.8b) we can rewrite Eq. (3.18) as:

0 oU 0V
/8—U1Rds+/5MU~Vds+/58—-—ds
as as

as
Y Y Y
0 2
—/B—V,Pds—}-/—PRds
as o
v 1)/ (3.19)
=/5QRdS+/&(P1|y1 +p2|y2)RdS+/(Pl|y1 _p2|y2) Vads
14 Y 14
+/8G-Vds+8[H~V]3yN.
Y

Introducing the bilinear forms c(-, -), b(-, ), d(-, -), f1(-, -) and e (-, -) and the linear
functionals Ly (-) and L (-) defined as follows:

U o9V
cU,V) =46 [ MU-Vds+d6e | — - —ds,
ds ds
14 Y
d
b(U, R):—S/—UTRds,
as
Y
)
d(P, Q):—/PRds,
g
Y
LX(V)=8/G~Vds+8[H-V]3yN,
14

Ly(R) =6 / O R ds,
14

Si(V,p) = /(leyz — pily) Vads,
Y

8
e1(R, p) = %/(Plh/l +p2|)/2) Rds,
14

and a lifting Rg € H () of U, the problem can be rewritten in the following varia-
tional form: find (U = U — Ry, P) in X x M such that

¢(U, V) +b(V, P) = Lx(V) — fi(V,p) —c(Rg, V) ¥V e X
b(U,R) —d(P,R) = —Ly(R) — e1(R,p) — b(Rg, R) VR € M.

(3.20)
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A multiscale Darcy—Brinkman model for fluid flow 733

All the bilinear forms and the linear functionals introduced are continuous over the
respective spaces, moreover the bilinear forms c(-, -) and d (-, -) are coercive on X and
M, respectively. Under these assumptions, the well-posedness of (3.20) follows (see,
for instance, [37]).

After studying the well-posedness of the uncoupled Darcy’s problem and reduced
fracture model, let us focus on the full coupled model. With the previously introduced
notations, the coupled model reads: find (U, P, p) € X x M x V such that

cU,V)+b(V,P)+ fi(V,p) = Lx(V)—c(Rg, V) VVeX
b(U,R) —d(P,R) +ei(R,p) = —Ly(R) —b(Rg, R) VR e M . (3.21)
— LU, r)—ex(P,r)+a(p,r)= Ly(r)—a(Rg,1r) VreV

To assert the well-posedness of problem (3.21) let us introduce the following result:

Theorem 1 Suppose that X, M and V are three Hilbert spaces normed with
- llx, | - laz and || - || v respectively. Consider the following variational problem: find
(u, p,p) € X x M x V such that:

c(u,v) +b(, p) + fi(v,¢) = Lx(v) Yv € X
b(u,r)—d(p,r)+ei(r,¢) = Ly(r) Vr e M , (3.22)
—fau, ) —exp,¥) +a(p,y) =Ly() V¥ €V

where: c(-, ), d(-, -) and a(-, -) are bilinear continuous and coercive forms on X, M,
and V respectively, b(-,-), fi1(-,-), fa(-, ), e1(-,-), ea(-, -) are bilinear continuous
formson X x M, X xV, X xV, M xV and M x V, respectively, and Lx (-), Ly (-) e
Ly () are linear and continuous functionals on X, M and V, respectively. Moreover
suppose that:

(1) There exists a parameter & such that the coercivity constant K. and Kg of the
bilinear forms c(-, -) and d(-, -) can be written as K. = §C and Kz = §D
where C and D are positive constants.

(ii) There exist two functions F(8) and E(8) such that:

i, ¥) = faw, Y)| < SFO)|vlxlVilv Yve X, Yy eV,
ler(r, ) +ex(r, Y)| < SE@)rlml¥lly Vr e M, Yy e V.

(iii) There exist 8 and two constants Emax, Fmax such that, ifo<s < 3:
0<E@®) < Emax, 0= F(@©) = Fnax-

Then there exists 8* < 8 such that V8 : 0 < § < 8* the solution of the Problem (3.22)
exists and is unique. Moreover §* can be chosen as:

1 K.CD -
& =min{-—0"" 35l 3.3
mm[scﬁ L DF2 ] (3:23)

max max
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734 M. Lesinigo et al.

Besides, under these assumptions the following estimates hold:

(CLX + CLX + CLv)v (324)

1
lolv. Ipliars llullx = ——=
K (3)

where Cp, Cp,, and Cy,,, are the continuity constants of the functionals Ly, Ly and
Ly, respectively, Ks(8) = 6K, and K is a constant depending on C, D, Enax and

Fmax~

Proof Letus introduce the product space H = X x M x V,sothath = (hx, hy, hy),
and define |[h[|7, = lhx 1% + lhm 3, + v I3 -

Consider the bilinear form s(-,-) : H x H — R and the linear functional
Ly (-) : H— R defined as:

sth,z) = c(hx, zx) +b(zx, hy) + fi(zx, hy) +blhx, zpm) — d(hp, 2m)
+e1(zm, hy) — falhx, zv) —ea(hpy, zv) +alhy, zv),
Lp(z) = Lx(zx) + Lym(zm) + Ly (zv). (3.25)

Problem (3.22) is equivalent to finding h € H such that:
sth,z) =Ly(z) VzeH. (3.26)

Let us show that s(-, -) satisfies the hypotheses of the Banach—Necas—BabuSka The-
orem? [18]. s(-, -) and L () are continuous. We will show that, for § small enough,
there exists K; = 8K (C, D, Emax, Fmax) > 0 such that:

h
SOD S kI (3.27)

su
zeH.z20 ||ZllH
Choose z = (hy, —hy, hy); correspondingly ||z|| gz = ||h| g, and:

s(h,z) = 8 C [lhxllx +8 D lhmly, + 9 Kallhv Iy + (1 — D) Kallhv 5
=SF@®hxlxhviiv —SE@ N hmlmllhvily,
for any parameter ¥ € (0, 1), were K, is the coercivity constant of a(-, -). We want
to find under which condition there exist two positive constants «x and «ps such that:
Ix =8 C|lhxllx — 8F®llhxlxllhvilv + & Kallhvly
> sax (Ihx |k + IBv ),
Iy =8 D |lhyl3 — SE@ hmllmlihyllv + (1 — D) Kallhy |,

> Say (lhmll3; + llhvI3).

(3.28)

In fact, in that case (3.27) follows with Ky = §K}, K} = min{ax, oy}

2 From now on we will refer to it as the BNB Theorem.
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Consider first Iy. For any € > 0, by Young’s inequality we have
2 1 1 2
Ix =8| (C—F(@©)e) llhxllx + ﬁ‘Kag - F(5)E Ihviy |-
_1.cC
We then choose € = 5 7o) and get
1 ) 1 _F(5)? 2
Ix =6 EC”hX“X‘i‘ VKo -2 C Iavily
1 2 Fr%ax 2 : : < 1 KIIC
>8C |:5||hx||x + 2 lhvily | if § <min{$, ﬁgFI%lax , (329
. . C F,%m
i.e. ay = min {7, ol } Analogously, we get
1 2 EI%la 2 . .= 1K,D
Iy > 8D |:§||hM||M + sz lhvily | if 6 <minjd, (1 — ﬁ)gErznax ,  (3.30)
2
i.e. @) = min {%, E%ax } From (3.29) and (3.30), choosing ¢ such that
1K,C 1K,D 1 K,CD ~
ﬁ—%:(l—ﬂ — ; = — B 4 P :8, (331)
3 Fmax 3 Emax 3 CEmaX + DFmax
we have that, for all 0 < § < 8* = min{3, 3},
C D F2,. E?
Ky =68K; =8min{—, —, 2% &L > (, (3.32)
22 C D
and condition (3.27) follows. The condition:
supsth,z) >0 Vz #0, (3.33)

heH

can be proved by proceeding in the same way. As all the hypotheses of the BNB
Theorem are satisfied the existence and uniqueness of the solution of problem (3.26)
follows and consequently the solution of problem (3.22) exists and is unique. BNB

Theorem also provides the a priori estimate (3.24), since

1
Ilhilg < ?(CLX +Cpry +Cpry).
S

(3.34)

Note that this result states that problem (3.20) is well posed for § small enough, but
at the same time the stability constant K degenerates for 6 — 0 (linearly). Precisely,
Eq. (3.31) and (3.32) quantify on one hand “how small” § has to be (see the expression
of /6\), and on the other hand the dependance of K on 8, C, D, Emnax, Fmax- This is
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736 M. Lesinigo et al.

of particular interest when considering the Galerkin approximation of (3.20), since §
enters the error estimate (see Sect. 5) via K.

The boundedness assumption on E(§) and F(§) in Theorem 1 can be relaxed, as
stated below.

Remark 8 Theorem 1 still holds if the hypothesis (iii) is replaced by the following
one:

(ili-d) There exists § and fotlr constants my > 0,m, > 0,ry < 1/2andr, < 1/2
such that, if 0 < § < 4§:

EG) <mes™,  F(©) <mss™'7.

In this case 6" = 6"(Ky, C, D,mo,myp,ro,ry), K = KX (C, D, mg, my).

Remark 8 follows using exactly the same arguments of Theorem 1. In particular,

2 -_—
(3.29) can be written as Iy > 8C | L||hx |3 + m—f||hv||2 rovided that § < min {6,
2 X T2 v|P

1
(lzlfn—"zc) =y }, and a similar estimate can replace Eq. (3.30).
3m7

Finally, let us show that problem 3.21 satisfies the assumptions of Theorem 1 if we
choose the parameter § to be the width of the fracture. Then the following result holds:

Theorem 2 There exists a positive number §* such that if 0 < § < 8* the solution of
Problem 3.21 exists and is unique.

Proof Problem (3.21) has the same form of (3.22) and it is easy to show that c(:, ),
d(-,-) and a(-, -) are bilinear continuous and coercive forms on X, M, and V respec-
tively, b(-, ), f1(-, ), f2(-, -), e1(:, ), e2(-, -) are bilinear continuous forms on X x M,
XxV,XxV,MxYVad M x V, respectively, and Lx(-), Ly (-) and Ly (-)
are linear and continuous functionals on X, M and V, respectively. Let us prove
that the assumptions of Theorem 1 are satisfied. The coercivity constants K. = ¢§
and K; = 58 are as required by the first hypothesis of Theorem 1 (with C =
e, D = %). Let us identify the two functions F(§) and E(8). For what concerns
F(@©G),let Ap =|f1(V,r) — f>(V, r)|; we then have

Ap = /(r2|y2 —r1|yl)VndX—/r2|y2VndX+/r1|yl VadXx
Y

Y2 Y1
r+4/2 rFé/2
= /(72|y2_rl|y1)VndX_/r2|y2Vn r/ dx+/rl|ylvn / dx
14 14 Y

r+4/2 rFé/2
- /r2|y2v,.(1— r/ )dx—/rllylvn(l— i/ )dx
Y Y
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A multiscale Darcy—Brinkman model for fluid flow 737

F5/2 +65/2
= /r2|y2Vanx— r1|y1Vanx
12 12
8/2
< 721y, Vadx| + 11y, Vadx
Fmin
14 14

IA

5/2
— (Ir2la Nl 226y + It lz260) 1 Vall 22y

min

IA

5/2
——/Imax (172l 220y + 11l L2 ) 1Vall 220y
min

I ("min + 8/2)1/2
2 Fmin ("min — 8/2)1/2

(Cr, + Cp,) CplIFlvIIVIIx,

where C7, and Cr, are trace constants and C Py is the Poincaré constant. Therefore
we can define F(J) as:

1 (rmin +8/2)1/2
2 Fmin (Fmin — 5/2)1/2

F(§) = (Cr, +Cr,) Cp,.

For what concerns E(§), let Ap = |ej(R, r) +ex(R, r)|; we have

8 8 8
Agp = %/(Q'n +r1|yl)de+£/r2|y2PdX+Z/rllylde
v Y2 Y1

+5/2
4 /dx

) )
= Z/(rzh,z+r1|y|)PdX+£/r2|y2P
Y Y

) rF¥é/2
+£/r1|y1P . dx
Y

8 2rmin +6/2
< _L//|(r2|yz+rl|y1)P|dX
12

T 2 Fmin
8 2min +8/2
= 5. Uralyliag) + Irlnllzzg I Pllu
€ Fmin
8 2min + 8/2
< 5oV max == (2l 2 + 7t 2 1Pl
& Fmin
8 2rmin +8/2
< —Viman————= (Cr, + Cp,) 7V I Pl
2¢e Fmin

s L Crmin +8/2)(rmin + 8/2)!/2

S (Cr+ Cr) Il Pl
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738 M. Lesinigo et al.

therefore we can define E(J) as:

1 (rmin +8/2)'2 @rinin +8/2)

E) =
© 2¢ rmin(rmin_8/2)1/2

(CT1 + CTZ) .

The estimates for F'(§) and E(§) are clearly uniformly bounded w.r.t. § for § small.
In fact, as we have §/2 < ¥ < ryjn, for any number 77 < rpin, we have that for all
0 < § < 2r the following inequalities hold:

. ~\1/2
0<F@®) < l%
2rmin(rmin_r)/
i(rmin+'~')l/2(2rmin+’:)
2¢ ”min(’”min_’:)l/2

(CT1 + CTZ) CPf»

0<EQ®) =

(CTI + CTz) )

i.e. the third hypothesis of Theorem 1 is satisfied. For instance, we can take 7 = rpyjp/2
so that F,x = %(CT, + CTz)Cpf, Enax = %g(CTl + Cr,) and choose §* as:

16K er2,,

9(Cr, + Cry)? (25 Tmin +4C5 f)

8* = min {rmin,'g}, 3=

As a result, we see that a small §* can be due to degeneration of ¢, of the coercivity
constant K, = min{Amin (K1), Amin(K2)}, or to high curvatures rr;iL.

4 Extension to the case of a fracture or a vessel in a three-dimensional domain

In this section we indicate how the model detailed in Sect. 3 can be extended to the
case of a fracture or a vessel in a three-dimensional porous medium (see Fig. 1). The
substantial difference with respect to the 2D case is that in every point of the mean
surface of the fracture or of the mean line of the vessel, the intrinsic reference system
is constituted by three orthonormal unit vectors instead of two.

The case of a fracture in a three-dimensional domain. In this case there are two tan-
gential and one normal unit vectors. The procedure highlighted in Sect. 2 can be carried
out without too many difficulties, the derivation of the reduced model is straightfor-
ward and the same closure conditions used in Sect. 3 may be used to couple the reduced
model with the Darcy problem in the porous medium. However in order to obtain a
unique equation on the whole mean surface of the fracture a suitable reference system
should be introduced on such surface. The well-posedness of the problem under the
assumption that the width of the fracture is small enough may be proved by either
Theorem 1 or one of its variants. The structure of the variational problem is in fact
the same as (3.21) but the variational spaces of the reduced models are defined on a
bi-dimensional geometry. For a detailed description of this case refer to [28].
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The case of a vessel in a three-dimensional domain. In this case there are two nor-
mal and one tangential unit vectors. This time a suitable reference system must be
chosen at every section of the vessel so that the two normal unit vectors vary with
continuity with respect to the arc length. The averaging operations may be carried
out straightforwardly, however (2.5a) and (2.5b) have to be rewritten in the following
vector form:

0
pph = psh — eNa—lAl onpg, (4.12)
n
Ju
0=—eT— onIpp. (4.1b)
on

Here i = [cos(B), sin(B)] represents the normal external unit vector of the vessel with
respect to the orthonormal bi-dimensional reference system given by the two normal
unit vectors; B is the angular coordinate in a bi-dimensional polar coordinate system
in which ny is the polar axis. Beside this, the following revised closure condition must
be used instead of (3.8a) and (3.8b):

Op(B) —a(u-n)(B) =0P 4 alUy, cos B + alUy, sin B

4.2)
+ A =60)(P—pB+m)),

where Uy, and Uy, represent the projection of the average flux on the two normal
unit vectors and f () represents the value of a generic function f on the boundary of
the considered section at angular coordinate . The weak formulation of the coupled
problem can be recast in the form (3.22), where the parameter § is now the vessel
cross-sectional area. The well-posedness for small § is obtained owing to Remark 8
withr, =7y = ‘l‘. For a detailed description of this case we refer to [28].

5 Numerical approximation of the coupled problem
In this section we briefly address the numerical solution of the reduced model problem
proposed in this paper. We consider the standard Galerkin finite element approximation
of the coupled problem (3.21), and introduce the discrete subspaces X; C X for the
velocity in the fracture, Mj;, C M for the fracture pressure, and Vj, C V for the Darcy
pressures. Recall the definition of the bilinear form s(-, -) and linear form L g (-) from
(3.25), let H, = Xj x My, x V, C H and consider the discrete problem of finding
h;, € Hj, such that

sthy,zy) = Ly(zy) Vz, € Hy. 5.1

Theorem 3 If0 < § < &%, problem (5.1) has a unique solution, satisfying
1,
h—hyllg < C< inf [h—2zln. (5.2)
S zyeH,),

As a consequence, using standard Py finite elements of degree k > 1 for the spaces
Xn, Vi, and standard Py elements for the space My, and assuming that the solution
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h= (U, P, p) € H ' (yy) x H (y) x H**1(Q 2), we have

]’lk
Ih bl < C— | Ui, + 1P, + 2 Pl | - 63
i=1,2

Proof For any g = (gx, gm,gv) € H, denote g = (gx, —gm, gv). Proceeding as
in the proof of Theorem 1, for 0 < § < 8* and Vz;, € Hj, we have s(zj,,7;) >
Ky znll%, 1Znllz = llznllg. Hence, the discrete solution exists and is unique.
Similarly, for e = h — h;, and any z;, € Hj, owing to the Galerkin orthogonality we
have

K@®)llel7 < s(e.® =s(e,h—%) < Csllelglh — 2.

where Cy is the continuity constant of s. Owing to the estimate K;(§) = K of
Theorem 1, Eq. (5.2) follows. Equation (5.3) follows as well using standard interpola-
tion estimates observing that [|g]|3, = l|gx ”%11(;/) +llgm IIiz(y) +llgv Hiil(szl)le(m)'
We observe that, thanks to the estimate of the stability constant K(§) provided in
Theorem 1, we can quantify the dependence of the error estimate on §. We also point
out that, since every triple of finite element spaces X, x My x Vj, is (inf-sup) sta-
ble, other choices of finite element different from those mentioned in Theorem 3 are
possible. For instance, we could opt for the cheaper P! x P! x P! triple instead of
the P! x PY x P! (k = 1) retaining convergence of order 1 under the same regu-
larity assumptions. In fact, all the numerical computations of the next section were
performed using equal order (linear) continuous finite elements.

Concerning the numerical solution of such of the linear system (5.1), due to the
partitioned structure of the system matrix the use of preconditioned methods for the
Schur complement (see for example [9,10,17,22,32,35,38]) may be of interest. In
particular, diagonal or triangular preconditioners may lead to solve separately a Pois-
son problem in the porous medium and a Stokes problem in the fracture. For both
problems a wide variety of highly effective numerical methods and preconditioners
are available (see for example [4,6,12,27,29,31,33,40,43] for the Darcy problem or
[1,8,11,23,34,42,44] for the Stokes/Brinkman problem).

6 Extension to a network of fractures

The multiscale strategy presented in this work can be easily extended to networks.
For the sake of simplicity, in this section we will describe the modeling of a simple
network constituted by one bifurcating fracture. Consider three domains €2; separated
by a Y-shaped region ¢ as in Fig. 3, where i € I = {0, 1, 2}. We shall use modular
arithmetics in 7, for instance i + 1 = 0 fori = 2. Denote by y'*? the one-dimensional
centerline of the branch between €2; and 2; 11, let y = U;¢; yi , and let y; denote the
interface between €2; and €2 .
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(b)

Fig. 3 a A branching channel Q2 (in gray) with three exterior subdomains ;. b Magnified view of the
bifurcation

As in Sect. 3, we will use local coordinates s, & in €y around each branch yi.
The domain €2 7 is then covered by a global atlas by using a suitable partition of unity.
Using local coordinates, we can easily construct continuous mappings
f € L2(yis1) x L*(yi42) > f € L2(y)) and f € L2 (y) = f € L*(y;), which are
the counterparts of the extension maps described in Sect. 3.1, and provide respectively
values taken on the “opposite” channel—porous medium interface, and on the center-
line of the channel. For instance, the values f on y; can be defined using the partition of
unity to combine the values of f at the corresponding s-points on y'*! and y*2; the
same argument holds for f , which is constructed starting from values on y . In practice
this means that, away from the junction on y;, f is defined by the value of f; 41 or fi42
at the corresponding s-section on y**! or Y2 respectively, while near the junction a
smooth transition between f;;1 and fj, takes place. However, despite the particular
definition of such mappings, the analysis of our model only requires that two constants
C,C> Oex1stsuchthat||f||Lz(y) < C||f||L2(y,+])><L2(y,+|) ”f”LZ(V,) < CIIfIILz(V)
LetI'; p, I'i v C 0€2; berespectively the Dirichletand Neumann boundaries. Consider
the following flow problem: find p = (po, p1, p2) € H! (R0) x H! (1) x H! (R22)
such that

=V -(K;Vpi) =g in Q;,
pi = E on Fi,D,
K;Vpi-n; =h; on Fi,Nv

Opi —aw; -m; = 0P —alp+ (1 —6)(P —p) ony,

with u; = K;Vp;. As in Sect. 3, the coercivity of the corresponding bilinear form a
is easily obtained for 6 € [0, 1] big enough (depending on the value of C, 0).

The critical issue is the reduced model for the network of fractures, whose unknowns
are U = (Up, U, Up) € H'(yY) x H'(y?) x H'(y?) and P = (Py, P1, P») €
L%*(y) = L*(y") x L?(y?) x L*(y?), and in particular the coupling conditions at the
junction.

In the sequel, we will denote by a star* any quantity evaluated at the junction.
We propose to treat the junction as a lumped 0D element, featuring a hydraulic pres-
sure P*. This pressure is actually the Lagrange multiplier associated to the mass
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balance equation at the junction. Assuming that the tangent unit vectors T} at the
endpoints of each branch y corresponding to the junctions are directed outwards, the
mass balance reads

> sur, =0, (6.1)

iel

i.e. the net flow rate entering the OD element is zero. Moreover, the balance of the
momentum requires that the stress at the junction equals P*, that is

ay;
- eia—l + P, =P* Viel (6.2)
S

In this way, the junction boundary of each branch is treated as a Neumann boundary,
the prescribed stress being defined by the incompressibility condition at the junction.
Accordingly, the vector H containing the prescribed stresses at the junction boundaries
in the weak formulation of the reduced model (3.19), is given by H = H* = [ P*¥, 017.
In a compact form, the weak formulation of the reduced model (3.19) for a single frac-
ture is modified straightforwardly as follows: find U = (Up, Uy, Us) € H 1()/0) X
H'(y") x H'(y?), P = (Po, P1, P2) € L*(y) = L*(v") x L*(y") x L*(y?) and
P* € R such that

0 oU oV
/SB—UTRds—l—/(SMU-Vds—f-/Ssa—~—ds
s

s os
Y Y Y
0 2
— | §—V:Pds+ | —PRds
as o
Y Y
—P*(Zéi VZ‘T) +(ZéiU;’f,)R* = L(V, R, pi 3,0, 0. G, H),
iel iel

6.3)

for each V.= (Vo, V1, Vo) € H'(y®) x H'(y)) x H'(y?), R = (Ro, R, R2) €
Lz(y) = Lz(yo) X Lz(yl) X L2(y2) and R* € R, where L is a linear functional w.r.t.
V., R and p, depending on the parameters §, o, Q, G and H. Notice that the integrals
on y are meant to be the sum of integrals on each branch y’. It is easy to see that, for
small §, Theorem 1 can still be invoked to obtain the well-posedness of the coupled
problem.

7 Numerical simulations

In this section we present the results of numerical simulations on a test problem that
refers to the simple geometry made of two unitary squares separated by a fracture
of width § represented in Fig. 4. Consider the reduced model for a fracture in a bi-
dimensional porous media introduced in Sect. 3. We suppose that 21 and €2, contain
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Fig. 4 Reference domain for )
the test problem Dy é; Doy
Dy 0 n Qs Dop

DlB SB DQB

(b)
14 F 10
12F of
10F
8k oF
6F ar
4 2 F
2 0
%0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(©) (@

Fig. 5 a Pressure fields in Qy, €7 and Q¢ for the “Symmetric Irrigation” test problem. Pressure in €2 ¢
is plotted under the assumption that it is a constant function over any given transversal section. b Velocity
fields in €21 and 7. ¢ Average pressure along y. d Average tangential velocity (solid line) and the average
normal velocity (dashed line) along y. Parameters for the simulation are: § =0.1, e=1,0=1, k; =1,
k=1, pp,, =0, pp,, =0, UTSB =10, UTST =0andM=0

an isotropic porous medium with permeability tensors k11 and k1, respectively. In the
following test cases, if not otherwise specified, we adopt the simpler Stokes model for
describing fluid flow in the fracture (referring to Sect. 3, this implies M = 0) and we
suppose there are no external forces or mass sources. Dirichlet boundary conditions
for pressure are imposed on segments D1, and D> g, whereas Dirichlet boundary con-
dition for mean tangential velocity and homogeneous Neumann conditions for mean
normal strain are enforced on St and Sp. On the remaining part of the boundary,
either Dirichlet boundary conditions or homogeneous Neumann boundary conditions
are imposed, depending on the test case considered.

A monolithic direct solver (UMFPACK) was used to solve the algebraic system
(5.1). All the simulations have been performed using the free software FreeFem++
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PR
PR

.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(c) (d)

Fig. 6 a Pressure fields in €21, Q7 and 2 ¢ for the “Symmetric Irrigation” test problem. Pressure in € ¢
is plotted under the assumption that it is a constant function over any given transversal section. b Velocity
fields in 21 and Q. ¢ Average pressure along y. d Average tangential velocity (solid line) and the average
normal velocity (dashed line) along y. Parameters for the simulation are: § =0.1,e=1,60 =1, k| =0.01,
ka=1,pp,, =0, pp,r =0, UTSB =10, UfST =0and M =0

version 3.9.3 Classical unstructured FEM meshes for the solution of the problem are
automatically built by the software using Delaunay triangulation and 50 nodes for
each of the square edges for a total of 6789 degrees of freedom. In case of comparison
with the unreduced model the exact solution is obtained through FEM on a very fine
grid (200 nodes for each of the square edges and 50 nodes for fracture shorter edges
for a total of 140528 degrees of freedom). To assemble the FE matrices for the reduced
model in the fracture we used the special emptymesh command of the software.

Remark 9 In case of a linear fracture in a bi-dimensional domain, our analysis still
holds when y; and y» coincide. Notice that this simplification cannot be applied neither
in the case of a curved fracture nor in that of a vessel in a three dimensional domain.

7.1 Test case 1: irrigation

In this test case we impose a flux entering in the fracture through Sp equal to 10, a
homogeneous Dirichlet condition for the pressure on D1y and D and for the tangen-
tial velocity on S7, and homogeneous Neumann boundary conditions on the pressure
on the remaining part of the boundary. If the pressures imposed on Dy and Dag

3 For more details see http://www.freefem.org/ff++/.
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0 . . . . A A . A

0.0 0.2 04 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
(c) (d)

Fig.7 aPressure fields in 21, 27 and §2 ¢ for the “Brinkman” test problem. Pressure in Q ¢ is plotted under

the assumption that it is a constant function over any given transversal section. b Velocity fields in € and

€27. ¢ Average pressure along y . d Average tangential velocity (solid line) and the average normal velocity

(dashed line) along y. Parameters for the simulation are: § =0.1, e =1,0=1, k1 =1, kr =1, pp,; =0,
PDyg =0, U’SB =10, U,ST =0and M= 101I

are equal, and so are the values k| and k3, the solution is expected to be symmetric.
Besides, as we supposed there is a flow entering through the bottom side of the frac-
ture but not exiting from the top side of the fracture, it is reasonably guessed that the
fluid exits the lateral walls of the fracture and propagates into the porous medium.
This behaviour is correctly reproduced by our reduced model as shown in Fig. 5.
Moreover we would expect that, if the the permeability in one of the two subdomains
containing the porous medium is much higher than in the other one, the fluid will flow
at a higher rate in the domain with higher permeability. Even this situation is correctly
reproduced by the reduced model, as shown in Fig. 6.

7.2 Test case 2: Brinkman

In this test case we consider the same set of boundary conditions used in the previous
test case but we substitute the reduced Stokes model in the fracture with the Brinkman
one. Particularly we adopted M = 10I as the mass matrix of the Brinkman model. As
in the previous case the solution is expected to be symmetric but nonlinear pressure
and tangential velocity are expected in the fracture due to the presence of the dissipa-
tive term. This behaviour is correctly reproduced by our reduced model as shown in
Fig. 7.
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(b)
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Fig. 8 a Pressure fields in Qy, €2 and Q¢ for the “Symmetric Irrigation” test problem. Pressure in €2 ¢
is plotted under the assumption that it is a constant function over any given transversal section. b Velocity
fields in €21 and 7. ¢ Average pressure along y. d Average tangential velocity (solid line) and the average
normal velocity (dashed line) along y. Parameters for the simulation are: § =0.1, e=1,0=1, k=1,
ka=1,pp,, =10, pp,p =0, UTSB =0, UfsT =0andM=0

7.3 Test case 3: filtration in a porous medium in the presence of a fracture

In this test case we impose homogeneous Dirichlet condition for mean tangential
velocity on Sp and St and for pressure on Dpg, whereas we impose a positive
constant pressure equal to 10 on Diz. We expect a continuous flux between Djp
and D;g due to the difference of pressure at the edges. This behaviour is correctly
reproduced by the reduced model as shown in Fig. 8.

7.4 Test case 4: comparison with the results obtained from the unreduced model

We now compare the behaviour of the reduced model and that of the unreduced one
for different values of the width of the fracture § (0.2, 0.1, 0.05, 0.025 ¢ 0.0125) and
the grid size 4 (0.2, 0.1, 0.05, 0.025, 0.0125). Consider again the geometry reported
in Fig. 4 with the following parameters: € = 1,0 = 1,k; = 0.01, k& = 1, pp,, = 20,
PDyp = 20’ PDyr = —20()( + 8/2)7 PDyp = 10’ PDyp = 1O(x - 8/2)’ PDyr = 10’
Urs, = 10and Urg = 5. We considered the relative error for the L* and H' norms of
pressure in | U Qp, L? and H'! norms of mean tangential and normal velocity in the
fracture, and the L? norm of pressure in the fracture. We can highlight the following
behaviours:
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Fig. 9 a Relative error for the L2 norm of pressure in €21 U Q for the problem presented in Sect. 7.4
depending on § for fixed /. b Relative error for the L2 norm of pressure in Q1 U Q7 for the problem
presented in Sect. 7.4 depending on /4 for fixed &

— The relative error is decreasing when # is increased but reaches a plateau (a lower
threshold) due to the intrinsic error of the reduced model. The value of the plateau
depends on the width § of the fracture and decreases when § decreases.

— For fixed h, the relative error decreases with &, however if 4 is too large the error
may instead increase.

The same kind of behaviour occurs for all the norms considered. In case % is small
enough the relative error is under 10 — 15% in case of large fracture width (§ = 0.2,
i.e. one fifth of the characteristic dimension of the porous media) and large 2 (0.1
or 0.2). The relative error decreases significantly to 0.1-5% in case of small fracture
width (6 = 0.025, i.e. 1/40 of the characteristic dimension of the porous media) and
small /# (0.0125). As an example in Fig. 9 we presented the typical dependance of the
relative error (in this case referred to the L? norm of pressure in €21 U £22) on § and h.
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Fig. 10 Reference geometry, permeability values and boundary conditions for the T-Junction test case
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Fig. 11 Velocity fields and streamlines in the porous media for the T-Junction test case

Remark 10 For the test cases presented in Sects. 7.1, 7.2 and 7.3 the results of the
reduced model are excellent. Relative errors for quantities that are non-null in the
exact solution are below 0.005% even in the case of large fracture (§ = 0.1, 1.e. 1/10
of the characteristic dimension of the porous media) and large / (0.2). This behaviour
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Fig. 12 Density plot and contourline of pressure in the porous media for the T-Junction test case

is due to the fact that the solution (pressure in € and 2, and mean pressure, mean
normal velocity and mean tangential velocity in the fracture) of the exact (unreduced)
problem are linear functions.

7.5 Test case 5: T-junction

We now present the results obtained for the problem illustrated in Fig. 10.

Areas featuring different permeability values are considered inside the porous
media; besides, the presence of a T-Junction fractures network allows us to assess the
performance of the extension of our model to the case of a network that has been intro-
duced in Sect. 6. The parameters for this simulationare §; = 0.05,& = land6 = 1. As
shownin Fig. 11, the fluid exits the fractures and propagates into the porous media. This
is due to the fact that the Dirichlet boundary conditions for U, are not balanced (50+ 10
entering and 10 exiting the fracture). In the porous media the fluid flows following dif-
ferent paths depending on the permeability distribution: high permeability zones tend
to attract fluid from the neighbour regions, whereas low permeability or impermeable
regions tend to deviate the fluid apart from themselves. A density plot for the pressure in
the porous media is shown in Fig. 12. Figure 13a—c shows the mean tangential velocity
inside the three fractures. Note that in Fig. 13a—c a positive value of the mean tangen-
tial velocity means that the flow is directed towards the junction whereas a negative
value indicates that the flow is directed towards the external boundaries. Figure 14a—
shows instead the mean pressure inside the three fractures that is almost constant apart
from a small area in proximity of the low permeability channel present in domain
23. With further computations on the numerical solution it is also possible to verify
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Fig. 13 Mean tangential velocities in the fractures yl (a), 7/2 (¢) and y3 (b). Note that yl separates the
domain 2, from the domain 23, y2 the domain €21 from 3, and y3 the domain 1 from ;. Positive
values indicate that the mean velocity is directed towards the T-Junction
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Fig. 14 Mean pressure values in the fractures yl (a), y2 (¢) and y3 (b)

that the mass balance Eq. (6.1) and the stress balance Eq. (6.2) at the T-Junction are
satisfied.

8 Conclusions

In this work we proposed a multiscale model for incompressible fluid flow in porous
media with fractures, based on the coupling of Darcy and Brinkman equations. This
model significantly differs from previously proposed models, since (i) it allows the
treatment of viscous flow inside fractures, and (ii) the interfaces between the fracture
and the porous domain are kept separated, which makes simpler the analysis and the
determination of the coupling conditions in several cases. The well-posedness of the
problem is asserted under the assumption that the fracture or the vessels are small
enough. Suitable numerical approaches to effectively solve the problem have been
provided. Moreover, the simulations highlight the potential of this model to reproduce
the relevant aspects related to the presence of fractures.
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