
Model-Based Validation of QoS Properties of Biomedical
Sensor Networks

Simon Tschirner
Uppsala University

P.O. Box 337
751 05 Uppsala, Sweden

simon.tschirner@it.uu.se

Liang Xuedong
Rikshospitalet University

Hospital and University of Oslo
P.O. Box 1139

N-0316 Oslo, Norway
xuedongl@medisin.uio.no

Wang Yi
Uppsala University

P.O. Box 337
751 05 Uppsala, Sweden

yi@it.uu.se

ABSTRACT
A Biomedical Sensor Network (BSN) is a small-size sensor
network for medical applications, that may contain tens of
sensor nodes. In this paper, we present a formal model
for BSNs using timed automata, where the sensor nodes
communicate using the Chipcon CC2420 transceiver (devel-
oped by Texas Instruments) according to the IEEE 802.15.4
standard. Based on the model, we have used UPPAAL to
validate and tune the temporal configuration parameters of
a BSN in order to meet desired QoS requirements on net-
work connectivity, packet delivery ratio and end-to-end de-
lay. The network studied allows dynamic reconfigurations
of the network topology due to the temporally switching
of sensor nodes to power-down mode for energy-saving or
their physical movements. Both the simulator and model-
checker of UPPAAL are used to analyze the average-case
and worst-case behaviors. To enhance the scalability of the
tool, we have implemented a (new text-based) version of the
UPPAAL simulator optimized for exploring symbolic traces
of automata containing large data structures such as ma-
trices. Our experiments show that even though the main
feature of the tool is model checking, it is also a promising
and competitive tool for efficient simulation and parameter
tuning. The simulator scales well; it can easily handle up to
50 nodes in our experiments. The model checker installed
on a notebook can also deal with networks with 5 up to 16
nodes within minutes depending on the properties checked;
these are BSNs of reasonable size for medical applications.
Finally, to study the accuracy of our model and analysis re-
sults, we compare simulation results by UPPAAL for two
medical scenarios with traditional simulation techniques us-
ing OMNeT++, one of the most used simulation tools for
wireless sensor networks. The comparison shows that our
analysis results coincide with the simulation results by OM-
NeT++ in most cases although there are some differences
caused the simplified wireless channel model in UPPAAL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools and
Techniques; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Design, Performance, Verification

Keywords
Modelling and Verification, Wireless Sensor Networks

1. INTRODUCTION
Wireless Sensor Networks (WSN) [1] contain hundreds or

thousands of sensor nodes equipped with sensing, computing
and communication devices. These sensor nodes may be dis-
tributed in a large area and connected by short-range com-
munication devices over wireless channels. WSNs have a lot
of potential applications, e.g., battlefield surveillance, wild-
life monitoring and medical applications. In these mission-
critical applications, a certain set of QoS requirements on
network performance must be satisfied. This poses a num-
ber of challenges on the design and analysis of WSNs. Due to
the severe constraints on hardware platform, dynamic work-
ing environments, and self-organizing manner, a key design
challenge is to evaluate the network performance without in-
vesting on the hardware platforms and the time-consuming
deployment and measurement.

In this paper, we demonstrate that model-based tech-
niques can be used as an alternative approach to the design
and analysis of WSNs to complement traditional simulation-
based techniques. We shall study Biomedical Sensor Net-
works (BSN), which are small-size WSNs for medical appli-
cations. A BSN may contain tens of sensor nodes with a
specified sink node, distributed over a limited area such as
an operation room or a nursing home. However, due to the
hardware constraints and limited power supply, the range
of wireless communication for each individual node is highly
bounded. Thus a packet often has to be forwarded by a
number of nodes to reach its destination. A concrete appli-
cation scenario of BSNs is described in [11]. On an accident
site difficult to access, there may be many injured persons
and the available medics are limited. In such a situation a
quickly deployed BSN on the accident victims may be used
to collect and transmit vital sign data to a centralized med-
ical server for diagnose and analysis so that proper and ef-
ficient medical operations can be carried out. For example,

69

a sensor node may be used to measure the body tempera-
ture of an injured person with a certain period, and send
the measured data to the sink node immediately or when it
reaches a threshold value. Due to the life-critical nature of
the application, certain QoS requirements on, e.g., network
connectivity and packet delivery ratio must be guaranteed.

The difficulty in designing and analyzing a BSN is not in
dealing with an individual sensor node in the network, which
may be running a simple software. But as the network con-
tains a number of nodes, and these nodes must cooperate
to achieve some common goal, the behavior of such a net-
work is extremely more complicated and difficult to analyze
due to non-determinism. For instance, the network topol-
ogy may be changing dynamically. The sensor nodes may
move, disappear, and new nodes may appear from time to
time. To achieve the common goal, the sensor nodes in a
network need to follow a suitable communication protocol.
The IEEE 802.15.4 [8] standard for wireless communication
is one of such protocols. It offers different modes for com-
munication and algorithms for packet routing if no direct
connection to the sink exists. However, the specification
of the standard covers only the logical behavior of a sen-
sor node in wireless communication. Temporal configura-
tion parameters, such as the active and standby period, of a
node must be determined according to the application and
the QoS requirements to be satisfied. For example, the ap-
plication defines how often a sensor node should transmit
measured data and the necessary bandwidth. The duration
a node spends in the power down mode or in a mode for
packet forwarding can also be carefully set to reduce energy
consumption.

Main Period

Power Down

Node Active
(ready to receive)

Node Transmitting

(a)

���������

�	
	

��
�	

(b)

Figure 1: Timing parameters and operation states
of Chipcon CC2420 based sensor nodes.

Fig. 1(a) illustrates the main timing parameters associ-
ated with a sensor node. It has a main period covering
three main modes: transmission, reception and power down
(sleeping). The behavior of a node repeats over the main
periods. It may, for instance, represent the measurement
frequency of the sensor. The second main parameter is the
active period. Within a main period, a node may stay ac-
tive for some time and then switch to the power down mode.
When it becomes active again, the node may begin to trans-
mit data immediately or after a short delay. Within the
active period, if a node is not transmitting data, it can re-
ceive data. The received data may need to be forwarded,
which brings the node to the transmission mode again. The
technical challenge here is to tune and validate the timing
parameters such that the desired QoS requirements are sat-
isfied. In a more complicated scenario, these parameters
may be changing in an adaptive manner at runtime for each
individual node. In this paper, we shall focus on the case of
fixed parameters.

As an example, we study the Chipcon CC2420 transceiver
[16] developed by Texas Instruments, which is widely used as
the radio communication unit in sensor nodes. The chip im-
plements wireless communication services for sensor nodes,
following the IEEE 802.15.4 standard [8]. We shall develop
a formal model using timed automata for the transceiver. A
BSN based on such chips is modelled as a network of timed
automata. The network studied allows dynamic reconfigura-
tions of the network topology due to the physical movements
of sensor nodes among fixed positions and also their tempo-
rally switching between active and inactive modes. We have
used UPPAAL [10] to find the timing parameters and to
validate QoS properties of the network. Both the simula-
tor and model-checker of UPPAAL are used to analyze the
average-case and worst-case behaviors. To demonstrate the
usefulness of the technique, we have focused on packet deliv-
ery ratio and network connectivity. Our experiments show
that even though the main feature of UPPAAL is model
checking, it is also a promising and competitive tool for effi-
cient simulation and parameter tuning. The simulator scales
well; it can easily handle up to 50 nodes in our experiments.
We have also shown how to formalize and check QoS require-
ments on network connectivity, end-to-end delay and packet
delivery ratio using the UPPAAL query language. Com-
pared with simulations, the model-checker may provide a
guarantee on whether a requirement is satisfied by all possi-
ble behaviors of the network. Our experiments show that the
model checker installed on a notebook with a Celeron 1.73
GHz processor and 1.5GB main memory is able to deal with
BSNs of up to 16 nodes depending on the properties checked.
These are BSNs of reasonable size for medical applications.
Finally, to study the accuracy of our model and analysis re-
sults, we compare the simulation results by UPPAAL with
traditional simulation techniques. The comparison shows
that our analysis results coincide closely with simulation re-
sults by OMNeT++ [19], a widely used simulation tool for
wireless sensor networks.

The paper is organized as follows. Section 2 provides a
brief survey on existing validation techniques for WSNs.
Section 3 describes briefly the behavior of transceivers in
BSNs for wireless communication. In Section 4, we presents
a timed automaton model for the Chipcon transceiver, and
networks consisting of such transceivers. Section 5 shows
how the model and UPPAAL are used for validation of QoS
properties. Section 6 presents compares with traditional
simulation techniques. Section 7 summarizes results and
possible directions for future work.

2. RELATED WORK
Compared with classical simulation-based techniques, for-

mal techniques are much less explored for the analysis of
WSNs. Formal techniques have their limitation with scala-
bility. But they can be used in the early design phase, e.g., to
check the correctness of protocols and to identify worst-case
scenarios for systems of moderate size. Automata-based
techniques have also been used recently for analysis of wire-
less communication networks and protocols. In [6], a proba-
bilistic timed automata model of the CSMA-CA contention
resolution protocol according to the IEEE 802.15.4 standard
is presented, and the PRISM tool is used to verify scenarios
of data transmission in wireless networks. The work com-
pares different configurations and abstractions of the model.
In [5], the LMAC protocol is modelled in timed automata

70

and a number of configurations for networks with four and
five nodes are systematically analyzed using UPPAAL. How-
ever, to our best knowledge, there are no published works
on validating the temporal parameters and QoS properties
of WSNs using a model checker and comparing with existing
simulation techniques for WSNs.

The WSN research community has developed numerous
emulation tools such as Avrora [17], ATEMU [15] and COOJA
[12]. An emulator provides a virtual operating environment
to run the program (or with minor changes) written for a
sensor node platform. For instance, Avrora can be used to
emulate the execution of application program instruction-
by-instruction at the level of clock cycle accuracy for AVR
microcontroller based platforms, e.g., Mica2 sensor node.
Detailed information about e.g., timers, radio, sensors and
serial ports, and stack usage can be investigated, and the
code can be tested and fine-tuned to achieve the best per-
formance. Moreover, AEON [9], a tool built on the top of
Avrora, can be used to evaluate the individual sensor node
energy consumption and predict the lifetime of whole sensor
networks. Emulators often focus on evaluating the behaviors
of individual nodes. For the analysis of network level per-
formance of WSNs, currently the most used validation tech-
niques are based on Discrete Event Simulation. There ex-
ist well-developed simulators NS-2 and OMNeT++. These
simulators have been further extended with accurate simula-
tion models for various physical components and their access
interfaces in WSNs, such as sensors and wireless channels,
e.g., Castalia [14] based on OMNeT++ and SensorSim [13]
based on NS-2. In these extended simulators, the simulation
code (usually written in C or C++), defining the behavior
of sensor nodes and wireless channel configurations, can be
executed in the simulation environment. Due to the accu-
rate modelling of physical components, these tools can be
used to validate distributed algorithms and communication
protocols in a realistic setting.

3. BIOMEDICAL SENSOR NETWORKS
The integration of biomedical sensors with wireless net-

works has led to the emergence of BSNs [7], which have
great potential applications in medical care. In medical
applications, body temperature, blood pressure, electrocar-
diogram (ECG), Pulse Oximeters (SpO2), and heart rate
may be sensed and transmitted to a medical center, where
the data is used for health status monitoring, and medi-
cal analysis and treatment. The main function of BSNs is
to ensure that sensed medical data can be delivered to the
medical center reliably and efficiently without physical wire-
connections. Thus a BSN may contain a number of sensor
nodes with a sink node collecting packets for the medical
center.

3.1 The Chipcon CC2420 Transceiver
A sensor node usually consists of five parts: a micro-

controller for data processing, sensor(s) for data collection,
analog-to-digital converter (ADC) for signal conversion, a
transceiver for wireless communication and a power supply
unit. For the interoperability of sensor nodes from different
manufacturers, IEEE Computer Society proposed the IEEE
802.15.4 standard [8] to define the protocol and compatible
interconnection for data communication devices in WSNs.

One of the widely used hardware transceivers for wireless
communication is the Chipcon CC2420 transceiver, devel-

oped by Texas Instruments according to the IEEE 802.15.4
standard. The CC2420 is a single chip designed for low-
power and low-voltage wireless applications. It provides
250 kbps data rate with high receiving sensitivity (-95dBm).
The reference manual of the CC2420 [16] defines the func-
tionality of a CC2420 transceiver by a state machine. Fig.
1 (b) is an abstract version of the state machine with four
abstract states. The state machine may be seen as the ab-
stract behavior of a sensor node. The state transitions may
be triggered by either command strobes or internal events,
e.g., a timeout. Each of the abstract states represents a
group of states in the original state machine. The Power-
Down state combines the different energy saving states of a
node, which may be entered from any state after the active
period (see Fig. 1(a)) of the node has ended. The working
states of a node during an active period are abstracted as
RX for reception and TX for transmission. RX covers those
states of a node, where it may be searching for a signal on
the channel and can receive a packet at any time. The ab-
stract state TX covers those states of a node for transmitter
calibration, preamble, and frame transmission. If enabled, a
node can acknowledge received packets. This functionality
is represented by AckTX.

The transceivers in a network communicate with each
other according to the protocols specified in the IEEE 802.15.4
standard, including routing, medium access control (MAC),
and physical layer protocols. Routing protocols are used
to define how data packets are delivered to the sink node
through multi-hop communications. The physical layer is
mainly responsible for data transmission and reception, the
clear channel assessment (CCA) for carrier sense multiple
access and collision avoidance (CSMA-CA), and activation
(or deactivation) of the radio transceiver. The MAC sub-
layer handles all accesses to the physical layer channel and
provides a reliable link between two peer MAC entities. For
detailed information on these protocols, we refer to the IEEE
802.15.4 standard [8].

3.2 QoS Requirements
In medical applications where data packets usually con-

tain vital medical information on human health, the network
used for communication should guarantee that these packets
are delivered to the medical center with a certain packet de-
livery ratio for a given time period. This is one of the most
common QoS requirements on BSNs [4]. In this paper, we
will focus on the following QoS requirements:� Network Connectivity: Each node should have a con-

nection with the sink node within a certain time pe-
riod, either connected directly or through multi-hop
communication. There should not exist isolated nodes.� Packet Delivery Ratio: Packet loss can be caused by
channel access failure, packet collision, transmission
error caused by thermal noise and external interfer-
ence. The packet delivery ratio for a given node is the
ratio of the number of packets received successfully at
the sink node by the number of packets sent by the
node.� End-to-End Delay: Data packets must be delivered to
the sink node within a given time delay. The end-to-
end delay is the time difference that a packet is ready
to be sent at a sensor node until it reaches the sink
node through multi-hop communications.

71

4. MODELLING BSNS WITH TIMED AU-
TOMATA

A timed automaton is a finite state automaton extended
with real-time clocks. UPPAAL [10] is a tool box for timed
automata, which provides a modelling language, a simula-
tor and a model checker. In UPPAAL, timed automata are
further extended with data variables of types such as inte-
ger and array etc., and networks of timed automata, which
are sets of automata communicating with synchronous chan-
nels or shared variables, to ease the modelling tasks. The
modelling language allows to define templates to model com-
ponents that have the same control structure, but different
parameters, which is a perfect feature for modelling of sen-
sor nodes. For a tutorial of UPPAAL and timed automata,
we refer to [3, 2].

In this section, we develop an UPPAAL model for a BSN,
as a network of timed automata where each automaton mod-
els a sensor node. As all sensor nodes are implemented with
the same chip for wireless communication, running the same
protocol, we use a template to model the node behavior with
open timing parameters to be fixed in the validation phase.
The network topology is modelled using a matrix declared
as an array of integers in UPPAAL. Elements in the matrix
denotes the connectivity between pairs of nodes.

4.1 Modelling the Transceivers
Assume that the Chipcon CC2420 transceiver as described

earlier is used for wireless communication in a sensor node.
To study the network performance, we model the transceiver
as an UPPAAL template based on the radio control state
machine described in the reference manual [16].

The modelled template is shown in Fig. 2. For a detailed
description of data, clock variables, names of states etc. used
in the template, we refer to [18]. Most of the states are of
the same name as the radio control states in the original
state machine for the transceiver. The functionality of the
transceiver is modelled by the state transitions according to
the reference manual. The timing behaviors, as shown in
Fig. 1, are formalized with clock constraints on transitions
where the two important timing parameters, the main pe-
riod (P_M) and the active period (P_W), are used as clock
bounds.

In the real hardware, the main period will be started by an
external signal from the sensor with a fixed period P_M. The
signal indicates that there is a packet to send. We model
this simply by a transition with a clock constraint enforcing
the periodic behavior and a buffer assigned with the identity
of the packet to be sent. Furthermore, in the real hardware,
a node may send an acknowledgement after a successful re-
ception of a packet depending on the configuration of the
node. This is implemented implicitly by the dynamic rout-
ing scheme as described in the following subsection. Note
also that we have added two extra states (i.e. PreTX and
Backoff) to the part of the model concerning packet trans-
mission. These states model the CSMA-CA back-off period
in the communication protocol as described earlier.

4.2 Modelling the Network and Packet Trans-
mission

The network topology – the spatial distribution of the sen-
sor nodes – represents the direct connections between the
nodes. It is the task of the routing protocol to find a path

for a packet from one node to the sink. We model the net-
work topology using a matrix (topology) referred as topol-
ogy matrix. The dimensions of this matrix correspond to the
number of nodes in the network. Every element stands for
the connectivity from one node (row index) to another (col-
umn index). If the matrix should map the topology, negative
values can be used, for instance, to represent that a pair of
nodes is not connected and positive values can reflect the dis-
tance or signal strength between the corresponding nodes.
The matrix can also be used to store routing information.
In this case, some values can stand for a connection, where
a node is in range but not on a routing path.

Using the topology matrix, it is easy to model a fixed
routing scheme. The matrix also allows us to model dy-
namic reconfigurations of the network topology due to the
movement of a node or the change of routing information at
runtime. To study dynamic reconfigurations, we have mod-
elled controlled flooding which is a dynamic routing scheme.
A node broadcasts a packet to all its neighbors and remem-
bers every received packet to control this flooding. If a node
receives a packet that has been forwarded earlier, it will be
ignored, which avoids cyclic forwarding. The model con-
tains a matrix (ignore) with which every node remembers
the packets it has received so far. The same matrix is used
to remember if an acknowledgement is expected or received.
In addition to dynamic routing, the flooding scheme offers
the opportunity for an implicit acknowledgement: when a
node has transmitted a packet, it will most likely receive it
again after a short while, because the receiver(s) will broad-
cast it again. When a defined time after transmission has
passed, a node will call a function (ack) to check if a packet
has to be retransmitted.

To model packet transmission and transmission errors, we
model only the transmission time given by the length of the
packets, but abstract away from their contents. Every node
has an unique identifier and if a node emits a packet, it is
named by the identifier of the node. The identifier is also
used to determine the length of the packet (P_S[ID]). To
transmit a packet, a node uses a function named send. The
function walks through the topology matrix and updates the
incoming signal of every node in range, where the incoming
signals are modelled by an array named signal. Packet
collisions that lead to packet losses are modelled with help
of the signal array. If a node starts a transmission while
another node in range is receiving a signal, the corresponding
element in the signal array will be set to a negative value
meaning that the packet is corrupted.

5. VALIDATION USING UPPAAL
We consider a BSN as shown in Fig. 3, where the S-node

is the sink node and the other nodes are modelled by the
UPPAAL template presented above, with randomly chosen
initial values for the timing parameters as listed in Table 1.
The sink node is modelled as a simple automaton. It is not
shown in the presentation as its essential behavior is only
to accept packets from the other nodes and keep track of
the number of packets received for each node. The network
topology is chosen randomly. We shall study the network
performance and show how to tune the timing parameters
such that certain QoS requirements are satisfied.

5.1 Symbolic Simulation
Our goal is to use UPPAAL to simulate the behavior of

72

TX_PREAMBLE

Backoff
y<=BACK[bo_cnt]
and x<=P_W

TX_CALIBRATE
y<=1

Initial_delay

x<=D

PreRX

PreTX

RX_FRAME
x<=P_W and
y<=P_S[tmp_sig]

RX_SFD_SEARCH
x<=P_W &&
y<=bound

TX_FRAME y<=P_S[buffer[ID]]

PowerDown
x<=P_M

y>=bound
bound:=ack(ID),
y:=0

signal[ID]>0 and
ignore[ID][signal[ID]]==1
go?
ignore[ID][signal[ID]]:=2

y>=1
send(ID)

x>=P_W bo_cnt:=0,y:=0

signal[ID]!=0 and
bo_cnt >= MAX_BO

buffer[ID]:=0,
bo_cnt:=0, y:=0

signal[ID]!=0 and
bo_cnt < MAX_BO
bo_cnt++, y:=0

signal[ID]==0
bo_cnt:=0,y:=0

x>=D
buffer[ID]:=ID,
x:=0, y:=0

topology[tmp][ID]<=0

topology[tmp][ID]>0
tmp_sig:=signal[ID]

x>=P_W
buffer[ID]:=0

start[ID]!
y:=0

signal[ID]>=0
stop[tmp]?

received[tmp_sig]++,
buffer[ID]:=tmp_sig

signal[ID]<0
go?
buffer[ID]:=0

buffer[ID]>0
go?

y:=0

i : int[0,N-1]

buffer[ID]==0 and
signal[ID]>0 and
ignore[ID][signal[ID]]==0

start[i]?
tmp:=i,
y:=0

x>=P_W and y>=P_S[buffer[ID]]
stop[ID]!
y:=0,
reset_signal(ID)

x>=P_M
buffer[ID]:=ID,
ignore[ID][ID]:=0,
x:=0, y:=0

x>=P_W

y>=P_S[buffer[ID]] and x<P_W
stop[ID]!

reset_signal(ID)

Figure 2: An UPPAAL template for wireless sensor nodes based on the Chipcon CC2420 Transceiver

the network based on the timed automaton model. For a
detailed description of the UPPAAL simulator, we refer to
[3, 2]. To enhance the scalability of the simulator, we have
implemented a new version of the simulator optimized for
exploring symbolic traces of models containing large data
structures such as matrices. We have observed that the sim-
ulator scales well; for example we can easily handle networks
with 50 nodes (and more), which is a big enough number for
BSNs applications. However, for the presentation, we con-
sider only the network shown in Fig. 3.

The simulator may be used to explore symbolic traces of a
model. A symbolic trace is a sequence of transitions between
symbolic states, corresponding to a collection of possible ex-
ecutions of the system modelled. A symbolic state contains
the current control state, current values of data variables
and possible clock values represented as clock constraints.
As the symbolic states record all the changes of variables and
clocks, they can be used to calculate performance metrics to
validate all the QoS requirements summarized in section 3.
For example to calculate the end-to-end delay for a packet,
one may reset a clock in the original model to remember
the time point when it is sent. When a symbolic state is
found where the packet is delivered successfully, the bounds

of the same clock in the found state represent the best- and
worst-case delays for the packet.

Parameter Tuning
Now we show how to use the simulator to find timing pa-
rameters such that given QoS requirements are satisfied. We
focus on simulations for packet delivery ratios. We simulate
the network for 20.000 time units in which the nodes will
complete between 65 and 110 main periods. The simulation
takes about four minutes. The results are shown as diagrams
in Fig. 4, where each curve illustrates the packet delivery
ratio of a node, which is changing with time.

From the diagrams, we note that after a startup period,
the packet delivery ratios for all nodes are stabilizing above a
certain value, which indicates that the network performance
is stable. For example, the packet delivery ratio stays above
80% for node 5, and 7 to 15, above 60% for node 6, above
50% for node 2 to 4, and under 40% for node 1, which is the
worst of all.

Now if some or all the packet delivery ratios are not satis-
factory according to the desired QoS requirements, we may
tune the timing parameters of the nodes to influence or im-
prove the network performance. Consider, for example, the

73

�

�

���

�

��

��

�

��

�

��

�

�

��

	

Figure 3: A random topology of a BSN with 15 sen-
sor nodes.

Table 1: Timing parameters of the sensor nodes in
Fig. 3.

Initial Parameters Improved Parameters
Node Main Pe-

riod
Active
Period

Main Pe-
riod

Active
Period

1 180 120 180 120
2 240 160 240 160

3 240 160 240 235
4 300 200 300 200

5 300 200 300 290
6 200 100 200 100
7 200 100 200 100
8 240 160 240 160
9 300 200 300 200
10 300 200 300 200
11 180 120 180 120
12 200 100 200 100
13 240 160 240 160
14 300 200 300 200
15 300 200 300 200

QoS requirement: “the delivery ratio for all nodes should be
above 60%”. If we compare the curves with the positions of
the nodes on Fig. 3, we see that node 3 and 5 are bottle-
necks for the connection of node 1,2, and 4 to the sink. So
we may increase the duration of the active period of node
3 and 5, and hopefully these nodes will be able to forward
packets most of the time.

The two new parameters for node 3 and 5 are given in
Table 1 where the new ones are in boxes with the rest un-
changed. With the new set of parameters, the packet deliv-
ery ratios from simulation are shown in Fig. 5. We notice an
increase of about 10 up to 40 percentage points for the deliv-
ery ratio of node 1 to 4, and the delivery ratios for all nodes
are stabilizing above 60% satisfying the above requirement.
However, we should be aware that the increased active peri-
ods may lead to a higher energy consumption; one needs to
find the right trade-off. In this paper, we will not consider
QoS requirements on energy consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

P
ac

ke
t D

el
iv

er
y

R
at

io

Time Units

Node1
Node2
Node3
Node4
Node5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

P
ac

ke
t D

el
iv

er
y

R
at

io

Time Units

Node6
Node7
Node8
Node9

Node10
Node11
Node12
Node13
Node14
Node15

Figure 4: Simulation results for the network in Fig.
3 with initial timing parameters given in Table 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

P
ac

ke
t D

el
iv

er
y

R
at

io

Time Units

Node1
Node2
Node3
Node4
Node5
Node6
Node7
Node8
Node9

Node10
Node11
Node12
Node13
Node14
Node15

Figure 5: Simulation results for the network in Fig.
3 with improved parameters in Table 1.

74

Figure 6: Example movements of mobile nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

P
ac

ke
t D

el
iv

er
y

R
at

io

Time Units

Node6
Node7
Node8
Node9

Node10
Node11
Node12
Node13
Node14
Node15

Figure 7: Simulation results for the network with
mobile nodes as shown in Fig. 6 and initial param-
eters given in Table 1.

Dynamic Network Topologies
Note that the above simulations are dealing with dynamic
network topology in the sense that, at any time point, some
of the nodes may switch to the power-down state and discon-
nect some of the connections such that the network topology
changes. The network topology may also change because of
the movements of sensor nodes. To study the influence of
this type of changes, we may use a timed automaton to ma-
nipulates the topology matrix to model the movement of
mobile nodes.

We have studied the influence of movements of mobile
nodes on the behavior of the whole network.

For example, we allow node 2, 7, and 11 to move according
to Fig. 6. The simulation result is shown in Fig. 7. A com-
parison of Fig. 7 with Fig. 4 shows no essential differences
in the packet delivery ratios for all nodes except for node 6.
The reason is obvious: depending on the movement of node
7, node 6 may be isolated from all other nodes. We also see
that the turning points follow the time points of movements
for node 7.

5.2 Verification of QoS Properties
The networks we are dealing with are extremely nonde-

terministic; any node can communicate with any other node

directly or indirectly at any time. With a simulator, we can
explore only possible behaviors to study the average-case
performance of a network. To reveal the worst-case scenarios
and to check that some requirements are guaranteed by all
possible behaviors of a network, we use the model checker of
UPPAAL. However the goal here is not to show how power-
ful the tool is, rather to show that model checking is a useful
technique to complement simulations. We shall use the UP-
PAAL query language [3, 2] to formalize QoS requirements
concerning network connectivity and packet delivery ratio.

We have used UPPAAL installed on a notebook (with a
Celeron 1.73 GHz processor and 1.5GB main memory) to
check the formalized requirements. The model checker can
handle networks with 5 up to 16 nodes depending on the
properties to be checked. The verification results are sum-
marized in Table 2. More examples of QoS requirements
verified can be found in [18]. We note that for most of the
requirements listed, the verification times are within min-
utes.

Network Connectivity
As described in Section 3, for BSNs, we are interested in
network connectivity to guarantee that each node is con-
nected with the sink node. For this purpose, in the model,
we have used an array received. Each element of the array
(initialized with 0) is a counter associated with a node and
incremented whenever the sink receives a packet emitted by
the according node. For a node with identity X, we use the
query A<>received[X]>0 to prove or disprove, whether X
can eventually establish a connection to the sink. This al-
lows us to find improper timing parameters which result in
that some nodes are isolated.

Note that A<>received[X]>0 states that there will be
a connection eventually without a time bound. To esti-
mate the maximal delay, we use the number of main periods
of node X. We modify the model such that the counter
periods[X] is reset whenever the sink receives a message
from node X. Then we can use the query A[]periods[X]<Y

to prove that node X is connected to the sink at least withinY periods. The array for the number of received packets has
no impact on the properties verified here and thus it can be
declared as a meta variable, i.e. that these variables do not
extend the number of states that have to be explored during
verification.

Table 2: Example verification results.
Property Network

Size
CPU Time
(Sec)

Memory
(MB)

Connectivity 11 Nodes 315.67 73.45
Bounded Connec-
tivity

6 Nodes 157.71 36.7

Packet Delivery
Ratio

6 Nodes 252.80 38.6

Packet Delivery Ratio
Recall that the packet delivery ratio of a node is the ra-
tio of the number of packets delivered to the sink by the
number of packets sent from the node, and the later is the
number of main periods. These numbers are denoted by the
counters received[X] and periods[X] in the model. Ide-
ally we may want to check that over time, the packet de-

75

livery ratio of certain packets is over 90%. Unfortunately,
in UPPAAL we can not use the query language to specify
such properties concerning mean values or duration prop-
erties. However, we may run a number of checks to ap-
proximate the packet delivery ratio. We may check at leastN out of M packets sent will be delivered successfully us-
ing the query, A[]periods[X]>=M imply received[X]>=N.
For instance, for ten packets sent, we may check whether
a packet delivery ratio of at least 90% is reached using
the query A[]periods[X]>=10 imply received[X]>=9. We
reset periods[X] and received[X] when the bounds are
reached to assure that the property is not only satisfied af-
ter the first ten periods, but whenever ten periods have been
completed. We may change the bounds on the numbers of
packets sent and received to achieve better approximations.

End-to-End Delay
For each packet, we may associate a clock which is reset
when the packet is sent and then check the lower and upper
bounds of the clock when the packet is delivered. We may
get a lower bound in this way, but as the packet may be lost
the upper bound will be infinity in general.

However, we can indeed induce an upper bound from the
analysis result on packet delivery ratio. For example, if one
out of two packets sent will be delivered successfully, the
worst case delay is bounded by the length of two main pe-
riods. Note that it is assumed that every main period, a
sensor node will send one packet. Thus if some important
data is twice in two packets, the data will be delivered for
sure within two main periods.

6. COMPARISON WITH DISCRETE EVENT
SIMULATION

One of the main concerns in applying model-based tech-
niques is to develop faithful models of systems to obtain
faithful analysis results. To study the accuracy of our model,
we compare simulation results by UPPAAL with the tradi-
tional discrete event simulator OMNeT++, which is widely
accepted in the WSN community. We shall see that for two
typical application scenarios of BSNs, the UPPAAL simu-
lation results for packet delivery ratio using our model co-
incide closely with simulation results by OMNeT++. How-
ever, we have also observed some minor differences due to
the simplifications in the modelling of packet transmissions
and collisions.

6.1 Simulation Settings
To ease the comparison, we study two fixed network topolo-

gies as shown in Fig. 6.2(a) and 6.2(b), corresponding to two
typical application scenarios of BSNs in medical care. The
first topology for networks with one-hop communication is
usually used for in-field patient monitoring where the sen-
sor nodes are deployed in a small area, while the second
for multi-hop communication is often used in a large area,
where data packets cannot be transmitted to the medical
server directly.

In the study with OMNeT++, we use the Castalia WSN
simulator [14]. The WSN simulator is configured to follow
the physical layer and MAC sublayer protocols as defined
in the IEEE 802.15.4 standard. For sensor nodes, we adopt
two types of sensors, ECG and temperature sensors with
fixed sampling rate and packet size, which are often used in

medical care. The ECG sensors emit 5 packets with a size
of 100 bytes every second, and the temperature sensors emit
1 packet with a size of 2 bytes every second.

In the study with UPPAAL, the timing parameters includ-
ing the main periods and transmission delays of our model
for the Chipcon CC2420 transceiver are initialized according
to the sampling rate and packet size of ECG and tempera-
ture sensors. The topology matrix is fixed according to the
network topologies shown in Fig. 6.2(a) and 6.2(b).

Table 3 lists all necessary parameters for simulating sensor
networks that are IEEE 802.15.4 compliant. These parame-
ters are used in the configuration of the WSN simulator for
OMNeT++, and our transceiver model for UPPAAL simu-
lation. In particular, macMinBE is the initial value of backoff
exponent, aMaxBE is the maximum number of backoff expo-
nent, and macMaxCSMABackoffs is the maximum number of
backoffs that the CSMA-CA algorithm will attempt before
declaring a channel access failure. Note that for simplicity,
we have used a fixed packet overhead for all packets on physi-
cal, MAC and application layer. Note also that for UPPAAL
simulation, we have used a simplified collision model – listed
as simplified in the table – meaning that if more than one
sensor nodes within communication range transmit simulta-
neously, collision happens and all the packets are corrupted.

Table 3: Simulation parameters
Parameters OMNeT++ UPPAAL
channel model log shadowing

wireless
fixed bit error
rate

path loss exponent 2.4 N/A
collision model additive inter-

ference
simplified

data transmission rate 250 kbps 250 kbps
simulation time 300 s 300 s
packet overhead 32 bytes 32 bytes
macMinBE 3 3
aMaxBE 5 5
macMaxCSMABackoffs 3 3

6.2 Experiment 1: one-hop Communication

1

4

S

5

3

2

6

8

7

(a)

1 4 S

5

32

(b)

Figure 8: The different topologies that were used to
compare simulation results obtained by OMNeT++
and UPPAAL.

We fix a one-hop communication network with the topol-
ogy shown in Fig. 6.2(a). In the network, all nodes including
the sink node are one-hop neighbors to each other, which
means that each node is connected directly to the sink node

76

and all nodes can communicate with each other with one-
hop communication. Node 1, 3, 5, 7 are ECG sensors and
node 2, 4, 6, 8 are temperature sensors. Node S is the sink
node to collect data packets sent by the sensors at fixed rate
as described above.

Table 4 lists the Packet Delivery Ratio for each node ac-
cording to OMNeT++ and UPPAAL simulations, respec-
tively.

Table 4: Packet Delivery Ratios from Simulations
with OMNeT++ and UPPAAL for the one-hop
communication network shown in Fig. 6.2(a).

Sensor OMNeT++ (in %) UPPAAL (in %)
Node 1 96.1 99.6
Node 2 96 95.7
Node 3 96.2 99.7
Node 4 95 99.0
Node 5 95.7 99.6
Node 6 96.3 97.3
Node 7 95.9 99.7
Node 8 96.7 97.7

6.3 Experiment 2: Multi-hop Communication
Fig. 6.2(b) shows a multi-hop communication network.

Node S is the sink node, node 1 and 2 are ECG sensors,
node 3, 4 and 5 are temperature sensors, respectively. Data
packets are routed to the sink from node to node by multi-
hop transmission.

Table 5 lists the packet delivery ratio for each node ac-
cording to simulations by OMNeT++ and UPPAAL respec-
tively.

Table 5: Packet Delivery Ratios from Simulation
with OMNeT++ and UPPAAL for the multi-hop
communication network shown in Fig. 6.2(b).

Sensor OMNeT++ (in %) UPPAAL (in %)
Node 1 75.2 97.5
Node 2 84.4 97.7
Node 3 91 97.7
Node 4 95 100
Node 5 86 92.8

6.4 Comparison and Discussion
In the first experiment, the results of delivery ratio for

each node from UPPAAL and OMNeT++ are similar, in-
dicating that the UPPAAL model is faithful in capturing
the behavior of the CC2420 transceiver compared with OM-
NeT++ simulations. In the second experiment, for both
OMNeT++ and UPPAAL, the delivery ratios for node 4
(one hop to sink) are 95% and 100% respectively. Other
nodes through multi-hop communication perform worse than
node 4 with only one hop. The main difference is that in
OMNeT++ the performance of node 1 is the worst, while in
UPPAAL the performance of node 5 is the worst. Again the
main reason is that the simplified model of wireless chan-
nels in UPPAAL, makes the delivery ratio of a node depend
less on the number of hops to the sink; whereas the wire-
less channel is modelled in a more realistic way than that in
OMNeT++. This is explained as follows.

In a WSN, whether a packet can be received successfully
by a receiver depends on the Signal to Noise Ratio (SNR),
which depends dynamically on the transmitting power, re-
ceiving sensitivity, thermal noise, propagation loss, and in-
terferences. For multiple concurrent transmissions, even
nodes that are not in the same communication ranges may
interfere each other by increasing the background noise level.
That is, there are still interferences even though no collision
occurs.

For OMNeT++, the results are quite reasonable. Node 1
needs four hops to the sink, during the relaying procedure,
packet loss can be caused by channel access failure, colli-
sion, and interference from multiple concurrent transmis-
sions. Multi-hop has significant impact on the performance
of packet delivery ratio. This explains why the delivery ratio
for node 1 with four hops to the sink is not as good as node
5 with one hop less.

For UPPAAL, we observe that the delivery ratio for node
1 is better than for node 5. The reason is as follows: as
the model for wireless channels considers only collision and
fixed transmission bit error, propagation loss and interfer-
ences due to concurrent transmissions are abstracted away,
the channel appears to be perfect if there is no collision.
Thus, multi-hop communication has less impact on network
performance than it should be. However, the possibilities of
collision are modelled close to reality and thus have a rela-
tively higher impact on the packet delivery ratio. From the
network topology, we see that collision occurs most likely be-
cause node 5 sends a packet to node 3 simultaneously with
node 2, which is either transmitting its own packet or for-
warding a packet of node 1. Because this collision can only
happen, when node 5 is transmitting a packet, node 5 will
lose the same number of packets as node 1 and 2 together.
Due to the different frequencies for packet emissions of node
1, 2, and 5, within the same time period, node 1 and 2 emit
considerably more packets than node 5, thus the number of
lost packets of node 5 has a higher impact on the accord-
ing packet delivery ratio than the number of lost packets for
node 1 and 2.

From the simulation results, we may conclude that our
model for the CC2420 transceiver is reasonably accurate
compared with the WSN simulator of OMNeT++. While
the wireless channel model should be improved in UPPAAL
– especially for networks with multi-hop communication.
However, since the simulation requirements and applied sit-
uations are different, certain abstraction must be made to
achieve the trade-off between accuracy and verification ca-
pabilities.

7. CONCLUSIONS AND FUTURE WORK
The main contributions of this paper include: (1) We

have developed a formal model using timed automata for the
Chipcon CC2420 transceiver, which is one of the most used
hardware chips for wireless communication in sensor net-
works. To our best knowledge, this is the first model for such
transceivers. We believe that the model can be extended eas-
ily to model and validate other transceivers (or wireless com-
munication devices), and communication protocols, that are
not necessarily limited to be IEEE 802.15.4 compliant. (2)
We have shown how to use the UPPAAL tools to tune and
validate the timing parameters of the sensor nodes such that
the desired QoS requirements are satisfied. (3) To study the
accuracy of our model and analysis results, we have com-

77

pared the simulation results by UPPAAL with traditional
simulation techniques using OMNeT++, a widely used sim-
ulation tool for wireless sensor networks. The comparison
shows that our analysis results coincide with simulation re-
sults by OMNeT++, that are different only due to the sim-
plified channel model in UPPAAL. We also observed that
using OMNeT++, it is very time-consuming to implement
the simulation code in C++, which has the advantage to be
more precise for simulating low-level implementation details;
whereas with UPPAAL simulations, one can easily tune the
model to study network-level performance in the early de-
sign phase.

As future work, we shall study the other types of QoS re-
quirements on energy-consumption and bandwidth as well
as jitter i.e., the variation of delay experienced by the sink
node. We shall also investigate the mobility degree of a BSN
and its impact on QoS properties. An extension of the chan-
nel model used in the UPPAAL systen is an important issue
to improve its accuracy, especially for properties like packet
delivery ratio. Another interesting direction for future work
is to develop a logic and extend the UPPAAL model checker
to fully capture QoS requirements studied in this paper and
the other requirements on energy consumption and network
throughput for medical applications [4]. The challenge is to
deal with properties concerning mean values such as “over
the life time of a network, the energy-consumption per time
unit is within a given bound”.

8. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: a survey.
Computer Networks, 38(4):393–422, 2002.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on uppaal. In M. Bernardo and F. Corradini, editors,
Formal Methods for the Design of Real-Time Systems:
4th International School on Formal Methods for the
Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

[3] J. Bengtsson and W. Yi. Timed Automata: Semantics,
Algorithms and Tools. Lecture Notes on Concurrency
and Petri Nets, LNCS 3098:87–124, 2004.

[4] D. Chen and P. K. Varshney. QoS support in wireless
sensor networks: A survey. In Proc. of the 2004
International Conference on Wireless Networks
(ICWN’04), pages 227–233, Las Vegas, Nevada, USA,
June 2004. CSREA Press.

[5] A. Fehnker, L. F. W. van Hoesel, and A. H. Mader.
Modelling and verification of the lmac protocol for
wireless sensor networks. Technical Report
TR-CTIT-07-09, Centre for Telematics and
Information Technology, University of Twente,
Enschede, February 2007.

[6] M. Fruth. Probabilistic model checking of contention
resolution in the ieee 802.15.4 low-rate wireless
personal area network protocol. In T. Margaria,
A. Philippou, and B. Steffen, editors, Proceedings of
the 2nd International Symposium on Leveraging
Applications of Formal Methods, Verification and
Validation (ISoLA 2006), Paphos, Cyprus, November
2006.

[7] Y. Guang-Zhong, editor. Body Sensor Networks.
Springer, New York, 2006.

[8] IEEE Standard 802.15.4. Wireless Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), 2003.

[9] O. Landsiedel, K. Wehrle, B. Titzer, and J. Palsberg.
Enabling detailed modeling and analysis of sensor
networks. Praxis der Informationsverarbeitung und
Kommunikation, 28(2):101–106, April 2005.

[10] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, October 1997.

[11] X. Liang, B. Østvold, W. Leister, and I. Balasingham.
Credo: Modeling and analysis of evolutionary
structures for distributed services – user driven
requirements, March 2007. Diliverable D6.1, EU IST
project, number 33826.

[12] F. Osterlind, A. Dunkels, J. Eriksson, N. Finneand,
and T. Voigt. Cross-level sensor network simulation
with COOJA. In Proc. of the 31st IEEE Conference
on Local Computer Networks, pages 641–648, Tampa,
Florida, USA, November 2006.

[13] S. Park, A. Savvides, and M. B. Srivastava. SensorSim:
a simulation framework for sensor networks. In Proc.
of the 3rd ACM international workshop on Modeling,
analysis and simulation of wireless and mobile systems
(ACM MSWiM 2000), pages 104–111, Boston,
Massachusetts, USA, August 2000.

[14] H. N. Pham, D. Pediaditakis, and A. Boulis. From
simulation to real deployments in WSN and back. In
Proc. of the 8th IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks
(WoWMoM’07), pages 1–6, Helsinki, Finland, June
2007.

[15] J. Polley, D. Blazakis, J. McGee, D.Rusk, and
J. Baras. ATEMU: a fine-grained sensor network
simulator. In Proc. of the 1st IEEE Communications
Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON’04), pages
145–152, Los Angeles, California, USA, October 2004.
IEEE Press.

[16] Texas Instruments Inc. 2.4 GHz IEEE 802.15.4 /
ZigBee-Ready RF Transceiver (Rev. B), CC2420 data
sheet, March 2007.

[17] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise
timing. In Proc. of the 4th International Symposium
on Information Processing in Sensor Networks
(IPSN’05), pages 477–482, Los Angeles, California,
USA, April 2005. IEEE Press.

[18] S. Tschirner, L. Xuedong, and W. Yi. Model-based
validation of qos properties of biomedical sensor
networks. Technical report, Department of
Information Technology, University of Uppsala, 2008.

[19] A. Varga. The OMNeT++ discrete event simulation
system. In Proc. of the 15th European Simulation
Multiconference (ESM’01), pages 319–324, Prague,
Czech Republic, June 2001. SCS.

78

