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PREFACE

Ts1s book is intended to provide an introduction to those parts of Astronomy
which require dynamical treatment. To cover the whole of this wide sub-
ject, even in a preliminary way, within the limits of a single volume of
moderate size would be manifestly impossible. Thus the treatment of bodies
of definite shape and of deformable bodies is entirely excluded, and hence no
reference will be found to problems of geodesy or the many aspects of tidal
theory. Already the study of stellar motions is bringing the methods of
statistical mechanics into use for astronomical purposes, but this development
is both too recent and too distinct in its subject-matter to find a place here.

Nevertheless the book covers a wider range of subject than has been
usual in works of the kind. Thereby two advantages may be gained. For
the reader is spared the repetition of very much the same introductory matter
which would be necessary if the different branches of the subject were taken
up separately. But in the second place, and this is more important, he will
see these branches in due relation to one another and will realize better that
he is dealing not with several distinct problems but with different parts of
what is essentially a single problem. In an introductory work it therefore
seemed desirable to make the scope as wide as was compatible with a reason-
able unity of method, the more so on account of the almost complete absence
of similar works in the English language.

The first six chapters are devoted to preliminary matters, chiefly connected
with the undisturbed motion of two bodies. These are followed by five
chapters VII to XI dealing with the determination of orbits. This section is
intended to familiarize the reader with the properties of undisturbed motion
by explaining in general terms the most important and interesting applica-
tions. It is in no sense complete and is not intended to replace those works
which are entirely devoted to this subject. Otherwise it would have been
necessary to deseribe in detail such admirably effective methods as Professor
Leuschner’s and to include fully worked numerical examples. Here, as else-
where, the aim has been to give such an account of principles as will be
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instructive to the reader whose studies in this branch go no further, and at
the same time one which will help the student to understand more easily
the technical details to be met with in more special treatises. Though the
actual details of practical computation are entirely excluded, the fact that all
such methods end in numerical application has by no means been overlooked.
A distinet effort has been made to leave no formulae in a shape unsuitable
for translation into numbers. The student who feels the need will have no
difficulty in finding forms of computation in other works. At the same time
the reader who will take the trouble to work out such forms for himself will
be rewarded with a much truer mastery of the subject, though he should not
disdain what is to be learnt from the tradition of practical computers.

An outline of the Planetary Theory is given in the seven chapters XII to
XVIIL. The first of these deals exclusively with the abstract dynamical
principles which are subsequently employed. It is hoped that this synopsis
will prove useful in avoiding the necessity for frequent reference to works on
theoretical mechanics. The reader to whom the methods are unfamiliar and
who wishes to become more fully acquainted with them mé,y be referred to
Professor Whittaker’s Analytical Dynamics, where he will also find an intro-
duction to those more purely theoretical aspects of the Problem of Three
Bodies which find no place here. To those who are familiar with these
principles in their abstract form only the concrete applications in the follow-
ing chapters may prove interesting. A chapter on special perturbations is
included. Here, as in the determination of orbits, the need for numerical °
examples may be felt. To have inserted them would have interfered too
much with the general plan of the book, and they will be found in the more
special treatises. But it was felt that the subject could not be omitted
altogether, and a concise and fairly complete account of the theory has there-
fore been given. It may seem curious that with the development of
analytical resources the need for these mechanical methods becomes greater
rather than less, but so it is.

Chapter XIX on the restricted problem of three bodies is intended as an
introduction to the Lunar Theory contained in Ch:apters XX and XXI. The
division of these two chapters is partly arbitrary, for the sake of preserving a
fair uniformity of length, but it coincides roughly with the distinction
between Hill's researches and the subsequent development by Professor
Brown. In the second a low order of approximation is worked out, and it is
hoped that this will serve to some extent the double purpose of making the
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whole method clearer and of pointing out the nature of the principal terms,
which are apt to be entirely hidden by the complicated machinery of the
systematic development.

The rotation of the Earth and Moon is discussed in Chapters XXII and
XXIII. The treatment of precession and nutation is meant to be simple
and practical, and the opportunity is taken to add an account of the astro-
nomical methods of reckoning time in actual use. In the final chapter of the
book the theory of the ordinary methods of numerical calculation is explained.
This is necessary for the proper understanding of Chapter X VIII, but it also
bears on various points which occur elsewhere. Numerical applications find
no place in this work. But let the mathematical reader be under no mis-
apprehension. The ultimate aim of all theory in Astronomy is seldom
attained without comparison with the results of observation, and the medium
of comparison is numerical. Hence few parts of the theory can be regarded
as complete till they are reduced to a numerical form. This is a process
which often demands immense labour and in itself a quite special kind of
skill. It is just as essential as the manipulation of analytical forms.

Originality in the wider sense is not to be expected and indeed would
defeat the object of the book, which aims at making it easier for the student
to read with profit the larger and more technical treatises and to proceed
to the original memoirs. A certain freshness in the manner of treatment is
possible and, it is hoped, will not be found altogether wanting. Few direct
references have been given as a guide to further reading, and this may be
regretted. But the opinion may be expressed that for the reader who is
qualified to profit by a work like the present, and who wishes to go further,
the time has come when he should acquire, if he has not done so already, the
faculty of consulting the library for what he wants without an apparatus of
special directions. Sign-posts have their uses, and the experienced traveller
is the last to despise them, but they are not conducive to a spirit of original
adventure.

Since the main object in view has been to cover a wide extent of gfound
in a tolerably adequate way rather than to delay over critical details, the
absence of mathematical rigour may sometimes be noticed. Very little
attention is given to such questions as the convergence of series. It is not
to be inferred that these points are unimportant or that the modern astronomer
can afford to disregard them. But apart from a few simple cases where the
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reader will either be able to supply what is necessary for himself, or would
not benefit even if a critical discussion were added, such questions are
extremely difficult and have not always found a solution as yet. It is pre-
cisely one of the aims of this book to increase the number of those who can
appreciate this side of the subject and will contribute to its elucidation.

The reader who wishes to proceed further in any parts of the subject to
which he is introduced in this book will soon find that the number of
systematic treatises available in all languages is by no means large. He
must turn at an early stage to the study of original memoirs. It is not
difficult to find assistance in such sources as the articles in the Encyklopddie
der Mathematischen Wissenschaften, which render it unnecessary to give a
bibliography. The subject is one which has received the attention of the
majority of the greatest mathematicians during the last two centuries and in
which they have found a constant source of inspiration. Their works are

generally accessible in a convenient collected form.
For the benefit’of any student who wishes to supplement his reading and

has no means of obtaining personal advice, the following works may be

specially mentioned :

Determination of Orbits and Special Perturbations.
1. J. Bauschinger, Bahnbestimmung der Himmelskirper.
(A source of fully worked numerical applications.)
2. Publications of the Lick Observatory, Vol. VIL
(Contains an exposition of A. O. Leuschner’s methods.)

Planetary and Lunar Theories.
3. F. Tisserand, Traité de mécanique céleste.
(The most complete account of the classical theories.)
4. . Poincaré, Lecons de mécanique céleste.
5. H. Poincaré, Méthodes nouvelles de mécanique céleste.
6. C. V. L. Charlier, Die Mechanik des Himmels.
7. E. W. Brown, An introductory treatise on the lunar theory.
(Gives full references to all the earlier work on the subject.)
The great examples of the classical methods in the form of practical
application to the theories of the planets are to be found in the works of
Le Verrier (Annales de I'Observatoire de Paris), Newcomb (Astronomical
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Papers of the American Ephemeris) and Hill (Collected Works). The most
suggestive developments, apart from the researches of Poincaré, are contained
in the work of H. Gyldén (Traité analytique- des orbites absolues des huit
planétes principales) and P. A. Hansen. All these works will repay.careﬁll
study, but the suggestions are not to be taken in any restrictive sense.

The author of the present book has the best of reasons for acknowledging
his debt to most of the writers mentioned above and to others who are not
mentioned. Some of the proof sheets have been very kindly read by the
Rev. P. J. Kirkby, D.Sc., late fellow of New College, Oxford. Acknowledge-
ment is also due to the staff of the Cambridge University Press for their
care in the printing. It is not to be hoped, in spite of every care, that no
errors have escaped detection, and the author will be glad to have such as
are found brought to his notice.

H. C. PLUMMER.

DunsiNk OBSERVATORY, Co. DuBLIN,
20 February 1918.
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CHAPTER I

THE LAW OF GRAVITATION

1. The foundations of dynamical Astronomy were laid by Johann Kepler
at the beginning of the seventeenth century. His most important work,
Astronomia Nova (De Motibus Stellae Martis), published in 1609, contains
a profound discussion of the motion of the planet Mars, based on the obser-
vations of Tycho Brahe. In this work a real approximation to the true
kinematical relations of the solar system is for the first time revealed.
Kepler’s main results may be summarized thus:

(a) The heliocentric motions of the planets (i.e. their motions relative to
the Sun) take place in fixed planes passing through the actual position of the
Sun.

(b) The area of the sector traced by the radius vector from the Sun,
between any two positions of a planet in its orbit, is proportional to the time
occupied in passing from one position to the other.

(¢) The form of a planetary orbit is an ellipse, of which the Sun occupies
one focus.

These laws, which were found in the first instance to hold for the Earth
and for Mars, apply to the individual planets. In a later work, Harmonices
Mundy, published in 1619, another law is given which connects the motions
of the different planets together. This is:

(d) The square of the periodic time is proportional to the cube of the
mean distance (Le. the semi-axis major).

These deductions from observation are given here in the order in which
they were discovered. The third (¢) is generally known as Kepler’s first law,
the second (b) as his second law, and the fourth (d) as his third law. But the
first statement is of equal importance. In the Ptolemaic system the “first
inequality ” of a planet, which represents its heliocentric motion, was assigned
to a plane passing through the mean position of the Sun. Even in the
Copernican system this “mean position” becomes the centre of the Earth’s
orbit, not the actual eccentric position of the Sun. In consequence no
astronomer before Kepler had succeeded in representing the latitudes of the
planets with even tolerable success.

P. D. A. 1
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2. It is undeniable that in making his discoveries Kepler was aided by
a certain measure of good fortune. Thus his law of areas was in reality
founded on a lueky combination of errors. In the first place it was based on
the hypothesis of an eccentric circular orbit and was later adopted in the
elliptic theory. In the second place Kepler supposed (@) that the time in a
small arc was proportional to the radius vector, (b) that the time in a finite
arc was therefore proportional to the sum of the radii vectores to all the
points of the are, (¢) that this sum is represented by the area of the sector.
Both (a) and (c) are erroneous, and indeed Kepler was aware that (c) was
not strictly accurate. Mathematically expressed, the argument would appear
thus:

.

hdt=rds, ht= (rds =2 (area of sector).

Both the supposed fact and the method of deduction are wrong, yet the
result is right. But if it should be supposed that Kepler owed his success
to good fortune it must be remembered that this fortune was simply the
reward of unparalleled industry in exhausting the possibilities of every
hypothesis that presented itself and in checking the value of any new principle
by direct comparison with good observations. It must also be remarked that
Tycho Brahe’s observations were of the proper order of accuracy for Kepler’s
purpose, being sufficiently accurate to discriminate between true and false
hypotheses and yet not so refined as to involve the problem in a maze of
unmanageable detail. Another factor in Kepler’s success was his knowledge
of the Greek mathematicians, in particular of the works of Apollonius.

3. Kepler had no conception of the property of inertia and he was
therefore unable to make any progress towards a correct dynamical view ‘of
planetary motion. It is interesting to analyze his results and to see what is
implied by each of the above statements taken by itself.

According to the first statement the planets move in a field of force which
is such that every trajectory is a plane curve. If we suppose that the
acceleration at each point is a function of the coordinates of the point, an
immediate deduction can be made as to the nature of the field of force. For
let 4, B be two points on a certain trajectory, and let P be a third pbint not
in the plane of this curve. Then P can be joined to 4 and to B by plane
trajectories. The planes in which 4B, P4 and PB lie meet in one point O
(which may be at infinity). The acceleration at 4 is in the plane OAB and
also in the plane O4P. Hence it is along AO. Similarly the acceleration
at B is along BO, and the acceleration at P is along PO. But the point O
is determined by the two points 4 and B. Therefore the acceleration at
every point of the field is directed towards the fixed point O, and the field of
force is central (or parallel). Now the planes of the orbits all pass through
the Sun. Hence the Sun is the centre of the field of force in which the
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planets move. For an analytical proof of the general theorem sce Halphen
(Comptes Rendus, LXXXIV, p. 944).

4. To this the second statement adds nothing with regard to the nature
of the forces, and might indeed have been deduced from the first. For it
tells us that

fr“d@ =f(wd]/ —ydx) = ht

the Sun being the origin of coordinates and A being a constant. By differen-
tiation we have

zy—yi=h
or

i —yi = 0.
Thus §/# =y/a, which proves that the acceleration is towards the Sun at
every point, i.e. the field of force is central. Clearly the argument might be
reversed, and the law of areas deduced from the fact that the accelerations
are directed towards a fixed centre, which has already been obtained from the
first statement. Both this theorem and its converse are given in Newton’s
Principia, Book 1, Props. 1 and 11.

5. We shall now investigate the law of acceleration towards a fixed point
under which elliptic motion is possible. In the first instance it will not be
assumed that the fixed point is the focus of the ellipse. Apart from the
interest of the more general result, this is the more desirable because many
pairs of stars are known in the sky the components of which are observed to
revolve around one another in apparent ellipses; but the plane of the motion
being unknown it is only a matter of inference that either star is in the focus
of the relative orbit of the other. For it is the projection of the motion on
a plane perpendicular to the line of sight which is observed. Let then the
ellipse :

w‘] 32

w1
be described freely under an acceleration to the fixed point (£, g). Any point
on the ellipse can be represented by (a cos £, bsin ). The angle £ which
is known in analytical geometry as the eccentric angle is called in Astronomy
the eccentric anomaly of the point. The accelerations being

—asinE.E—acosE.E* beos E.E—~bsin E.E*
along the two axes, we have

7—asinE.E‘—_a_qosE.E"_bcosE.E—bsinE.E"
acos E—f = bsinE—g

whence :
B ag cos E —bf sin &

E=ab—agsin E—bfcos E°
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This is an integrable form, giving immediately
E=h(ab—agsin E—bfcos By ....cccoeooeiinniiins (2)

abE + ag cos E —bf sin E = h(t — )

where h and ¢, are constants of integration. If we put & =abn,

or

E- fsmL'+ o I () 0005005806 o3 i o 3)

and this may be considered a generalized form of what is known as Kepler's
equation. By adding 2 to £ it is evident that 2z/n=1T"is the period of a
whole revolution. Kepler’s form applies when the motion is about a focus of
the ellipse, and can be obtained by putting f'=ae, =0, so that

E—esin E=n(t—1) cooveivivnrnenininnenennns 4)

This equation is of fundamental imporfance. The point for which £ =0 is
the nearest point on the orbit to the attracting focus and is sometimes called
the pericentre. The corresponding time is ¢ and n is called the mean
motion. ‘ .

By (1) and (2) the components of the acceleration become
__ab(f—acos E)R?
(ab— ag sin & —bf cos E)
N ab(g—bsin E) B
(ab—ag sin & — bf cos L)

so that the total acceleration is equal to

—asinE.E—acosE.E*=

beosB.E—bsin E. E*=

R=nr (1 -—'az cos E—% sin E)_a ..................... ©)

where r is the distance of the point on the orbit from (£, g).

6. Before examining this result more closely, it may be noticed that the
method is quite general and may be applied to any central orbit. For if the
coordinates of a point (2, ¥) on the curve be expressed in terms of a single
parameter &, we have similarly

it a"ed _ yd+ y'a
S y-9
bl )y @ f)
& A y—g-y @ "

where &/, ... denote derivatives with respect, to «, and &, & derivatives with
respect to the time. Hence on integration,

b=—hi{z'(y—9)~y @- )}
f(wdy—ydﬂﬂ)—fy+gx=h(t—to).

or
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By taking the last integration over one revolution in a closed orbit it is
seen that h represents twice the area divided by the periodic time. The
components of the acceleration become |

W (&Y’ —"y) @—f) 2@y —a"y) (y—-9g)
W y-9-y@-1)p W @-9)-y@-p
and the total acceleration is therefore
B=kr@y’ Y)Y -9) -y -1
=kr/p'p
where p is the radius of curvature at the point and p is the perpendicular

from (f; g) to the tangent at the point. This of course is the well-known
expression for the acceleration towards the centre of attraction.

The same orbit will be described in the same periodic time under the
central attraction R’ to another point (f”, ¢) if
' R
that is, if
R’[|R = p*r [pr.

This result is equivalent to Principia, Book 1, Prop. vi1, Cor. 3.

7. We now return to equation (5) which may be written

i -3
R =n*r (1 —'% —‘%—:Z) =01 (Q/Q) ceereiirniaenn. (6)
where ¢ and ¢, are the perpendiculars on the polar of (f; é) from the point
(#, y) on the orbit and the centre of the ellipse respectively. Hence the
ellipse represented by the general equation

ar® + 2hay + byt + 290+ 2fy +1=0 ..oooiiiiinne. (7)

can be described under an acceleration directed towards the origin if the
acceleration follows the law

R=mr(L+ gz +fy)®, mi=n2A%CF ...ccovvnnnnnnn 8)

where A and (' have their usual meaning for the conic (7). Conversely, if the
law (8) is given, the trajectory is always a conic whatever the initial conditions
may be. For (7) is a possible orbit, and f and g are determined by the law,
while @, b and  are three arbitrary constants which can be chosen so as to
satisfy-any given conditions, such as the initial velocity given in magnitude
and direction at a particular point.

There now arises the interesting question whether any other form of law
besides (8) exists, for which the trajectories are always conies (Bertrand’s
problem). Let

R =mir|f(z, y)
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be such a law. Then if (7) is to be an orbit,
S 9 =1+gz+fyy

must be satisfied by the coordinates of every point on (7), i.e. this equation
must be equivalent to (7). But (7) can be written in either of the forms

14 g2+ fy =41 — av® — 2hay — by?)
A+gztfyp=(F-a)a+2(fy—hay+(f*-b)y
and clearly in no other way which does not introduce a greater number of
independent constants on the right-hand side. The first of these forms gives
an expression for f (, y) which is (like an infinite number of others) compatible
with (7), but only under restricted conditions. For it fixes the constants a, b
and % and leaves only f and g arbitrary; and these are not in general sufficient
in number to satisfy the initial conditions. On the other hand, the second
form gives an expression for the acceleration which may be written

R = m?r (aa* + 2Bzy + vy?) = A S T 9)
This only requires the constants in (7) to satisfy the two relations

g-a_fy—h_s-0
a B v

and thus three other relations can be satisfied which are required by the
initial conditions. Hence motion under a central acceleration given by (9)
is always in a conic which by the two relations found touches the hnes (real
or imaginary)

ax® + 2Bxy + yy?=0.

The laws (8) and (9) are the only ones under which a conic is always
described in a given plane whatever the initial conditions may be. Their
character was first established by Darboux and by Halphen (Comptes Rendus,
LXXXIV, pp. 760, 936 and 939).

8. A point on a central orbit at which the motion is at right angles to
the radius vector is called an apse. At such a point Z 0= 0 and the radius
vector is in general either a maximum or a minimum, Since the motion is
reversible the radius vector to an apse is an axis of symmetry in the orbit
and the next apsidal distances on either side are equal. There can be there-
fore only two distinet apsidal distances recurring alternately and the angle
between any two consecutive apses is constant and is called the apsidal
angle.

The differential equation of a central orbit is known to be

P
de* u—lﬂu2
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where uw=1/r and P is the force to the centre. If we write P = U the
radius of a circular orbit is given by u= U/h%. Let the circular orbit be
slightly disturbed, so that we may write u+ « instead of u, where u is con-
stant and 2 is so small that only the first power of # need be retained. Then

d’x U' ul’ , _dU
F7 A Tl s o) U—du'
If we put
1-ulU'|U=m?
the equation becomes
i + mix=0
de

and the solution is
z=a cosm (8 — 6,).

The apsidal angle is therefore

K=m/m=m(1—al'|U)"% i, (10)
For example, if P = ur?, U= puu?-%and
K=n@+ph

This result is given in the Principia, Book 1, Prop. xLv, Ex. 2.

9. Let us push the approximation further in order to see, if possible,
under what conditions the apsidal angle remains unchanged by a higher
order of the increment x. The equation of the disturbed circular orbit
becomes

d0 Ftmo="pQU P +LU"P) e, (11)

and we assume a solution
z = a,+ a, cos mb + a,cos 2mb + a, cos 3mo.
If a, is of the first order, a, and @, must be of the second order at least,
and it will become clear that a, is of the third order. Hence
2*=Sa,®+ (2a,a, + a,d,) cos mO + La,? cos 2mb + ¢, a, cos 3mb
= 2a,® cos mf + lacos 3mb. |
All terms of order higher than the third have been omitted and products
of the cosines have been changed into simple cosines of the multiple angles.
‘We now substitute in (11) and equate coefficients. Thus

. 1 «U”
My =g .~ -
1 UII 1 uU’// N
0= ‘2‘.T (2aoal+a1aq)+ U .(l,“
—3m2a2=i ug NS
1 «U” 1 40"
— 8mlay, = T .a,u2+2—4.?.al.
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The last of these equations confirms the statement that a, is of the third
order, but will not be needed here. The first three after the elimination of

a, and a, give

_(lul” 5uU”+1uU’”}(;a
TlemUiz2 U T8 U

or
5ul”t 43U (U—ulU)=0 ....ccevvremriurnnns (12)
This equation expresses a necessary condition which must be satisfied if
the apsidal angle is to remain constant when the displacement from a circular
orbit is considered finite.

10. Let us consider any closed orbit to be determined by a central
acceleration under a finite range of initial velocities. The number of apses
in a complete orbit must be finite and (10) shows that m must be a com-
mensurable number. It must be a constant therefore, for otherwise it would
change discontinuously as u changes continuously. Hence

mr=1—-ul'|U
is an equation giving the form of U, and the solution is
U = ku—",

But if all the orbits are to be re-entrant, so that K is constant, the
equation (12) must also be satisfied. Hence substituting the form just
found, we have )
5m* (1 ~m?) + 3m* (1 —m*) =0
or

2mi (4 — m?) (1 — m?) = 0.

Since K is finite, m is not zero and we have

e 1-m?=0 or 1—-m2=-3
giving
U=k or U=ku
and
R=Fkfr* or R=rbkr

Thus we have Bertrand’s remarkable theorem (Comptes Rendus, LXXVII,
p- 849) that these are the only laws, expressible as functions of the distance,
which always give rise to elosed orbits whatever the initial circumstances
may be (within a certain range). In these two cases m=1 or 2 and the
apsidal angle K =1 or }ar.

11. The results obtained can now be brought together. According to
Kepler’s l?‘w the planetary orbits are ellipses with the centre of attraction,
the Sun, situated in one focus. The polar of the focus being the corresponding

directrix, we have in (6) ¢,=a/e and q= r/e, so that the acceleration towards
the Sun is

R0l s S L R S (13)
When the centre of attraction is an arbitrary point and it is merely
known that the orbits are ellipses, the acceleration towards the centre must
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follow one of the two laws expressed by (8) and (9). These are not in general
simple functions of the distance and it is only by induction that we should
infer from the apparent orbits of double stars that these bodies obey the law
given by (13). But the law (8) provides a simple function of the distance,
R =m?, when f=g=0,in which case the centres of all possible orbits are
at the origin, i.e. coincide with the centre of attraction. Similarly the law (9)
provides a simple function of the distance, I =n?/r%, when a=¢ and 8=0.
In this case every orbit touches the lines a* + y* = 0, showing that the centre
of attraction at the origin is the focus for every path. These are the only
two laws of central acceleration which give rise to elliptic orbits in general
and can be expressed in simple terms of the distance. But we have also
seen that the same restriction is imposed when it is merely required that the
paths shall be plane closed curves of any kind. It is moreover obvious that
the law of the direct distance, which makes the attraction of a distant body
more effective than that of a near one, cannot be the law of nature. The
only alternative is that the acceleration varies inversely as the square of the
distance, and this law can therefore be based upon these simple suppositions :
(@) the planets describe closed paths in planes passing through the Sun,
(b) the centripetal acceleration towards the Sun, required by (a), is a simple
function of the distance and does not become infinite when the distance is
infinite.

12. We have now to consider Kepler’s law connecting the periodic times
of the planets with their mean distances from the Sun. This states that 7
varies as ¢®. But 7= 2x/n, so that n’a® is constant for all the planets. Hence
by (18) the acceleration of each planet towards the Sun is u/r* where p is
constant. The force of attraction acting on a planet is therefore mu/r® where
m 1s the mass of the planet. And observation shows that the same form ot
law holds for the satellites of any planet, e.g. the satellites of Jupiter. , Thus
not only does the Sun attract the planets but the planets themselves appear
to attract their satellites in the same way. It is but natural to suppose that
the forces of attraction in either case arise from an inherent property of matter,
and that a stress exists between the Sun and a planet, or between a planet
and its satellite. Action and reaction being equal and opposite, we must
suppose the force proportional not only to the mass of the attracted body but
equally to the mass of the attracting body. We are thus led to Newton’s law
of gravitation that the mutual attraction between two masses m, m’ at
a distance r apart is measured by

Gmm/[r*

where @ is an absolute constant, independent of the masses or their distance.
It must be noticed that the law has been arrived at from the consideration of
cases in which the dimensions of the bodies are small in comparison with the
distances separating them. But since the action in these cases is proportional
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to the total masses, it is to be supposed that it applies to the individual
elements of the matter composing them. This is the true form of the law of
universal gravitation. When it is a question of bodies whose dimensions are
not negligible in relation to the distances of surrounding bodies, a modification
of the simple statement must be expected. The examination of all conse-
quences of the law of gravitation, including a comparison with the results
of observation, practically constitutes the complete function of dynamical
Astronomy.

13. Since the Earth possesses only one satellite, it 1s impossible to verify
Kepler's third law in our own system. But it is of historic interest to calcu-
late from the observed motion of the Moon the acceleration towards the centre
of the Earth which a body would have at the Earth’s surface. The Moon’s
sidereal period is 274 72 43™ 11%°5 or 23605915 secs. Let a be the Moon’s
mean distance and b the radius of the Earth. The required acceleration is

e Gk (9)3 b

w =7 \g) b
The ratio a/b is 602745 and b may be taken to be 6-378 x 10°cm. The
result of substituting these numbers is to give for the acceleration 989 cm./sec.?
In point of fact the acceleration of a body at the Earth’s surface is in the
mean g =981 cm./sec But the discrepancy is not surprising. The Moon
describes its orbit not only under the attraction of the Earth but also under
the disturbing influence of the Sun. Moreover g is a variable quantity over
the Earth’s surface, owing to the Earth’s rotation and figure. The above
caleulation is altogether too rough to give really comparable results. But it
suffices to show that the quantity is quite of the same order as g, and to this
extent supports the identification of the force which retains the Moon in its
orbit with that which in the case of terrestrial objects is known as weight.
As stated, the point is of historical interest because it presented a difficulty
to Newton who was long misled by adopting erroneous numerical data.

14 The numerical value of the constant G depends upon the units
adopted. Its dimensions-are given by
G. M ~=MLT—
or
G=MLT~
In c.c.s. units it is the force between two particles each of 1 gramme
placed 1 cm. apart. The first determination of the force in absolute units by
a laboratory experiment was made by Cavendish. Several determinations
have since been made, of which perhaps the two best, those of C. V. Boys and
K. Braun, agree in giving
G=6658 x10—°
corresponding to 5527 for the mean, density of the Earth and 5985 x 10¥ gr.
for the total mass of the Earth.
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16. The case of a homogeneous spherical shell is of elementary im-
portance. Lét m be the mass per unit area, a’ the radius and 7 the distance
of the point P from the centre. If O is the centre of the sphere, two cones
with semi-vertical angles ¢ and ¢ + d¢, each having its vertex at O and OP
as its axis, will contain between them an annulus on the surface of the
sphere. The potential of this annulus at P is

dV = Gm.2ma sin ¢ . add/p

where
pi=r2+a®—2ra cos ¢
or .
pdp=rasin ¢.dp
so that
dV = Gm.2madp|r.
Hence

V = 2w Gma (p, — p.)/7

where p, and p, are the values of p at the ends of the diameter through P.
These. values are
p=r+a, p=|r—al.

If r>a, pi=r—aand p,—p,=2a;.if r<a, py=a—r and p,—p,=2r.
Also the whole mass of the shell is M =47ma®. Hence when P is a point
outside the shell

V=GM[r
or the potential and the forces derived from it are the same as if the whole
mass of the shell were concentrated at the centre. On the other hand, when
P is a point inside the shell,

V==GMa

or the potential is constant and the forces derived from it are zero.

17. From this elementary proposition follow immediately two corollaries :

(1) A sphere of uniform density, or one composed of concentric strata
of uniform density, may be treated, so far as its action at an external point
is concerned, as equivalent to a single particle of equal mass placed at its
centre.

(2) For a point within such a sphere, the sphere may be divided into
two parts by the concentric sphere passing through the point. The outer
part is inoperative and may be ignored, while the inner may be replaced by
a particle of equal mass situated at the centre. i

The heavenly bodies are for the most part approximately spherical in
shape, and though not uniform in density their concentric strata are in
general fairly homogeneous. They may therefore be treated in most cases,
as regards their action on other bodies, as simple particles.

The motion of a body within a sphere may be illustrated by the motion
of a meteor within a spherical swarm, or of a star in a spherical cluster. If
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the swarm fills a sphere uniformly the mass operative at any point varies as
the cube of the distance from the centre. Hence the effective force towards
the centre varies directly as the distance. As another example it may be

proved that if the density of a globular cluster varies as (1 + %)~ - being the
distance from the centre, each star moves under a central attraction varying

asr(1+ r’)_%.

18. An approximate expression can be found for the potential of a body
of any shape at a distant point. Let the origin of coordinates, 0, be taken
at the centre of gravity of the body and the axis of # be drawn through the

point P, the distance OF being r. Let dm be an eclement of mass at the
point (2, y, z). The corresponding element of the potential at P is

N Gdm - Gdm
r—ap+y+ 2 (2= 2ra+p)

-
i (1—2’-’.“'—”+—”;)
r r'p 7

G, (0)+ @ R (-

where Py, P,, ... are the functions known as Legendre’s polynomials.

The first terms are easily obtained by expansion in the ordinary way, and
we have
z\ z\ _ 3a*—p?
2G5 Q="
Hence if the expansion is not carried to terms beyond the second order,

V=G.fd7—f”(l +“/—”+3”’"2—_”—2).

r 297

av

But if 4, B, C are the principal moments of inertia at 0, and [ is the
moment of inertia about Ow, since p* has been written for 2° + y*+ 2%,

A+B+ C;f?p’dm, I= [(pt = o) dm
and since O is the centre of gravity,

fxdm=o.

Hence
Gm

G
V=T+%(A +B+C-3I)
and we see that the potential of the body at P differs from the potential of a

particle of equal total mass placed at the centre of gravity by a quantity
depending only on 1/r*. Except in a few cases this quantity is negligible
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in astronomical problems not only by reason of the great distances which
separate the heavenly bodies in comparison with their linear dimensions,
but because they possess in general a symmetry of form which makes
A + B + C— 31 itself a small quantity.

19. We see then that in general a system of n bodies of finite dimen-
sions can be replaced by a system of n small particles of equal masses
occupying the positions of their centres of gravity. The total potential
energy of the system is

U=— GZm;myfr;
where m;, m; are two of the masses and ry their distance apart. For if we
start with any one of the particles this sum, which consists of n(n—1)
terms, represents the potential energy of a second in the presence of the
first, of a third in the presence of these two, and so on. The equations
of motion are 3z in number and, according to § 15, of the form

m.i.___Q* My = — —— m.gl__ﬂ]
ily = 8.@;’ iYi a:’/i’ 127 = Bz.-' .

Now

oU T — @;

S Jet 0 by

73-‘12‘,, HEm,m Tijs 0’ (7’ +j)
Hence

Smgi; = Smgf; = Sm;5=0
or

Tk =@y, Smif;= g, Emidi=ay
and

Smiz;=rdmi=ait + b
Emgyi=y2mi=at +b,

Smyz; =2 Sm; = azt + b,

where (2, y, 2) is the centre of gravity of the system. Thus we have the six
integrals corresponding to the fact that the centre of gravity moves with
uniform velocity in a certain direction. N

Again, we have

%(yaU aU) EEmlm,{yrv 2 zy_lr—Ty]}

23
az. 0 D]

=32 pintyE) =0, ().
i Ty
Hence
Sm; (yi%; — 2:8:) =0
or
I, Sm (yid; — zis) =,
and similarly
Emi (Zi.l.?i —_— .fclz',) =y

Emi (Ziy,- = y‘d)l) = (3.
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These are called the three integrals of area and express the fact that the sum

of the areas described by the radius vector to each mass, each multiplied by

that mass and projected on any given plane, is constant. They also show that

the total angular momentum of the system about any fixed axis is constant.
Finally we have

oU . oU ,oU
(i gy (20U . oU
Eiml (wlml +.l/t'%+2121) *: (wl axi'h% a]/i+ Z3 Bzi)
=—dU/dt
whence, on integration,
%Emi (.i'iz +y,‘"’ + 2,'2) =h=U
i
where h is constant. This is the integral of energy.

There are then in all ten general integrals for the motion of a system of
particles moving under their mutual attractions: and it is known that no
others exist under certain limitations of analytical form (Bruns and Poincaré).
They are in fact simply those which apply in virtue of the absence of external
forces acting on the system.

20. Let the centre of gravity (Z, 7, Z) of the system be now taken as the
origin of coordinates. If (&, 7;, {;) are the new coordinates of m;,

ri=2+ &, =Y+, 5=7+&
and
Smg€=2mm; = Em =0,
The equations of motion become
miEi=— 6_7, Mty = — Qg, mfi=— .
0E; on; 0%
where U is the same as before, but r;; is now given by
rit =(E— &P + (m— )+ (G- G
For the integrals of area we have
¢ = Sm; (Yidi — 2:005)
=Sm {7 + 1) G+ &) — G+ £ G + 10}
= Sma(mibi— L)+ 2 — 237),/%7"1'
(since Smyn; = Sm;&; = Smn; = Sm;E;=0) i
= Zm; (s — Lobi) + (asby — tzby)/Smy
or
Sm; (& — i) = o1+ (agby — ctsbg)/zmi =@

and similarly j i
Sm; (GiEi — Eity) = e + (a5 — ayby)/Zmy = ¢

Son; (Ectyi— miEd) = ¢+ (@by — a:b,)/Em; = ¢’
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The integral of energy becomes
h=U=§Sm;{(@ + &y + @+ wy + G+ &Y
= 1}2m. (éf +9+ Ef) +¥(al+a’+ af)/Zm,
1 Sm(E2 a2+ 8= =T
=h—§ (a2 + a? + a?)/Zm;.

or

where

21. An interesting equation involving the mutual distances of the masses
can be deduced. We have

2 2 mim (& — &) = Z‘- mym; (€7 + &f — 2E:))
P _},m,& S+ Emg . SmER — 25mE; . SmyE;
= 23m; . Sm; £
with similar equations for the other coordinates. Hence

Smymyrit =Zmi Zmi (82402 + &)
It follows that

& (Smamyrip) S =2 5y (Sms B mo+ 580)

V —-227”1(&» +7h +§1)—22<Etag+nla é’zaé‘)
=4 (W -U)+2U=41-2U

since U is a homogeneous function of the coordinates of degree —1. The
form of the result is due to Jacobi. Now U is essentially negative. Hence
if &’ be positive the second derivative of Zm;m;rg® will be always positive and
the first derivative will increase indefinitely with the time. Thus the first
derivative, even if negative initially, will become positive after a certain time
and therefore 3 m;myr;? will increase without limit. This means that at least
one of the distances will tend to become infinite. We see therefore that
a necessary (but not sufficient) condition for the stability of the system is that
h' must be negative.

, 22. The angulai momenta whose constant values are ¢, c,, ¢; are the
projections on the coordinate planes of a single quantity. They are there-
fore the components of a vector which represents the resultant angular
momentum about the axis

O N C3="2 [Co - leel = liee e e e e e R 1)

For this axis, which is fixed in space, the angular momentum is a maximum,
The plane through the origin O, which is perpendicular to this axis and
therefore fixed is called the invariable plane at O. About any line through O
in this plane the angular momentum is zero, and about any line through O
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making an angle @ with the invariable axis (1) the angular momentum is
V(¢! + ¢ + ¢7) cos 6. The position of the invariable plane is dependent on
the position of the chosen origin of reference.

Here we have considered the angular momentum as arising purely from
the translational motions of the bodies treated as particles. In reality the
total angular momentum of the system includes also that part which arises
from the rotations of the bodies about their axes. This part itself is constant
if the system consists of unconnected, rigid, spherical bodies whose concentric
layers are homogeneous. Under these conditions the invariable plane at a
point, as determined by the translational motions of the system alone,
remains permanently fixed. The conditions hold very approximately in a
planetary system. But precessional movements and the effects of tidal
friction cause an interchange between the rotational and translational parts
of the angular momentum, without. disturbing the total amount, and to this
extent affect the position of the astronomical invariable plane as defined
above.

The centre of gravity of the system may be taken instead of an origin
fixed in space. The invariable plane is then

GEF N+ E=0 cooiiniiiiiii i, 2)

and this iskthe invariable plane of Laplace. Its permanent fixity is subject
to the qualifications just mentioned.

A simple proposition applies to the motion of two bodies, namely that
the planes through a fixed point O and containing the tangents to the paths
of the two bodies intersect the invariable plane at O in one line. This is
easily seen to be true. For the first plane passes through the origin, the
position of the first body (=, y,, z) and the consecutive point on its path
(2 + & dt, y,+ 9.dt, 2,+ 2,dt). Hence its equation is

(94— $ha) + Y (@i — Ga) + 2 (mgh — &1 y) = 0.

Similarly the equation of the second plane is

z (yzég —thz)+y (2, — Z.zxz) +2z (%yz — -’223/2) =0.
The equations of these planes together with that of the invariable piane
may therefore be written

a,=0, a,=0, ma + mo,=0

and these evidently meet.in a common line of intersection.

23. When we deal with the motions in the solar system it is convenient
to refer them to the centre of the Sun as origin. Let M be the mass of the
Sun, m the mass of the planet specially considered and let there be n other

P. D. A. i 2

0
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planets, of which the typical mass is m;. Then the total potential energy of

the system is e
= (3 a3 mE Hen)e

where p; is the distance of m; from the Sun, A; the distance of m; from m
and r the distance of m from the Sun, so that

ri = (@i = o + (= g+ o= 2

pt =@ —Xy+@—YyP+@—24y

A2 =(ai—af + (i = Y + (=2

# = (@= Xy +(y— YV 42y
The equations of motion of the Sun are

ME--T%, MY=-%,, MI--%,

and of the planet considered

.U U . aU
mx = a—m, my—~—a?, mz=—$.

If (£, 3, &) are the relative coordinates of the planet,
' =X+ y=Y+n, z=Z+¢
Hence, if (&;, i, ¢;) are the coordinates of m; relative to the Sun,
y__1oU 19U
= wm o T MIX
={ m,(w z) M(z—X) s.mL(X-acl) m(X—x)}

Af = e
= (m‘l'M)f mi(E— &)  mié&
s { 2 A & Pif} %
If then we put
R=¢@ { PG m} .................. ®)
we have for the equations of relatlve motion
| E=—(m+1)G. —+aa§ ........................ @)
and similarly
fi=m(m+ M) G. 2 +%—R ........................ ®)
E=m(me . b+ 28 6)

AL i e A
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The function R is called the disturbing function. When, as in the solar
system, the masses of the planets are small in comparison with that of the
central body, M, we see that the forces derived from this function are small
in comparison with the attraction of M. Indeed a first approximation to the
motion of the planet considered, which may now be called the disturbed
planet, is obtained by putting R =0.

24. A double star, or system of two stars physically connected and at the
same time isolated from external influences, may be considered to present a
case of the problem of two bodies. In the solar system the disturbing effect
of the other planets is always operating. Since, however, this effect is small
in comparison with the attraction of the Sun it is useful to neglect R and to
consider the orbit which a particular planet would have if at a given instant
the disturbing forces were removed and the planet continued to move as part
of the system formed by itself and the Sun alone, its velocity in direction and
amount at the given instant being that which it actually possesses. Such an
orbit is called the osculating orbit corresponding to the given instant. The
actual orbit from the beginning will depart more and more from the osculating
orbit, but for a short interval of time the divergence between the two will be
so small that an accurate ephemeris can be calculated from the elements of
the osculating orbit. The usefulness of the conception of the osculating orbit
goes much deeper than this, as will appear later.

Now the equations (4) to (6) show that in the problem of two bodies, since
R =0, the relative motion is that which is determined by an acceleration
(m 4+ M) G/r* towards the body M which is considered fixed. But by § 11
(13) a law of this form leads to an elliptic orbit with mean distance @ and
periodic time T, where

nl =27, wa*=(m+ M)G.

We can now introduce the usual system of astronomical units. Provision-

ally they are taken to be:

Unit of time: one mean solar day.
Unit of length: the Karth’s mean distance from the Sun.
Unit of mass: the Sun’s mass.
Corresponding to this system @ is replaced by the constant 42, so that
k=2w/(1+m) T
which differs little from the Earth’s mean motion. Here 7' is the sidereal
year expressed in mean solar days and m is the mass of the Earth expressed

as a fraction of that of the Sun. The numerical values adopted by Gauss

were :
T = 365" 256 3835

m=1/354710
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which lead to
k=001720209895, logk=_82355814414 —10.
It may be useful to add that
180°. k/m = 354818761, log (180°. k/m) = 3:550 006 5746
which differs little from the Earth’s daily mean motion expressed in seconds.

The number k is called the Gaussian constant. The numerical values
of m and T on which it is based are no longer considered accurate. Never-
theless it would cause great practical inconvenience to adjust the value of &
to more modern values which themselves could not be regarded as final.
Hence it is agreed to adopt the above value of % as a definite, arbitrary
constant and to recognize that the corresponding unit of length is only an
approximation to the Earth’s mean distance from the Sun. According to
Newcomb the logarithm of this distance is 0-000 000 013.

It is also possible to put the constant k=1 by adopting as the unit of
time 1/k = 58132 44087 mean solar days.

For brevify we may often put
p=k 1+ m)=na®
in the case of a planetary orbit, and for a double star
p=k(M+m)=na?
where J, m are the masses of the two components when the mass of the
Sun is taken as unity. )
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26. From the second equation of motion

d
5= 0
where u=1/r. Hence the first equation of motion becomes
du 1
i
the integral of which is ‘
h‘“ Fecos(B—p)} coernriniiiiiiiins 3)

where ¢ and « are the two constants of integration. But this is the polar
equation of a conic seetion of which the eccentricity is e and the focus is at
the origin. The semi-latus rectum in this connexion is more usually called
the parameter and denoting it by p we have

—Wfu or h=(up)

Also
. . du  pe .
r=—r2u=—hgg=% sin (6 — ).
But by (1) and (3)
2
7‘2=% {1—e*cos? (0 — )} +c
Hence

2
= }% (1-e)+c
or
o=—p(l—e)p.
Thus if 2a is the transverse axis of the orbit, ¢ = — u/a for an ellipse, ¢=0 for

a parabola and ¢=+pu/e for an hyperbola The equation of cnergy (2)
becomes therefore

—ufr—ple,  (e<1)
¥ =2u/r, E=1I)r ocsoocoscsascoocoacoaod 4)
vt =2u/r + p/a, (e>1)

' Again, 4 being the angle which the direction of motion at (r, #) makes
with the radius vector (drawn towards the origin),

vcos«]r=—1'-=—%esin(6—ry)

vsin«}r:ré:hu:/f{l +ecos(f —q)}

are the ~components of the velocity along the radius vector (inwards) and
pef‘pendxcular toit. The form of these expressions is to be noted. For they
evidently represent (a) a constant velocity V = p/h = y/(u/p) perpendicular to



26, 27 Motion under a Central Attraction 23

the radius vector, and (b) a constant velocity eV in a direction making an
angle Jar+ 60—« with the radius vector, that is, perpendicular to the transverse
axis. Thus at perihelion the velocity is ¥V (1 + ¢) and at aphelion (in the case
of elliptic motion) the velocity is V(1 — e).
Since h = vrsin ¥, the preceding equations may be written
pesin (6 — o) = — v*r sin yr cos Y
pecos (6 —y)=v?rsin®r—pu
giving ¢ and ¢ when v and 4 are given at (r, ). Thus
(e — 1) =v*r (v*r — 2u) sin® y.
27. In finding the relations which subsist between positions in an orbit

and the time it is necessary to consider separately the three kinds of conic
section. The closed orbit, or ellipse, will be discussed first.

The line # = is drawn from the pole (the Sun) in the direction of peri-
helion. The angle & —« is measured from this line and is called the true
anomaly. Let it be denoted by w. Then, if ¢, is the time at perihelion,

t—t, = [ 1d6

Jy

" f L

“wlo(1+ecoswy’
The corresponding result in terms of the eccentric anomaly £ has already
been found (§ 5). It will be convenient to write down the relations between

the radius vector and the true and eccentric anomalies in the forms which are
most frequently required. We have

z=rcosw=a(cos F —e¢)
y=rsinw=a+/(l—-¢)sin K.
Hence
= 1“:5-13;—(:30 =a(l—ecosE) .ccooocvvrrinrinnn.. (5)
reos?iw=a(l—e)cos’ } B
rsin?jw=a (1 +e)sin* } &

o, e \/ G ) tan 4 e 6)

=0

This last equation may be regarded as the standard form of the relation
between w and £. If we write e=sin ¢ (0° < ¢ < 90°), as is commonly done,
then

tan.w = tan (45° + 3¢) tan J £

tan } & = tan (45° — }¢) tan w
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where jw and }Z are always in the same quadrant. Also

_cosE—e S 3
TGS s el ol " l+ecosw
inpoYA=)SE L g (=) siny
S BT ") sl = 1+ecosw
and it readily follows that
_V(A-e)dE V(L —e?)dw
dw_ l-—ecosE’ dE—‘l—Hm ............... (7)

If now we employ (5) and (7) we obtain

; _h’f Cdw
_t°—/.—l.’ o (1 + ecosw)?

-V iz 5w

=N/<%3)(E—esinE).

But p=n%® where n is the mean motion; the angle n (¢t —t,) is called the
mean anomaly and may be denoted by M. We have therefore once more
obtained Kepler’s equation

Me=n@—ty=E—€eSinE .ccecerrvrrrrrrrnnrnn. (8)
the angles M and % being expressed in circular measure ; or if M and K are

expressed in degrees, ¢ must also be converted to the same form by the
factor 180°/r.

28. The complete solution of the problem of elliptic motion is contained
in the equations given above. No difficulty in numerical solution arises
except in the case of Kepler’s equation when £ is to be found for given
values of ¢ and M. The general method applicable in such cases may be
illustrated here. By some means ar approximate solution %, is found. Let
E, + AE, be the exact solution, and

M,=E,—esin E,.
Then
M =M, + (1 —ecos E)) AE, + ...

when K — esin K is expanded in,a power series in AE, by Taylor’s theorem.
Neglecting higher powers of AE, we have

AE,=(M— My)/(1 — ecos E,)
and hence a second approximation K,=FE,+ AK, If this value is not

sufficiently accurate the process may be repeated until a satisfactory result is
obtained. i
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In order to obtain a good approximate solution at the outset a great
variety of methods have been devised. These depend upon (a) the use of
special tables, (b) an approximate formula or a series, or (¢) a graphical
method. Thus to the first order in e,

E,=M+esin M
and to the second order in e

tan £, = sec ¢ tan 2y
where

tan x = tan (45° + §¢) tan § M
the verification of which may be left as an exercise.

Among graphical methods we can refer only. to one, given by Newton
(Principia, Book 1, Prop. xxx1). Consider a circle of unit radius and centre ¢/
rolling on a straight line OX. Let % be the point of contact and 4 the
point on the circumference initially coinciding with 0. Let P be a point on
the radius CA such that CP=e and M and N the feet of the perpendiculars
from P on OX and CE. Then if E= 2 ACE=arc AE= 0L,

OM=0E -ME=0FE - PN=FE-esinE.

Fig. 1.

Hence if the circle is rolled (without slipping) along OX until the point
P is on the ordinate PM where OM = M, the point of contact gives O = E,
which can therefore be read off when M is given. The locus of P is evidently
a trochoid. It may also be noted that the ordinate

PM=CE—-~CN=1-c¢cos &/

which is the corresponding value of r/a or of dM/dE, and so gives the factor
required for the improvement of an approximate value %,. For references
to practical applications of the above principle see Monthly Notices, R. A. 8.,
LXVII, p. 67.
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29. In the case of parabolic motion
e . f _dw
T w2 (1 + cos wy
= «/<E3) f 1 (1 + tan? §w) d (tan Jw)
M 0
=} \/ (E) (tan Jw + § tan® Jw)
22
and therefore a quantity A may be defined by the relation
M=2\/<§3) (t—t)=tanjw+} tan® Jw ..ocoenn.n.... (9)
A table, known as Barker’s Table, gives M (or M multiplied by a certain
numerical factor) with the argument w. An inverse table giving w with the

argument } will be found in Bauschinger’s Tafeln (No. Xxv). Or w may be
deduced when ¢ —¢, is given thus. The equation (9) may be compared with

the identity
1 1 INE
H(v-g)=r-5+i(x-3)"

Hence
1
tan fw =\ — X
if .
1
SM =23 — -
Let
A=—tany, A’=-—tanp.
Then
8M = 3\/(5) (t—t;) = cot 28
tan B = tan®y
and

tan Jw = 2 cot 2r.

By these equations w can be calculated directly when ¢ is given.

30. Hyperbolic motion along the concave branch of the curve under
attraction to the focus may be treated in an analogous way to elliptic motion
by using hyperbolic functions instead of circular functions of the eccentric
anomaly. Thus we have

@ =rcosw=a(e— cosh F)

y=rsinw=a(e—1)sinh F
so that
2 —
=T%-%«:Ts12b NG 1 H—11)) s8odetongtion S0000000 (10)
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7 cost yw = a (¢ — 1) cosh® LF
rsin® fw = a (¢ + 1) sinh? { ¥

e+ 1
tan jw = \/(e = 1) mma ¥  csacooccoasonceass (11)
_ e—cosh ¥ hPe €+ cos w
COSW= pcosh F—1° COSE L= e cosw
. _A(e-1)sibhF . _W(¢=1)sinw
SRW = cosh F— 1’ Sl /s "1+ ecosw
_@—1)dF _V@-Ddu .
Y= ecoshF—1" dF_i+ecosw """"" (12)

By employing (10) and (12) we now obtain

t t—’ixf e
T w2 o (1 4 e cos w)?

- \/ (%) f . «/(eg!j-l) d ico;h_Fl—’l

- \// (‘E) (eSinh F—F) oo, a3)

which is the analogue of Kepler’s equation for this case.

Analogy suggests the use of hyperbolic functions, but full and accurate

" tables of these functions are not always available. Hence it is convenient to

introduce f, the Gudermannian function of F, where (Log denoting natural

logarithm)
: F=Tog tan (45° + 1 f)
or

sinh F'=tanf, cosh F=secf, tanh}F =tanif.

We may also put e=sec. The principal formulae (10), (11) and (13) then
become

r=a(esecf—1) .ioiiiiiriiiiiii (14).
tanfjw=cotdYrtand s ....oooooiiiiiiininiinn. (15)

and ‘
V(pa=®) (t —t,)=e tan f — Log tan (45° +§/)..cc.oo... (16)

The last equation may also be written
A(ua) A (t — t,) = Aetan £ — log tan (45° + 4 f)
where log denotes common logarithm and log A = 9-6377843.

Comets moving in hyperbolic orbits are few in number, and in no case
does the eccentricity greatly exceed unity.

31. There are certain astronomical problems which require the con-
sideration of repulsive forces according to the law wr—* which are of the
same form as gravitational attraction but differ in sense. The small particles
which constitute a comet’s tail are apparently subject to such forces and
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finely divided meteoric matter in the solar system must move under the
pressure due to the Sun’s radiation. Hence we shall consider the effect of
replacing + p, the acceleration at unit distance, by —u’. The differential
equation of the orbit becomes

d*u w

gt 2 ok =0
the integral of which is

I

=t
=) l(ElcOSRUS I . o SRt e e an
If we restrict w to such a range of values that u (or r) is positive, this
equation gives only the branch of the hyperbola convex to the centre of
repulsion at the focus; just as under the same restriction the equation (10)
gives only the branch concave to the centre of attraction. As compared

with § 26 the signs of p and e, as well as of u, have been changed. Hence
the constant ¢ in the equation of energy becomes

o= (L—&)fp=+ua
so that the equation of energy is now
e e e e sl elleoe (18)
Also, if ¥ is the angle which the direction of motion at (r, 8) makes with the
radius vector drawn towards the origin,

du ‘e .
vcosx]/——r —hde——%esm(ﬂ—ry)

ecos (6 —y) —1}

vsingr= rl=ha = %{ecos(ﬂ—ry)—l}

are the components of the velocity along the inward radius vector and
perpendicular to it. These are evidently equivalent to (z) a constant
velocity — V’ = — p'/h =— +/(4’/p) perpendicular to the radius vector, the
negative sign meaning that V' is drawn in the sense opposite to that in
which the radius vector is rotating, and (b) a constant velocity eV’ in a
direction making an angle §m + 6 —  with the radius vector, that is, perpen-
dicular to the transverse axis. Thus at perihelion the velocity is V” (e —1)
as compared with the velocity V (e + 1) at perihelion on the concave branch
under an attracting force.
If the circumstances of projection are given in the form of v and 4 at the
point (r, 8), we have
wp =R =v*rsin®

w'esin (6 — o) = — v%r sin 4 cos Y

wecos(0 —y)= rsin’yr+u
which determine p, ¢ and « in terms of given'quantities. In particular

w2 (e — 1) = (v°r + 2) sin® 4.
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33. The simple and important representation of the velocity in all cases
as the resultant of two vectors both constant in magnitude, and one constant
in direction also, may be illustrated by considering the hodograph of the
motion. This curve is clearly a circle of radius V and centre at a distance
eV from the origin. The four figures given correspond with the four distinct
types of motion, () elliptic, (b) parabolic, (¢) hyperbolic, under attraction to
the focus, and (d) hyperbolic, under repulsion from the focus. In all cases O
is the origin, €' the centre, and OP represents the velocity at perihelion. If
@ is any point on the hodograph, OQ) represents the velocity in the orbit at
one extremity of the focal chord which is at right angles to CQ. The radius
CP being V, OC=eV and as the eccentricity increases ) moves along the
radius opposite to C'P from the position ' for a circular orbit to a point on
the circumference for a parabolic orbit. As e increases beyond the value 1

(@) (®) Fig. 2. (c) (@

the point O passes outside the circle. But the hodograph corresponding to
hyperbolic motion is no longer a complete circle since the possible directions
of motion are limited by the asymptotes. If 04, OB are the tangents from O
to the circle the angles COA, COB are each equal to sin™ e~ and it is easily
seen that 04, OB are parallel to the asymptotes of the orbit, that A0B is
equal to the exterior angle between the asymptotes, and that the arc APB
constitutes the whole hodograph. When the attraction is changed to a
repulsion and motion takes place along the convex instead of the concave
branch of the hyperbola, OP = V’(e—1), and the hodograph is confined to
that arc of the circle which is at all points convex to O, whereas in case (c)
it was everywhere concave to O.

34. From the point of view of practical calculation there are points con-
nected with orbits nearly parabolic in form which require special attention.
Kepler’s equation for elliptic motion may be written

M=FE-sinE+(1—¢)sin E.
When 1—e is small the accurate calculation of M depends on that of
E—sin E. But if £ is small the latter expression is the difference of two
nearly equal quantities and cannot be calculated directly unless each is
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expressed by a disproportionate number of significant figures. Hence the
need for special tables (e.g. Bauschinger’s Tafeln, No. XL) or an approximate
formula. Under the latter head may be mentioned the function

L E3(cos fy B+t
which is so close an approximation to X — sin K over the range of E from
0° to 70° that the logarithms of the two expressions never differ by more than
2 in the seventh place.

It is evident that in the parabola itself E is evanescent and generally in
the ellipse of great eccentricity £ is small at all points near the attracting
focus. The method given by Gauss in the Theoria Motus for the treatment
of Kepler’s equation is a particularly instructive example of the construction
and use of special tables and as at the same time it brings out clearly the
relation to parabolic motion its principle will be explained here.

Kepler’s equation may be written in the form

M= (1—e)(all+ Bsin E)+(B+ ae)(F —sin E)
ifa+B=1,or
M= (1—¢).24'B+(B+ae). 44*B ... (26)
if
A =3 (& —sin E)/2(akl + Bsin E)
and
B*= (ak +Bsin E}[6 (£ —sin E)
= (E*—3B.E5. . )/(E~ 3 E5...)
which differs from unity by a quantity of the fourth order only in A if
B=1/10, a=9/10. With these values it is readily found that
A=1E— Js B —...
B=1+ 8Lk —....
Hence log B is a small quantity of the fourth order which is tabulated with 4,
itself of the second order, as argument.

We now put, in view of (26),
a 5— 5e> S
A _\/(17+ 9e tan fu,

M=2y5( —e) (1+9¢) " B(tan hw, + 1} tan® Juy).

M=«/(gg)(t—to)=«/(§) A-e)t ¢—1t,)

where g is the perihelion distance, in the present problem a more convenient
element than the mean distance . Hence

149\ t—¢
/\/ (’g; o ;0 e) .—E—" = tan jw, + § tan® fu,

so that

But




32 Motion under a Central Attraction [cm. mmx

the analogy of which with (9) of § 29 is evident. Here B is unknown, but
the supposition that B =1 will lead to a good first approximation to tan w,
and hence to 4,and a nearer value for log B can then be taken from the table.
This in turn will lead to a second approximation to tan w,, and so on until
the correct value is reached. Now let

T=tan? }E =3 E + 4B P = 1B+ LB
=A4A+442..
or
A=7(14+44..)'=7(1-44+0C)
where C' is a function of the second order in 4, ie. a small quantity of the
fourth order in Z, which like log B can be tabulated with the argument 4.

Hence
= 1+e\ l+e A
Loy = S TR PR T
tan Jw VT'\/(]—e} \/(l—e'1—§A+C’)

545 :
= tan Jw, \/(1'}92) (1-44+0) %

Finally, by § 27,
reos’ yw=a (1 —e)cos’ 4 E = g/(1 + 1)

or
_1-44+0

IS T

c? dw

so that the problem of finding w and r is solved by the aid of the tables
giving log B and € with the argument A without introducing £ explicitly
into the calculation. The method with very little change is adapted equally
to hyperbolic orbits. The tables will be found in the Theoria Motus of Gauss,
or in an equivalent form in Bauschinger’s Tafeln, Nos. xvi1 and XVIIL
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The equation (3) gives
r

R By (BT - IR0 N

a
b (6)
1 1-p 2(1-8)_(Q-8¥
= =t 5 el ) —1 —1)—1
1+8°1+8z 2+8 1+46 ('+,8.z) Qg ) }
1t is evident that some expansions will be made more simply in terms of
B than of e. Hence it will be useful to have the development of any positive

power of 8 in terms of &. Now
B+ B '=tanip + cot 3¢ =2cosec p=2¢7!
B=0+3e(1+ ).
Hence by Lagrange’s theorem
e)? [ di?
m =38R e )|

=G

or

q q! |dat
(%e)2p+m drwtma zp +m 2p+m—1
o (2p +m)! | dgwim= ( P )” i
for the only terms which survive arise when ¢=2p+m. Hence
taCp+m—1)!
=m3 2p+m (__P____
mp=0(%e) pl(p+m)!
- m m+3 m+4)(m+5
=19 { +— 1% T o e“+4!3 (———)3—(,) e+ } T
and it is readily seen that this series is absolutely convergent.
36. Since
z=(y—p)(1-By)"
it follows that gl Y
log 2 =1og.y +log (1 — By™) —log (1 - By)
=logy+By -y )+IB @ -y )+ ...
Hence
w=E+2(Bsin £ +3$3sin 2K +1Bsin3E +...) ......... 8)
But  and y can be interchanged if the sign of 8 is changed at the same time.
Therefore J

E=w—2(Bsinw—}B3%sin 2w + 1B sin 3w — ...).
It is also easy to express M in terms of w. For, by (5),
log z=log & + log (1 + Ba~") ~ log (1 + Bx) + B cos & {(& + B — (&= + B)~'
=logz—B(x—a)+ 3B (22 —a72) —iB (@ - +...
+Bcosp{—(w—a)+ B (P —a?)— B (@ -7+ ...}
=logz -~ B(1+4cosp)(z—a)+ B (§+cosp) (22— a2 — ... '
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Thus the coefficients in the expansion of F(t) are precisely the coefficients
which we have to study. Now
F(t)=exp. (L at) exp. (— at™)
t* t=A
=3 (o) - 3 (- 1P Qap. g
ot
al B’

Hence J,, (z) is the coefficient of those terms for which a=8+p, or

=33 (-1¢ (o)

=3 CP 1o
Jp(x)—EB!(B +p)!(§‘”)p .

If p is positive, B takes the values 0, 1, 2,... and the expansion becomes

- 2P a? at
JP(””)=§5151{1 Tt A i@t s }

If p is negative, 3 takes the values — p, — p+1,..., because a cannot bé negative.

38. The effect of changing the signs of # and ¢ is to leave ¥ (¢) unaltered.
Hence

To(@=(F 12T (= &) . oteeiinviennonenes (12)
Similarly #(#) is unchanged if — ¢~ is substituted for £. Hence
(@)= (EINRHE ) coosos0s000005000 000008 (13)

Again, the result of differentiating #'(f) with respect to ¢, gives
Fe(+t)Z T (a) =2 pJ,(s)tr7
Equating the coefficients of £2-! we have
3z (@) + Jpa (@)} =pdp (@) coveninniinnn, (14)
On the other hand, if we differentiate # (£) with respect to #, we have
JE—t)EJ, ()2 =3J, (2)t?
or, equating the coefficients of ¢2,

3 (I (@) = Jpn (@)} =T (@) coieeiiniiannnnn, (15)

These simple recurrence formulae show that, with any given argument, Bessel's
coefficients of any order, and their derivatives, can be expressed as linear
functions of the coefficients of any two particular orders, or of any one
coefficient and its derivative, e.g. J; () and J,'(#). In particular,

Ty @)= 4 [Jpr (8) = s (@)
=3 {Jp—2(2) = 2Jp () + Jp 1o (@)

=Ty @)+ o ((p = D es (@) 4 (p+ 1) Ty )

== Sy @+ B, ()= 1 I (@)
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Hence also for the equation of the centre,
sin (w— M) =esin M — '~ € 5.7, (pe) fsin (p + 1) M — sin (p — 1) J)
+/(1—e) 2 J,) (pe) fsin(p+1) M +sin (p—1) M}
B = {e + L —e gL Jo(2e) + /(1 =) J) (2e)} sin M+ éz aysinpdl...(30)

1-—¢

(pa(p—1.€) = Jpu(p+1.6)}
+V(L =) (T (p—T1.0)+ Tpu(p+1.0)}.
This expansion for the equation of the centre in terms of the mean

anomaly is important, although the coefficients are rather complicated.
Hence, as far as €,

sin (w—M)=e(2 - 3¢*)sin M + 5¢* sin 2M + 1}e*sin 3M
w— M =e(2— 1e¢%) sin M + Ze? sin 2M + 13¢*sin 3M
as can easily be verified.

Oy =—

*42. For some purposes Laurent series in the exponentials z, y, z of
§ 85 are more convenient than Fourier series in w, E, M. Clearly

erde=odw, y'dy='dE, 27'dz=tdM.
Let

S=u, + = (a, cos pf + b, sin pb)
=a,+ 2 {§ (ap— iby) ™+ § (ap + ¢by) T}
where log 7=16. By Fourier’s theorem

(2w 2m
Ty = ,0 S cos pfdb, wb,= [0 S sin pé df

S iy o L e f " Sr2db, w(ap+ iby)= f " v o,
Hence : . ’
S=3% A,
where 45 ‘
= f : S aé,
This well-known form, intermediate between Fourier’s and Laurent’s, is
general and includes the case p=0. It has been used already in § 37.

Formulae have been found which make it possible to pass from any
Fourier’s expansion in £ to one in J/. The general result may be expressed
in a slightly different way. For, since y has the same period as z,

yP =73 A, 2m

* The reading of §§ 42—46 can quite conveniently be deferred till after Chapter XIII.
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Again,
dz
aM

| AAZ 25,
M = f sUt an

2m Ay = —-af Sz»!

vl dS
il s Gy == [ or San

27 ds
—p| % dE
P fo Y 3

2] s
= gt Uy — g
—fﬂ 2V p ety ~ g

2
=["vyrnan
0

where

1dS
V-ﬁ o exp.. B350 =)l eososcosaosogacoagaaosacasacse (32)

= S Bp yl’
the coefficient B’, , of ¥V expanded in powers of y*! being thus idertical with

the coefficient 4, of S expanded in powers of z#. The form (32) becomes
illusory when p=0. .

Now the exponential function occurring in (81), (82) can be expanded in
a series with Bessel’s coefficients having the argument pe. That returns to
the methods already considered. But another process is possible and has
advantages if S is of suitable form. This consists in developing first in
powers of y—y'. Let

E+tyE—ty= 3 N, ;0
p==x

where j and q are integers (not negamve) The numerical coefficients &V are
called Cauchy’s numbers and it is evident that a knowledge of them will be
required in this method. By comparing coefficients of ¢? in the identity
(E+ ) (= )T = 41 (4 ) (F— £+ £ (E + £ (= £7)2
it is evident that
Nopitng=Nopjg+ Nopijor

From a double-entry table giving N_, ,, , with the arguments p, ¢, therefore,
similar tables giving N_, 1 ¢, N—p o4, ... can be readily constructed. The
effect of interchanging ¢ and ¢! shows that

N pjq=(=10 1Ny 9

The expansion is either even or odd and the highest term is ¢/*2. Hence
J+q—pis a positive even integer, and if p=j+¢, N=1.
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is the coefficient of y#=* in V and therefore also the coefficient of 27 in S.
Comparison with the previous result shows that
mN _p, s, 901 =PN_p,m, 0 = IN—p, mt1, 411
is an identity. From this the recurrence formula
(m—p+q+2) N pinme—2(m =D N_p g+t (m+p+q+2) N _p o mq

can be easily deduced.

. 45. The development in terms of M or z of the functions

r\" sin r\"
S mw, (=] a™
a) cos a
is of special importance. Here n is any positive or negative integer, and if

m is also a positive or negative integer it is only necessary to consider the

second form. This involves Hansen’s coefficients X ™, where
A\ nm g , n, m S IPNE {
(LY m=zxpns,  awxpr=["(5) emeta.
\ o \a

Now

B LI RS N
a7 dE=(7) see g = T (&) dw

of which the last form follows from the areal property of elliptic motion,

12 dw=hdt =n""hdM = ab.dM = a? cos pd M.
=y (1-By™"H(A-By™

and therefore X;"™ can be expressed by a definite integral involving y and
E, or by one involving # and w, by means of (4), (5), (6), thus
2m
ZWX:L”‘ = { (1 o5 Bz)—n—lym—i(l ) By)n+1—m(1 - By—n)n+1+m
Jo
exp. [3ie(y—y™)]dE

Also

and
"2
ZWX:"'" $ | ' (1 = B2yt (1 4 B2y g™ (1 + Ba) "2+ (1 + L t)y—n—2—i
Lo :

exp. [1B cos ¢ (B +271) " — (B + )] dw.
The first of these forms shows that (1 + 8%)*t* X" is the coefficient of yi—m
in the expanded product Y,Y,, where
¥y = (1 - Byy+=m exp. (Jiey)
Vo= (1 - By ) exp. (= yiey™).
Similarly the second form shows that (1 + @)+ (1 — 85 #2X"" is the
coefficient of #'~™ in the expanded product X,X,, where
Xy = (1 + Boy 2+ exp. [i cos . B (1 + Bx)™]
X,=(1+ Ba 1y~ exp. [— i cos ¢. Bz (1 + Bz )]
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The deduction of Hansen’s formulae in this way is not difficult, and has been
given by Tisserand (Méc. Cél., 1, ch. xv).

An obvious method consists in expanding the exponential function oc-
curring in the first of the two integral forms in a series with Bessel’s
coefficients. Thus

: 2
2w X" = (L4 B ST, () | Ty (L= By (L= By d
=2r (1 + )" X J, (i) X"
14

where X" is clearly the coefficient of y~#=" in the expansion of
Y: (B) = (1 — By)n—H—M (1 _ By—l)n-rl+m
and therefore equally the coefficient of y—+#+" in the expansion of

7*(8)=(1— By ys—m (1 — By)rtrtm,

Now
" 7 7. h+1) j—k+1
(= By¥ (1 =By y = 3(- eyt Ll b D Joe Ut D
(—p—k+1) j...(j—k+1)
(p+k)! . k!
where h = p + k, and if j is positive the cocfficient of y? is |

S S ppgrag
k

t(—p+)s@—p)..(C-p—k+]1) j...(j—k+1)
p! . (p+D...(p+h) kt

=R () F(p=i. j p+ 1, )

in the ordinary notation for a hypergeometric series. Hence there are two

(=3r. B

o n,m,
possible forms for X o 8

(*ﬁ)i—"—m(fjl_m)F(z—p—n-—l —m—-n—1,1—p-m+1, B2
(_B)—i+p+m<—ni11p++mm)F(_i+p-—n—l, m—n—-1, —t+p+m+1, £

of which the first is available if ¢ —p —m > 0 and the second if 7 —p —m < 0,
for then the third argument of the series is positive and the binomial coeffi-
cient has a meaning. If ¢ — p = m both forms become

XZ’}:”=F(’I)L—?1 -1, —m—n—-1,1, 8.
When = is assumed to be positive, at least one of the first two arguments of

the series is always negative, and therefore the series is a polynomial in 82
For in the first form with ¥—p —m > 0, the second argument is certainly
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negative if m is positive; if m is negative, n+1—m >0 and the binomial
coefficient shows that ¢ —p —m < n+ 1—m, so that the first argument is
negative. Similarly when the second form is valid it also is a terminating
series.  When n is negative one of the known transformations of the
hypergeometric series may be necessary to give a finite form. Hence
Hansen’s coefficients are reduced to the form

X" =1+ B3 T, G0 X0
° »

where X" represents, with a simple factor, a hypergeometric polynomial
in 8% This form was first given by Hill.

46. The periodic series in M found above are evidently legitimate
Fourier expansions, satisfying the necessary conditions with e¢<1, and as
such are convergent. The Bessel’s coefficients are given in explicit form by
the series (11) which also is at once seen to be absolutely convergent for
all values of e. But in practical applications the expansions are generally
ordered not as Fourier series in M but as power series in e. Under these
circumstances the question of convergence is altered and needs a special
investigation. Now 5 ’

E=M+esinE

considered as an equation in & has one root in the interior of a given contour,
and any regular function of this root can be expanded by Lagrange’s theorem
as a power series in e, provided that

lesin B < |E—-M|

at all points of the given contour*. We have then to find a contour with the
required property, and to examine its limits.

We are to regard e and M as given real constants. The equation
E=M+pcosy+psiny
where p is constant, defines a circular contour. At any point on it
sin £ = sin (M + p cos ) cosh (p sin x) + ¢ cos (M + p cos x) sinh (p sin x)
so that
[sin E'[* = sin? (M + p cos x) cosh? (p sin x) + cos® (M + p cos ) sinh? (p sin )

= cosh? (p sin ) — cos? (M + p cos )
while
* Cf. Whittaker’s Modern Analysis, p. 106; Whittaker and Watson, p. 133.
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The most unfavourable point on the contour for the required condition is
that at which |sin | is greatest. And our series is to be valid for all real
values of M. Hence the condition is always fulfilled if it is fulfilled when

siny=+1, cos(M+pcosy)=0
or
x=+4%m, M=+1lnwr
in which case
|sin £ = cosh p.
Thus the required condition becomes
e < p/cosh p.

The greatest value of e is therefore limited by the maximum value of

p/eosh p, which is given by
cosh p = p sinh p.

Inspection of a table of hyperbolic cosines shows at once that p/cosh p is
greatest when p is about 120 and that its value is then about 2. With
ordinary logarithmic tables an accurate value can be obtained without
difficulty thus. Let tana be the greatest possible value of e, so that

tan @ = p/cosh p =1/sinh p.
It easily follows that
exp. p=cot &, cothp=seca
whence, by the equation giving p,
cos a Logeot fa=1
or, using common logarithms and taking logarithms once more,
log cos a + log log cot & + 0362 215 69 = 0.
In this form it is easily verified that
a=33°32"3"0, tana=06627434....

This last number is then the limiting value of e, within which the expansion
of any regular function of E in powers of e is valid for all values of M. The
orbits of the members of the solar system have eccentricities which are much
below this limit, with the exception of some, but not all, of the periodic
comets.

47. In the form in which Bessel’s coefficients occur most frequently in
astronomical expansions,
2 =y jeN 1 je? iies }
2T Go =(L) ) e Y A
PR (2) (j_l):{ 2.(2+2) T 2.4.(Z+2) 2+ 4)

NN N O & N et nat- SO L
277G = (%) GO 7 2@ T T e ry@ee
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It may be convenient for reference to give the following table :

ed et

+ 192 9216

2 et et e
;J2(2e)=e(1f§+ﬂ—%+ )

—J(e) =1-

ng(se)_—(1-96 ;%(‘;_ )
Zrg)=2(1-2 )
2= (1-2+ 82 )
i —l"gﬁ 25 9;f6+
2J2’(2e)=e(1—%2-+§—§%+ )
2J; (33):%"2(1 _11'5(? l.gfg_ )
27/ (3 =500 (1- B2 3T )
2 (60) = S (1—1%8f+1%i;‘_ )

These can easily be carried further if necessary, but they are often enough for
practical purposes.

Bessel’s coefficients occur naturally in several physical problems discussed
by Euler and D. Bernoulli from 1782 onwards. In 1771 Lagrange* gave °
the expression of the eccentric anomaly in terms of the mean anomaly, the
result (19) above, and found the expansions of the coefficients as power series,
thus anticipating Bessel’s work (1824) of more than half a century later.

* Oeuvres, m, p. 130. This reference, which seems to have been overlooked, is due to
Prof. Whittaker.



CHAPTER V

RELATIONS BETWEEN TWO OR MORE POSITIONS IN AN ORBIT
AND THE TIME '

48. Since a conic section can be chosen to satisfy any five conditions it is
evident that when the focus is given, and two points on the curve, an infinite
number of orbits will pass through them. The orbit becomes determinate
when the length of the transverse axis is given, though in general the solution
is not unique. For let the points be P,, P, and the focal distances 7y, r,.
In the first place we take an elliptic orbit with major axis 2. The second
focus lies on the circle with centre P, and radius 2a — 7y; it also lies on the
circle with radius P, and radius 2a¢ —r,. These two circles intersect in two
points provided (¢ being the length of the chord P, P,)

20—+ 20 —1,>¢
or )
L R A R OOt (1)

If this inequality be satisfied two orbits fulfil the given conditions; if not,
no such orbit exists. We notice that the two intersections lie on opposite
sides of the chord P, P,, so that in the one case the two foci lie on the same
side of the chord, in the other on opposite sides. - In other words, in one
orbit the chord intersects the axis at some point between the foci, while
in the other orbit it does not. Only when 4a =r + r,+ ¢ the two c?rcles
mentioned touch one another in a single point on P, P, and the two orbits
coincide. In this case the chord passes through the second focus.

When the orbit is the concave branch of an hyperbola the second focus
lies on the circle with centre P, and radius =, + 2¢ and also on the circle
with centre P, and radius r,+ 2a. These circles always intersect in two
distinct real points since ‘ 0

mn+2a+r,+2a>c

always. There are therefore always two hyperbolas which satisfy the con-

ditions, The second foci lie on opposite sides of the chord and hence in the
one case the chord intersects the axis between the two foci and the difference

P. D, A. g 4
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between the true anomalies at the points Py, P, is less than 180°, while in
the other case the chord intersects the axis beyond the attracting focus and
the difference between the anomalies is greater than 180°.

Under a repulsive force varying inversely as the square of the distance the
convex branch of an hyperbola can be described. The position of the second
focus is again given by the intersection of two circles, the one with centre 12
and radius 7, — 2¢ and the other with centre P, and radius r,— 2a. These
circles intersect in two points provided

n—2a+r—2a>c
or
da<ri+7ra—C...nne B T P A 2)
There are then two hyperbolas and in the one case the chord intersects the
axis at a point between the two foci while in the other it cuts the axis at a
point beyond 'the second focus.

It is easy to see similarly that it is always possible to draw four hyper-
bolas such that one branch passes through P, while the other branch passes
through P,. These have no interest from the kinematical point of view
since it is impossible for a particle to pass from one branch to the other.

The case of parabolic solutions, two of which always exist, can be inferred
from the foregoing by the principle of continuity. . But it is otherwise clear
that the directrix touches the circles with centres P;, P, and radii r,,7,. These
circles, which intersect in the focus, have two real common tangents either of
which may be the directrix. The corresponding axes are the perpendiculars
from the focus to these tangents. In the case of the nearer tangent it is
evident that the part of the axis beyond the focus intersects the chord P, P,
and the difference of the anomalies is greater than 180°. In the case of the
opposite tangent, on the other hand, it is the part of the axis towards the
directrix which cuts the chord and the difference of the anomalies is less
than 180°,

These simple geometrical considerations show that, when the transverse
axis is given, two points on an orbit may be joined in general by four elliptic
arcs (of two ellipses), by two concave hyperbolic ares, by two convex hyper-
bolic arcs; and in particular by two parabolic arcs. This conclusion is qualified
by the conditions (1) and (2) which of course cannot be satisfied simul-
taneously. All these different cases must present themselves when we seek
the time occupied in passing from one given point to another, as we shall
at once see. '

49. Let E,, E, be the eccentric anomalies at two points P,, P, on an
ellipse, and let
2G = E,+ B, 29=FE,- K.
Then f
rn=a(l—-ecos k), ry=a(l—ecos k)



48-50 in an Orbit and the Time 51

and
r+ 1= 2a {1l —ecos } (E,+ E) cos} (B, — E,)}

=2a (1 —ecos Gcosg).
Again, ¢ being the chord P, P,,
¢ = a?(cos K, — cos E,\)* + a2 (1 — ¢®) (sin K, - sin K,)? .
=4a?sin’® G sin® g + 4a? (1 — ¢?) cos® G sin®g.

Hence if we put
cos b = e cos G

then

¢ = 4a?sin® g (1 — cos?A)
or

¢ =2asingsink
and

71+ 7, =2a (1 — cos g cos h).
If further we now put
) e=h+g, 8=h—g

or
e—8=E,—FE,, cosi(e+8)=ecos}(Ft+FE)....cceenn.. (3)
we have
n+ro+c=2a{l —cos(h+g)}=4asin?le.............. 4)
rtr—c=2a{l —cos(h—g) =4asin®{8............... (5)

But on the other hand, if E, > E, and
p=k(14+m)=ra?
the time ¢ of describing the are P, P, is given by
nt = E,— E, — e (sin K, —sin E,)
=e—38—2sin}(e—8)cos (e +d)
=(e—08)—(Sine—SIN8) cuvirriruiiiniieiinniiniiininn (6)

where ¢ and & are given by (4) and (5) in terms of 7, +7, ¢ and a; and this
is Lambert’s theorem for elliptic motion.

50. It is evident that (4) and (5) do not give e and § without ambiguity,
and this point must be examined. We suppose always that K, — £, < 360°,
i.e. that the arc described is less than a single circuit of the orbit; and we
assume that the eccentric anomaly is reckoned from the pericentre in the
direction of motion. Now it is consistent with (3) to take § (e + 8) between
0 and 7 and we also have {(e— &) between the same limits. Hence fe lies
between 0 and 7 and 8 lies between — 7 and + Jw. But the equation of
the chord P, P, referred to the centre of the ellipse shows that it cuts the
axis of « in the point

z=acos}y(B,— E,)cos} (B, + Ey), y=0
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so that, if  is this point, 4 the pericentre and F, F, the foci,
) cos} (e —8)—cosh(e+8)  sinjesin}d

AQ = 7—a  cosl(Hy— E)—cos} (Bo+ ) sin LK, sin §E,

Ff). #+ae_  cosf(e—8)+cosf(e+d) _ cosjecosid
AQ z—a cosy(E,—E)—cos}(E,+E,) siniE sink,

Now sin je and cos }8 are always positive. We may also take E, less than
27 and sin }E, positive; then sin } ¥, is negative or positive according as
the arc includes or does not include the pericentre. In the first equation
the left-hand side is negative when the chord intersects the axis between
the pericentre and the first (attracting) focus; in the second when the
intersection falls between the pericentre and the second focus. Otherwise
both members are positive. Hence we see that sin }8 is positive if (1) the
arc contains the pericentre and the chord intersects F\4, or (2) the arc does
not contain the pericentre and the chord does not intersect F,4 ; and that
cos 4e is positive if (3) the arc contains the pericentre and the chord inter-
sects F,A4, or (4) the arc does not contain the pericentre and the chord does
not intersect F;A. TIn other words, sin §8 is positive when the segment
formed by the arc and the chord does not contain the first focus, and cos je
is positive when the segment does not contain the second focus.

Let ¢ and 8, be the smallest positive angles which satisfy (4) and (5).
The other possible values are 27 — ¢ and —§,. If we put
nf; =€ —sin g, nh=28,—sing,

there are four cases to be distinguished, namely :
(a) t=t—t

when the segment contains neither focus;
) t=t:+4

when the segment contains the attracting, but not the other focus :
(c) t=2wln—t,—t ‘

when the segment contains the second, but not the attracting focus;

: (d) : t=2m/n—t,+1¢

when the segment contains both foci. It is easy to see from § 48 that when
the extreme points of the arc alone are given these four cases are always
presented by the geometrical conditions and can only be distinguished by
further knowledge of the circumstances. Usually it is known that the arc is
comparatively short and hence that the solution () is the right one.
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51. The corresponding theorem for parabolic motion is easily deduced as

a limiting case. For when a is very large e and 8 are very small. Hence
(4) and (5) become
ae=r+r,+c, ad=r+nr—-c

At the same time, if we replace n by ,u."’/u%, (6) becomes

pht = fab (- &)
=i(n+r+ of ¥ L(n +r2—c)‘"}.
As this applies to the motion of a comet, and the mass of a comet may be
considered negligible, we may therefore write
6kt = (r,+ ro+ c)’z’ FrAr—) oo, )

which is the required equation. It was first found by Euler. As regards
the ambiguous sign, the second focus is at an infinite distance and does not
come into consideration. But § is hegative or positive according as the
segment formed by the arc described and the chord contains or does not
contain the focus of the parabola. Hence the lower (+) sign is to be used
when the angle described by the radius vector exceeds 180°, and the upper
(=) sign is to be used when this angle is less than 180°, as it almost
always is in actual problems.

52. The solution of (7) as an equation in c¢ is facilitated by a trans-
formation due to Encke. We put

c=(r+ry)siny, 0<qy<90°
and

7= 2kt/(ry + 1)’
Then (7) becomes

3p=(1 +siny)! T (1 —siny)?
) = (cos kry + sin Ly)* F (cos Jy — sin oy )* .oooiinninnin. (8)
First we take the upper sign, in which case
87 = 6 sin }ycos® Ly + 2sin’ Jy
=6 siny —4sinly.

If we put
sinjy=v2sin 10, 0<}©<30°

then

3p=242sin0, 0< O <90 iiiiiiiiririiiiiiiiiiaena, 9)
and B .

siny = 242 sin }© y/(cos 20).
Hence 2
B (SR 02 1 0600 90Haaaaanc0B8aI00nes s a0R0Aa0B000aI000S (10)

where

p=siny/ng=3sin 40O ,/(cos §0)/sinB.................. (11)
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Since p and 7 are both functions of @, u can be tabulated with the argument .
When such a table is available (cf. Bauschinger’s Tafeln, No. xxi1) and 7 is
known, ¢ is immediately given by (10).

In the second place we take the lower sign in (8), so that
3y =2cos? vy + 6 sin? fy cos 4y
= 6 cos §y — 4 cos® 4.
If now we put

cos 3y =V2sin 10, 30°< 1O < 45°
then

3n=2425in®, 90°< O <185 ciieviiieeeenaeeraarnnnnns (12)
and

sin iy = 242 sin 1O y/(cos @)

as before. Hence (10) and (11) apply equally to this case, with the difference
that @ as given by (12) is an angle in the second quadrant instead of the
first. ~ Except -for this the solution is formally the same in both cases, but
different tables would be necessary. The case of angular motion exceeding
180°, however, seldom demands consideration in practice.

63. For motion along the concave branch of an hyperbola under attraction
to the focus we have (§ 30)

rn=a(ecosh £, —1), 7,=a(ecosh E,—-1)
and we may suppose £, > E,. Hence
71 4 1. = 2a {e cosh § (K, — E)) cosh § (B, + E;) — 1}

= 2a {cosh § (e — 8) cosh & (e + 8) — 1}
where i .
e—8=FE,— E, coshj(e+8)=ecosh}(&,+E) ...... (13)

Again, the chord ¢ is given by
¢® = a? (cosh &, — cosh ) + a* (¢ — 1) (sinh £, — sinh &)
=4a? sinh? § (B, — E,) sinh*} (&, + E))
+ 4a? (¢* — 1) sinh* § (&, ~ E,) cosh? § (X, + E))
= 4a?sinh? § (e — 8) {— 1 + cosh? § (e + &)}
or
¢ = 2a sinh } (e — 8) sinh § (e + §).
Hence

r+rte=2a (cosix e—1)=4dasinh®fe .........ouee (14)
m+ %'2 —c=2a(coshd — 1) =4a sinh?§6 ............... (15)
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But on the other hand if
p =k (1 +m)=n%a?
nt = esinh , — K, — (esinh K, — E))
= 2¢sinh § (B, — E) cosh } (¥, + E,) — (E, - E))
=2sinh § (e — &) cosh } (e + 8) — (e — 8)
=sinhe—sinhd —(e—=8).ccoeiiiiiiiiiiiiiiiiiireens (16)
where e and & are given by (14) and (15). This is the form which Lambert’s

theorem takes in this case.

We may take § (¢ + 8) as defined by (13) positive ; and § (e — &) is positive
since £, > K,. Hence e is positive. Now the equation of the chord referred
to the centre of the hyperbola gives for the intercept on the axis

@ =—qacosh § (B, — E))/cosh § (E,+ E,), y=0
or, (— ae, 0) being the attracting focus within this branch,
@+ ae=— a {cosh } (¢ — 8) — cosh { (e + &)} /cosh } (B, } E,)
=+ 2a sinh Jesinh 18/cosh { (By+ E) «oovvvivineiinnnnn. Qan

The left-hand side is negative or positive according as the intersection falls
beyond the focus or on the side of the focus towards the centre. Hence
sinh $8 is positive when the angular motion about the focus is less than 180°,
and negative when it exceeds 180°. Thus the sign of & is determined. If
we put
m?=(r,+ r.+ c)/da, mt=(r,+r,—c)lda
then .
sinh je =+m,, sinh{é=1m,

or

exp.be=+m +Vm2+ 1, exp.$8=+m,+Vmz+1

sinh e= 2mNm?+1, sinh 8=+ 2m, Vmz+ 1.
Hence (16) can be written (Log denoting natural logarithm)
nt = 2m, \/mfi—fi F 2m, '\/ﬂmf +1
—2Log (m, 4+ Vit + 1) + 2 Log(m2+\/n—1g"_+‘1)
where the upper or the lower sign is to be taken according as the angular

motion about the attracting focus is less or greater than 180°.

54, The corresponding theorem for motion along the convex branch of
an hyperbola under a repulsive force from the focus can be proved similarly.
In this case (§ 32)

r,=a(ecosh £, +1), r,=a(ecosh E,+1).

Hence
7+, =2a {cosh § (¢ + 8) cosh § (e —8) + 1}
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where :
e—8=FE,—E, cosh}(e+8)=ecosh}(E,+E)......... (18)

and as in § 53
¢ = 2asinh } (e — &) sinh § (e + ).
We have therefore ‘ .
7+ 75+ ¢ =2a(coshe + 1) =4a cosh? }e............... (19)
r+1,—c=2a(coshd+ 1)=4acosh®}d ............ (20)
Then by § 32 (22), if 4’ =n%d?,
.nt = esinh E,+ E,— (esinh E, + E))

= 2¢sinh } (E,— E))cosh } (E, + E,) + E, — E,

=2sinh § (e—8)cosh § (e+8)+e— 3

=sginhe—sinh8+e—0 ...ccoviiiiiuiiviniiiniinnniinnnn (21)
where € and & are given by (19) and (20). This is analogous to the other
forms of Lambert’s equation.

Putting as before
m?=(r,+ 1, +c)fda, m?=(r,+r,—c)lda
we have of necessity
coshje=+m,, cosh}d=+m,

but there is again an ambiguity in the values of e and 8. Now we may take
E,>E, and } (e — 8) positive; and we may define }(e+ 8) as the positive
value which satisfies (18). Hence e is positive and exp. (¢)>1. To the
equation (17) now corresponds

x — ae = — 2a sinh }¢ sinh $8/cosh L (&, + E,)
showing that & is positive if the chord intersects the axis at a point on the
side of the focus towards the centre. It must be noticed that this focus is,
as before, the focus within the branch and not the centre of force. Hence
exp. 18> or < 1 according as the angular motion about this focus < or > 180°,
It follows that .
exp. (Je) = +m +Vmi—1, exp. (38) =+ m, + Vmz—1
sinh e = 2m, ¥m;* — 1, sinh 6 = + 2m, Vm2— 1
and hence that
nt=2mNm2~17F 27712\/mgz~ 1

+2 Log (m, +Vmp— DF 2Log(mg+'\/mj2 =1)

where Log denotes natural logarithm and the upper or the lower sign is to be
taken according as the motion about the internal focus (not the centre
of force) is less or greater than 180°.

In all cases, whether the motion is along a parabola or either branch of
an hyperbola, when two focal distances are given in position and nothing
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more is known about the circumstances, the discussion of § 48 shows that
the ambiguities in the expressions for the time of describing the arc corre-
spond to the distinet solutions of the geometrical problem. Hence they
cannot be decided without further information. In practice, however, it
rarely happens that the angular motion about a focus exceeds 180° and
this limitation, by which the upper sign can be taken, will be generally
understood.

55. A quantity of great importance in the determination of orbits is the
ratio, denoted by v, of the sector to the triangle. The case of elliptic motion
is taken first. Since n = h/ab, where h is the constant of areas, twice the
area of the sector is, by (6),

ht=ab {e — & — (sin e — sin 8)}.
But if (z,, %), (23, ¥») are the extremities of the arc, twice the area of the
triangle is
20 = (2,42 — T23)
= ab [sin B, (cos B, — e)—sin E, (cos E, — e)}
= ab {sin (E,— E,) — 2¢ cos } (B, + E,)sin } (E, — E))}
= ab {sin (¢ — §) — (sin € — sin §)}
by (3). Hence
_ e€—38—(sine—sind)
y= e R e
This expression contains @ implicitly and this quantity is to be eliminated.

Let 2f be the angle between r, and r, and let g, k have the meaning assigned
to them in § 49. Then '
16a?sin® fesin?{8=(r, + r,+¢) (n+7r:—¢)
= (1) + 1)t — 1 — 1+ 2y cos 2f
= 4ryr, cos?f
whence -
2a (cos g —cos k) = 2cos f V7,
Also by (4) and (5) .
. 7 + 7, = 2a (sin? Je + sin® £3)
=2a (1 —cosgcosh)
and therefore o
7, 4 13— 2 tos fcos g V= 2a sing.
Again, by (22),
iy (] nt
Y= sin2g—2singeosh
L L T
—_sing 9 cosf«/ﬁ J
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Hence 3 1] R
P (ry+rs—2cos feosg Nryry) = 2ut/(2 008 FNTTY v (23)
since n%a*=p. On the other hand
fidim €— 8 —sin(e— )

sin (e — 8) — (sin € — sin o)
ke L 2l

~ 2sin g (cos g —cos h)

_ a(2g—sin2g)
sing. ilcosf«/ﬁ'f2
and therefore
pt 2g — sin 2g

2 (y— B 24
y¥@y-1= @eosfirry’ sin'y (24)

In the notation of Gauss we write

™+ 7 put?
14+2=—2"2 D
2eosfVrr | (ReosfAnry
and then (23) and (24) become
A== (ISR Yo e oo oo e o s (25

PP — y*=m?(2g —sin 2g)/sin*g ............ Hlieenns (26)

The value of y is to be found by solving this pair of equations in y and g, the
solution being performed by some method of approximation.

56. The corresponding ratio in the case of a parabola can be expressed
in several forms. The simplest can be derived as a limiting case from the
ellipse when a is large and e and 8 are small. For (22) then gives

S eSO e 0 ed
y_—(e—8)§+e”—8’_ 3ed

But by § 51, 52
@?e?8? = (ry + 1, — 2 =(r; + 7,)2 cos?y.

Hence
2 (r+ 7'2) +_(rl_+_ 7'2) cos vy
3(r, 4 1) cosy
=4(1+2secy)
where

¢c=(r;+7)siny.
Thus y, like 4 and g, is a function of v (or @)) and can therefore like g
be tabulated with the argument 7, where
n = 2kt/(r; + 7'2)g =2sin v (2 + cosy).
(Ct. Bauschinger’s Tafeln, No. XXII a.)
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57. In the case of the branch of an hyperbola concave to the focus of
attraction, twice the area of the sector is by (16)
ht = ab {sinh € — sinh § — (¢ — 8)}
since kb = v/(up) =nab. And, if (z,, y,), (2, ¥,) are the extremities of the are,
twice the area of the focal triangle is
24 =2y, — B Y
= ab {sinh £, (cosh K, — ¢) —sinh E, (cosh £, — e)}
= ab (sinh (&, — E,) — e (sinh E, — sinh E,))
= ab {sinh ¢ — sinh 8 — sinh (e — §)}
by (13). Hence
__ sinhe—sinh8— (e— &)
Y= Sohe—sohS—smh ey
Now we have by (14) and (15)
16a?sinh? § e sinh? £6 = (1, + 1,)? — ¢
=477, c08% f

or
2 cosf\GTr2 = 2a (cosh & — cosh g)

where 2k =€+ 8, 29 =¢—8. Also by addition of the same equations (14)
and (15)
71+ 75 = 2a (cosh g cosh 2 — 1)
and therefore ) o
7 + 1y~ 2 cos feosh g Vr,ry = 2a sinh? g.
But by (27)
y = nt/(2 sinh g cosh & — sinh 2¢)
= ant/sinh g (2 cos f Vo)
and therefore
42 (4 75— 2 cos feosh g Vi) = 2ut?[(2eos f V) ... (28)
since n%a®= . On the other hand 2
_ sinh (¢ — 8) — (e — d)
Y~ = snh e — sinh & — sinh (e — 8)
_ sinh 2g — 2¢g
~ 2 sinh g (cosh & — cosh g)

_ a sinh 2¢ — 2¢
2cosf~/77,72. sinh g
Hence

£ sinh 29 — 29
Al = ey SRR eonoontbaod 29
y-1 (2cos f Ve (sinh g)* (29)

As in the case of the ellipse we write

"1+ 7s e 4/‘”:2

1+2l=———;, mA= — e ——
2 cos fVrr, (2 cos f VT 1)
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and thus (28) and (29) become
gt =m?[(l—sinh*}g).......... 4 ¢ AR (30)
y* — y? = m* (sinh 29 — 2¢)/sinh®g ............... (31)
This pair of equations in y and g must be solved by some process of approxi-

mation so that the value of ¥ may be found.

58. The case of the branch which is convex to a centre of repulsive
force at the focus (— ae, 0) needs slight modifications. Twice the area of the

sector is by (21)
ht= ab (sinh e — sinh 8 + ¢ — 8)

while twice the area of the triangle is
20 =2,y — 73,
= ab {sinh &, (cosh E, + e) — sinh £, (cosh £, +¢)}
= ab {sinh (&, - E,)+ 2¢sinh § (£, — E,)cosh § (£, + E,)}
= ab {sinh (¢ — &) + sinh ¢ — sinh &}
by (18). Hence the ratio of sector to triangle is

_ sinhe—sinhd+e—8
¥~ sk @IES) e g 1

In thié case we have by (19) and (20)

16a? cosh? fecosh? 18 = (r,+ ) — ¢ = 47‘17\"2 cos? [

or
2cosf N, r,r2 =2q (cosh h + cosh g)
and
A Try= 2a (1 + cosh A cosh g)

where 2h=¢+ 8, 29 =¢— 0. Hence
2 cos f cosh g N g — (7 + r;)=2a sinh?g.
But (32) may be written
y = nt/(sinh 2g + 2 sinh g cosh &)

= ant/sinh g (2 cos f¥r,ry)

and therefore
¥*(2 cos feosh g Vryr, — 1y — 1) = 2/ [(2 cos f NPT ... (‘33)
since n’a®=u'. Also by (32)
2 sinh (e ~ &) — (6—5)
Y= sinh (e — 6)+ sinh e —sinh 6

A sinh 2¢g - 2g 5
~ 2sinh g (cosh g + cosh &)
a sinh 2g — 2¢

#e 2co8 fVrT, " sinhg
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‘Hence X
i sinh 29 — 29
21 —y)= B o BT L ek 34
v -y (2 cos fVr,7y) sinh?g @4)
If as before we write
ey L) e Tty 1;1.“‘ = it -
2 cosf\/r,r2 i 2 cosf'\/rl—r,)3
then (33) and (34) become
LyP=m(cosh® Lg — 1) .ooenianns 202000000000000030G (35)
¥ — 1 =m*(sinh 2¢ — 29)/sinh®g ..ieeennne. ....(36)

and these again, when solved by a method of approximation, give the value
of y in this case when 7, , and f are known.

59. Some useful approximations can be obtained from a proposition
which is easily proved. Let X be any regular function of t. If we neglect
powers of ¢ beyond the fourth order we may write

X =0y + a,t + @t + at* + att
5,2 2a, 4 6ast + 12a,t2

Let X,, X,, X; be the values of X when ¢t=—17;, 0 and 7,. Then we have
three pairs of equations, obtained by substituting these values in the above.
From these six equations the coefficients ay, ..., a, can be eliminated and the
result expressed in determinant form is clearly

X, 1 -7 72 —12 7 |=0.

0 0 0 0
3

T T KS) T

1
1
X, 0 o s — 61, 127

0 0 2 0 0
X, 0 0o 2 6n, 1272

The determinant can be calculated without difficulty, and the result after
dividing by 127, 7, (7, + 75) is
0= 12X,7+X,7@G2-—mm—1d
— 12X, (1, + 1) — Xy (71 + ) (2 + 3Ty 7y+ 75)
¢ + 12X+ Xy7y (72 — T — ).

If we put T,= 7, + 7, and write
124, =1, — 12 124,=7y5+ 7% 124,=77— 7 ... 37)
this becomes

4,X
0=X,71(1- e

)+ X, (1— - )...(38)

SUREIES -

2
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60. Now in the case of the motion of two bodies in a plane we have

— v, = pylr

Hence substituting # and y successively for X in the formula just obtained
we have, to the fourth order in the intervals of time,

0=a,71, (1 + pd,|r?) — @75 (1 — pdy/75¥) + @sms (1 + pd,/rs)
0 =ym (L + pdi/17) — gama (1 — pddo/7?) + 975 (1 + pdy [ 7).
The solution of these equatibns in the ordinary form gives

m(l+ ILAI/TIS) L] (1 s l"Az/Tzs) - 7y (1 + IJ'Aa'/"'sS)
ZolYfs — ZL3Ya — T3+ T1Ys TilYs — Tth ’

But the denominators are respectively double the areas of the triangles whose
sides are pairs of ;, 75, r,. Hence we have the formulae of Gibbs,

[7'2’1‘3] AL [7'1"‘3],__ =£‘l___. (39)
(U pdy 1) T (U= pdyfrd) 7 (Lt mdyfrd)

where, according to the customary notation, [r,7;] denotes double the area of
the triangle whose sides are 7, 7y, and 4,, 4,, 4; have the values found
above (87). This expresses the ratio of the triangles correctly to the third
order of the time intervals.

A second interesting example is provided if we take X =72 In this case
we have (§§ 25 and. 26)
in-s(t-2).
Hence the formula (38) gives
(1= 2pd: [ r®) — r27, (1 + 2ud,/rd) + r27, (1 = 2ud,/75)

=—(Ad\mi+ Ay + A7) 21/
= — {1 (TaTs — 7)) + To (M Ty + 72) + T (T 7o — 7))} 1/ 6
== BT -+ 18— 7)) p/6a
== {3nmn+3nn(nt 7)) p/6a
= T 1) K O G00E 2000 o 0 R T TR OO S (40)

The form (40) applies.to an ellipse and gives the means of caltulating an
approximate value of o when 7, 7, 75 are known. It must be adapted
to the hyperbola by changing the sign of a. For the parabola the right-hand
side vanishes and we have the relation between the three radii vectores

T =i T = 2/" (Al"'l/"'l +,Az"'2/7'2 25 Aa"'a/"'a)

which holds provided we may neglect terms of the fifth order in the time.
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62. Without loss of accuracy the ratios can be expressed in terms of the
two distances 7, and 7, instead of 7, and #,. The forms found by Encke
may be derived thus: we have to the first order

=Ty —TaTy, T3=Ty4 7"2"'1
whence
= =TTy, Ty T =2r+ R (T — )
and therefore

1 1, 3
R R T
or
1 _ 8 24‘(7'3_"'1) "'1—7:4
rd (41 () T T

In the terms of the third order we have simply
Ty i 4(ry—r 4(rs— 1)
4t T ()
Hence the ratios of the triangles to the required order become

' o g i
[7‘27’3] T { v 3(r + 7 (2 —75%) — m Ty Ty
[”'17'5]‘— 'E; { _ﬂ_ TR 4‘/L (7‘3 71)
[r.7s] 7 L 3(r+ 1) (7= 7 — (7. + ) 178 Ty ...(42)
[7'27‘3] - inl} & —4M 2__ .2 du ("’3 7'1)
[r7s) 7 t3 (r + 7o) (T =)+ ————] YR TS/TEI

where, if £;, t,, ¢; are the times corresponding to the distances r,, r,, 7,

n=b—t, Ta=hL—b, T=t—t.

Equivalent but rather simpler expressions in terms of the extreme distances
may be obtained by observmg that

1 $h 1 _1° 3%,

i 7"3 r‘ (T I
whence 42,
T _ T Ty 3, = el
T P 7y 7'2‘ SR

By substitution in (41) it is easily found that

[rra) _ o 7o) b "ol
[7'27'3] T 1272 (@iT—="0) ot 127 (1i7e —'75%)

[z {1 (et ) + bt 738} (43)
[7'17'3} T 1272 ERs a Ty 12r e (B
] _m j T i ™5

[rr] = (1 H 122 s + 19 3(7'173"‘7'2)1_2

From the method by which all the expressions of this kind have been derived
it is clear that the results -apply equally to all undisturbed orbits, elliptic or
hyperbolic.



CHAPTER VI
THE ORBIT IN SPACE

63. Hitherto we have considered the relative motion of two bodies only
as referred to axes in the plane in which the motion takes place. It is now
necessary to specify the manner in which the motion in space is usually
expressed.

We take a sphere of arbitrary unit radius with the Sun at its centre.
The ecliptic for a given date is a great circle on this sphere. That hemi-
sphere which contains the North Pole of the Equator may be called the
northern hemisphere. On the ecliptic is a fixed point v which represents
the equinoctial point for the given date and from which longitudes are
reckoned in a certain direction. The plane of the orbit-is also represented
by a great circle which intersects the ecliptic in two points. One of these
Q corresponds to the passage of the moving body from the southern to the
northern hemisphere and is called the ascending node; the other node is
called the descending node. The longitude of Q, or 4(}, may be denoted also
by Q: it is an angle which may have any value between 0° and 360°. The
angle between the direction of increasing longitudes along the ecliptic and
the direction of increasing true anomaly along the orbit is called the ¢n-
clination and may be denoted by <. It is an angle which may lie between
0° and 180°.

Let P be the point on the great circle of the orbit which represents the
radius vector through the perihelion and @ any other point on the same
great circle representing a radius vector with the true anomaly w, so that
PQ=w. We may denote the arc QP lying between 0° and, 360° by o, so
that Q@ =w +w. This angle, reckoned from the ascending node to any
point on the plane of the orbit, is called the argument of the latitude. It is
possible to regard o as an element of the orbit, but it has been more usual
to define the element =, which is called the longitude of perihelion, as the
sum of the two angles Q + w although only one of these is measured along
the ecliptic. The angle @ + w or Q +w +w is called the longitude in the
orbit. We have thus defined the three elements, the longitude of the

P.D. A, 5
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ascending node, the inclination of the orbit and the longitude of perihelion,
required to fix the position of the orbit in 'space, and with these it is
necessary to mention the date of the ecliptic and equinox to which they
are referred.

64. The motion must now be definitely related to the time. Let ¢, be
an epoch arbitrarily chosen and T the time of perihelion passage. Then,
n being the mean motion, the mean anomaly corresponding to the epoch is

My=n(t,—1T).

Either M, or T might be regarded as an element of the orbit, but in the
case of a planetary orbit it is more usual to employ the mean longitude at
the epoch, €, which is defined as the sum =+ M,. Thus at any time ¢, if
u=w +w is the longitude in the orbit and X the eccentric anomaly, the
position of the planet is given by

tan § (u— w) =\/G—J_r:) tan 3 E

E:-esinE=M=n(t— T)
=n({t—t)+e—w.

where

The mean motion and the mean distance are connected by the relation (§ 24)
nat = pd =" (1 + m)
where m is the mass of the planet (negligible in the case of minor planets).

The complete elements can now be enumerated and illustrated by the case of

the planet Mars :
Mars (m=1/3 093 500)

Epoch 5| 1900 Jan. 0, 0® G.M.T.
Mean longitude € 293° 44’ 51736
Longitude of perihelion = 334 13 6 ‘88 | Equinox
Longitude of node ... Q 48 47 936 1900.0

s

Inclination ‘ 1 51 1-82
Eccentricity ... .. e 0093 308 95
Mean motion ... ... n 1886751862

Log of mean distance loga 0 182897 033

The number of independent elements is six, corresponding to the six con-
stants of integration which enter into the solution of the equations of motion,
these being in their general form three in number and of the second order.

When the orbit is parabolic the eccentricity is 1 and the mean distance
is infinite. The scale of the orbit is indicated by the perihelion distance ¢
and the time of perihelion passage T is given instead of the mean longitude
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at a chosen epoch. Thus preliminary parabolic elements of Comet ¢ 1906
(Brooks) are shown as follows :

JE 1905 Dec. 2229263 G.M.T.
® 89° 51’ 58”7

Q 286 24 221 }1906.0

7 126 26 7 -3

q  1296318.

65. If axes O (m, 3, 2;) be taken such that Oz passes through the node,
Oy, lies in the plane of the orbit, and Oz is in the direction of the N, pole of
the orbit, the coordinates of the planet (or comet) are

#=rcos(w+w), y,=rsin(w+w), z=0
when its true anomaly is w. Let the axes be turned about Oz, so that Oy,

takes the position Oy, in the plane of the ecliptic and Oz, is directed towards
.the N. pole of the ecliptic. Then

Xy =&y, Y=Y, €08 —28iN%, 2z,=2 0081+, sinq.

Next let the axes be turned about Oz, so that Oz, passes through the equi-
noctial point and Oy, is in longitude 90°. Then

Zy=2,008Q —y,8inQ, y=y,c08 2 +2,80Q0, z5=z,

Hence the relations between (s, ¥s, z) and (z, 3, 2,) are given by

& % : 4
&, cos () — cosz sin ) sin 7 sin )
Ys sin ) cos 2 cos {} —sin 7 cos
% 0 sin ¢ cos .

This scheme will give the heliocentric ecliptic coordinates of the planet.

It is convenient to write
sina sinAd =cos ), sina cos A = —costsin
sind’ sin B’ =sin ), sind cos B'’= coszcos ()
for then ; |
zy=rsinasin(d + o +w)

ys=rsinb’sin (B’ + o + w)
2, = rsint sin (o + w).
Hence, if R, L,, B, are the geocentric distance, longitude and latitude (the
last always a very small angle) of the Sun, which may be taken from the
Nautical Almanac, and A, \, B are the geocentric distance, longitude and
latitude of the planet,
A cosAcosB = RcosL,cos B, + rsinasin(4’ + o + w)
Asinicos 8= RsinL,cos B, + rsind sin (B’ + o + w)
AsinfB = Rsin B, + 7 sint sin (o + w)

whence the geocentric ecliptic coordinates of the planet.
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66. Were the elements given with reference to the equator instead of
the ecliptic, and this is sometimes done (though not often), the same
formulae would give equatorial coordinates with the substitution of R.A. and
declination for longitude and latitude. To obtain equatorial coordinates
from ecliptic elements another transformation is necessary. Let the last
system of axes be turned about O, so that Oy, comes into the plane of the
equator and the new axis Oz, is directed towards the N. pole of the equator.
Then the obliquity of the ecliptic being denoted by ¢,

L=y, Yi=1Y;CO08 € — 2;8iN €, 2, =2;CO8 €+ Y SIN €.

From the above relations between (s, ¥s, 2;) and (wy, %, 2) it follows
that (z, ¥, 2) and (@, ¥, 2) are related by the scheme:

x, Y %
A sin @ sin 4 sin a cos A cosa
Y sinb sin B sin b cos B cosb
2, sin ¢ sin O sin ¢ cos ¢ cos ¢
where it is easily seen that
! singsin 4 = cos )

"sinacos 4 = — cosisin O
cos a = sintsin
sinbsin B = cose¢ sin
sinb cos B= cose¢, cost cos {d — sin e, sin ¢
cos b = — coS €, 5in 7 cos {) — sin ¢, CoS ©
sin¢sinC = sine,sin
sincecos € = sine, cost cos O + cos €SNt
cosc = — 8in ¢, 8in 7 cos 2 + cos €, cos 7.

The heliocentric equatorial coordinates of the planet now become
@,=rsinasin(4 + o +w)
Yo=rsinbsin(B + o +w)
2, =7rsincsin(C + o + w).
Thus, for example, the above elements for Comet a 1906 lead to
z,=r[9-803389] sin (243° 29’ 423 + w)
Yo =7[9999830] sin (331 33 15 ‘1 + w)
2, =7[9887772]sin ( 60 14 19 ‘5 + w)
referred to the equator of 1906-0.

Let (2, y, 2) be the geocentric equatorial coordinates of the planet and
(X, Y, 2) the corresponding geocentric coordinates of the Sun, which may
be taken directly from the Nautical Almanac or other ephemeris. Thus

2=X+a, y=Y+y, 2=Z4+z,.
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But
z=Acosacosd, y=Asinacoss, z=Asind

where A, @, § are the geocentric distance, right ascension and declination of
the planet. These coordinates can therefore be calculated from the equations

Acosacosd=X +rsinasin (4 + o +w)
Asinacosd= Y + rsinb sin (B + o + w)
Asind =Z +rsinesin (C + o +w).

This form of equations, introduced by Gauss, is very convenient for the
systematic calculation of positions in an orbit.

67. The direct transformation of the elements from one plane of refer-
ence to any other may be made as follows. Let yAB represent the first
plane of reference, y,AC the second plane and BOP the plane of the orbit.
The first set of elements are yB=0, BP=w and 180°— B=1. The new
elements are ,C=(, OP=0o', and C=¢. Also the position of the new
plane of reference relative to the old may be defined by y4 =,, 4 =7, and
the arbitrary origin 4, by ,4 =, Hence the sides and angles of the
triangle ABC' are

a=w—0, b=0'-0Q, c¢c=0-0Q,
A=1, B=180"—1, C=7.
Now the analogies of Delambre may be written in the single formula, easily
remembered,
sin {(45° + (45° —3b F o)} _sin [45° F (45° — § B + 4)}
sin {45° + (45° —§¢)] ~  cos {45° F (45° — £ O)}

where the ambiguities + ¥ must be read counsistently but independently in
two sets of three. Hence taking (1) all lower signs, (2) all 4 signs, (3) all
— signs and (4) all upper signs in the above formula, we have

sin 3 (' — Q, + w —w')sin }7' =sin (2 — Q,) sin § (54 %,)

cos 3 (¥ — Q4 o — o) sin 7' =cos § (2 — Q) sin § (v — %)

sin 3 (V' — Qy— o + @) cos 7' =sin § (2 — Q,) cos § (1 + 7))

cos3(Q —Q,— o + &) cos 3t =cos } (2 — Q) cos § (T —10y).
These formulae will serve directly if for example it is required to refer the
elements of a minor planet to the plane of Jupiter’s orbit instead of to the
ecliptic. Or again, if 2, » and ¢ are the elements referred to the ecliptic
and equinox at the date T and ', »" and ¢’ the elements for the equinox
T +t, we may put Q, = I, 4, = m, and Q,= I, + ¥ where ¥, is the general
precession. Hence when these quantities are known the effect of precession
is given by 3

tan 3 (Q —II, — ¥, — Aw) =tan } (Q — IT) sin § (¢ + ) /sin § (1 — my)
tan 3 (' — I, — ¥, + Aw) = tan § (@ — II,) cos § (¢ + m)/cos § (¢ — 1)
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where Aw = o' — o, and (by Napier’s analogy involving B+ C and 4)

_cos}(Q+Q 20, — )
T cosi (OO +4n)

tan § (1 —7") tan § .

68. When the interval ¢ is moderately short, however, these rigorous
equations for the effect of precession are not required and it is more con-
venient to use differential formulae. We now consider yAB as the fixed
ecliptic of 1850.0 and v, AC as a variable ecliptic. Since

cos C'=sin 4 sin B cos¢—cos 4 cos B
—sin €. dC = (cos A sin B cos ¢ +sin 4 cos B)d4 —sin A sin Bsinc. dc

=sin C'cosb.dA —sin a sin B sin Cdc

7 dC=—cosb.dA+SnasinB.de ...cooeuriverieniaennienrineinns (1)
Also, since
sin C'sinb=sin Bsin¢ -
sin C'cosb.db=sin Bcosc.dc—cos Csinb.dC
=sin B (cosc —cos Csin asin b)dc + cos Csinbcosb.dA
or

sinC.db=cosCsinb.dA4d +sin Beosa.dc ....cooeuvvrrinninnnnss 2
Similarly, since

sin U'sin @ =sin 4 sin¢
sinG’cc;sa.da=cosAsinc.dA +sin 4 cosc.dc—cosCsina.dC
= (cos A sin ¢ 4 cos U'sin a cos b) d4
+ (sin A cos ¢ — sin A cos C'sin a sin b) dc

=cosasinb.dA +sin A cosacosb.dc
or
sinC.da=sinb.dA4 +sinAdcosb.dc ....ccocevvveniiiiiiins (3)

By a slight change of notation we now put £, w, and 7, for the elements
at 7'=1850.0, , » and ¢ for the elements at time T + ¢ (instead of ', o’
and +') and define the position of the ecliptic and equinox at 7' + ¢ relative to
those at T'by Q, =11, 7, == and Q, =TI + 4, so that

a=w,—w, b=0-I—-, c=Q,-1I

) B=180°—i, C=i.
Hence by substitution in (1), (2) and (3)
di= —co8(Q— I — )t — sin (w,— w) sin . dII

sint. d(Q — I —4r)=cos isin (2 — II — V) drr — cos (w, — @) sin 4,. 1T
—sini.do= sin (Q — Il =) d7 — cos (2 — [T — 4) sin or . d11.
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But in the coefficients of dIl we may put ¢ =1, ® = w, and 7 = 0, this being
the mutual inclination of the fixed and moving ecliptic. Hence we have
simply

di [dt=—cos(Q—1II — ) dr/dt

dQ[dt=dy/dt + cot ¢ sin (Q — IT — ) dor [ dt

dw [dt = — cosec i sin () — IT — ) dor/ dt.
These are to be integrated between ¢ =t and ¢t =¢,, and the coefficients of
drr[dt are variable with the time. Provided the interval is no more than a
few years, it is sufficiently accurate to proceed thus. Writing

ty =% —(t,—t)cos (U= —)dmr/dt

Q,= O, + (t: — 1) {dyr/dt + cot i sin (Q — IT — ) dor/dt}

®, =w, — (t; — t,) cosec v sin (A — IT — ) dor [ dt
we take Il 4+, dm/dt and dv/dt from appropriate tables (e.g. Bauschinger’s
Tafeln, No. XXX) with the argument 7' + 3 (t+t). With Q=Q,andi=1,
approximate values of £,, 7, can be obtained and the calculation is then

repeated with the corresponding values 4 (2, + (.), 4 (4, +4;) substituted for
Q and 7.

69. It is impossible to correct the first observations of a moving body
for parallax in the ordinary way because its distance is unknown. But the
line of observation intersects the plane of the ecliptic in a certain point,
called by Gauss the locus fictus, the position of which can be calculated. If
the observation is then treated as though made from this point the effect of
parallax is allowed for and also the latitude of the Sun.

Let the observation be made at sidereal time 7' at a place whose geo-
centric latitude is ¢. Let a, 8 be the observed R.A. and declination, reduced
to mean equinox. The geocentric equatorial coordinates of the place of
observation are (p cos ¢ cos 7', p cos ¢ sin T, psin ¢), p being the Earth’s radius
at the place, and the corresponding ecliptic coordinates (ph,, phs, phs), where

hy=coslcos b=cos¢cosT

hy=sinlcosb=cos ¢ sin T'cos e +sin¢sineg

hs=sinb =sin ¢ cos e, —cos psin T'sin g
€ being the obliquity of the ecliptic and 7, b the longitude and latitude of
the Zenith. Similarly

H, =cos\ cos 8= cos 8 cos a

H,=sin A cos 8 =cosd sin acos ¢ + sin d sin ¢,

H;=sinpB @=sindcose, —cosdsinasine
are the direction cosines of the line of observation, A, 8 being the geocentric

longitude and latitude of the observed object. The Nautical Almanac gives
Ry, L, and B, the geocentric radius vector, longitude and latitude of the Sun.
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Hence in heliocentric ecliptic coordinates the equation of the line of obser-
vation is
@+ Rycos Lycos B,—hp _y+ Ry sin Ly cos B, —hyp
H, I H,
_z+R,sinB‘—h§,E=_A

where A is the distance from the place of observation to the point (z, ¥, 2)
positively in the direction away from the object. If then this line intersects
the plane of the ecliptic in the point (the locus fictus)
o=—RcosL, y=—~Rsinl, z=0
A= (hyp— R, sin B)) H,

— Rcos L = — R, cos L, cos B, + ph, — (h;p — R, sin B)) H, | H,

— Rsin L =— R,sin L, cos B, + ph, — (hsp — R, sin B)) H,/H,.
But these exact equations can be simplified, regard being had to the small
quantities involved. For B; <1”in general, so that sin B,=B,, cos B, =1.
Also we may put p =pR, where p is the solar parallax, 8”80. Hence writing
R=R,+dR,, L=1L,+dL,, we have

A =R, (hsp—By)/H,
—cosL,.dR,+ R,sin L,.dL,=pR.h, — (h,p— B,) R, H,|H,
—sin L,.dR, — R,cos L,.dL,=pR.h,— (hsp— B,)) R H,| H,
whence
—~dR,/R,= p (hycos L, + hysin L)) — (hyp — B,) (H, cos L, + H,sin L,)/ H,

dL,=p (hysin L, — hycos L)) — (hyp — B,) (H, sin L, — H,cos L,)| H,

or again
—dR,/R,=pcosbcos(L,—1)—(psinb— B,)cos (L, —\)cot B
dL,=p cosbsin (L, —1)—(psinb— B,)sin (L, — 1) cot B
A/R,=(psinb— B,)/sin B.

Here both p and B, are naturally expressed in seconds of arc. Thus dL,, the
additive correction to the Sun’s longitude, is appropriately expressed in the
same unit. The. Nautical Almanac gives log R,, to which the additive
correction is

i log By s et [y ‘ERI% [4:3234 — 10].

‘R, "206265”
Finally, had the observation actually been made from the locus fictus it
would have been made later in time by the interval required for light to
travel the distance A. But the light equation, or the time over the mean
distance from the Sun to the Earth, is 498*5. Hence the additive correction

to the time of observation is (in seconds)
Awid98e5E -~ A L
dt_ﬁ,'m —E[73832—10]'

The reduction to the locus fictus is a refinement rarely employed in practice.



CHAPTER VII
CONDITIONS FOR THE DETERMINATION OF AN ELLIPTIC ORBIT

70. There are certain properties of the apparent motion of a planet or
comet on the celestial sphere which bear on the problem of determining the
true orbit and which can be considered with advantage apart from the details
of numerical calculation which are necessary for a practical solution. They
are closely connected with the direct method of solution devised by Laplace,
but they equally contain principles which are fundamental to all methods.

Let (z, y, z) be the heliocentric coordinates of the planet, (X, Y, Z) the

heliocentric coordinates of the Earth. Then

&=~ pax/r*, ...

X =-uwX/R ...

p= kLt m), o= k(1 +my)
m and m, being the masses of the planet and the Earth. Let (a, b, ¢) be the
corresponding geocentric direction cosines of the planet, so that
z=X+ap, y=Y+bp, z=Z+4cp.ccerccrinerrnn... 1)

p being the geocentric distance of the planet. The observed position of the
planet is given in right ascension and declination (a, 8),-and if the equatorial
system of axes be chosen,

a=cosacosd, b=sinacosd c¢=sind.
Since

i=X + dp +2ap + ap
p|rt = p X |R® + dp + 2dp + ap =0
or
X (ufr® = po/ B) + dp + 2dp + @ (p + pp/r) =0

and similarly

Y (ufr* — po| B?) + bp + 265 + b (5 + pp/r*) = 0

Z (ufr* — po [R¥) + Cp + 28p + ¢ (B + pp/r*) = 0.



74 Conditions for the Determination [cn. viI

These are three equations in p, p and 5+ pp/r’, the solution of which can be
written down at once in the form

—p i 4 2p =H/7"—,u.,,/R3 @

QRN 2 a 6 X T
w3 h TR

cc'Zi el o7 A d

the value of p not being required.

71. The determinants in (2) can be calculated when the first and second
derivatives of the three direction cosines are known. Now

3=—sinacosd.a—cosasind.o

G =—sinacosd.d—cosacosd.d’+2sin asin . dd—cosacos §.52— cosasin §.d

6= cosd.5—sins. &

The derivatives d, &, S, $ are most simply calculated from a series of observed
values by Lagrange’s interpolation formulae. If the number of observations
is three, made at the times ¢,, ¢,, ¢, we have-according to this rule,

)%, (t—t)(t—1) (E=1t)(t—1t) {t=t)(E-1,)

(tl . tz) (tl B ts) i b (t;:ts)m:ts = ty (ts B tl) (ta — tz) e

whence 4
s AU—t,—t; 2 —t,— 1, 22—t —t,
-0 GG -t
a 20, 2a, 2a,

TG G-t Gt tt) T Gt (=t

or, if we choose ¢ =1,, the time of the middle observation,

a=a,
Tl =— .0+ 7, (“'1 - 'Ta) T = TP (az 5 al) + 78 (ay— aﬁ) :
T = 2m.a,— 271, 0+ 275. a5 =— 27, (0 — &) + 275 (a3 — %)

where
Ti=b—t, To=h—t, T=t—t.

These formulae, which apply equally to the declinations, mutatis mutandis,
are only correct if the observations are made at very short intervals of time
and are ideally accurate., Since the accuracy of observations has practical
limitations, moderately long intervals must be used and a greater number
of observed places is necessary for satisfactory results. Our immediate
concern, however, is rather with general principles:than practical methods
of calculation,
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72. It is now possible to calculate the quantity ! given by
l=|a d¢ d|+k|a a X
b b b b b Y|
c ¢ ¢ c ~é &2
and we then have by (2)
G WY G B 3)

The mass of the plamet, m, must be neglected in a first approximation to the
orbit and this is one relation between p and . In essence it is fandamental
in all general methods of finding an approximate orbit. A second relation
is available because we know the angle ¥r between R and p, namely

=R+ p*+ 2Rpcosy........ een BT 4)
while the projection of R as a vector in the direction of p gives
Recosyp=aX +bY +¢Z, (0<+<180°).

If r be eliminated between (3) and (4) an equation of the eighth degree in
p results, and it will be necessary to examine the nature of the possible roots.
For the moment we suppose that the appropriate value of p has been found.
Then the corresponding value of p is given by (2) and the components of the
velocity can be calculated, since by (1)

d=X+dp+ap, §=Y+bp+bp, £=Z+p+0p .. (5)

where X, ¥, Z must be found from the solar ephemeris by mechanical
differentiation. Thus when p and p are known, (1) and (5) give the three
heliocentric coordinates of the planet and the three corresponding components
of velocity at a given time £. From these data the elements of the planet’s
orbit, assumed for the present purpose to be elliptic, can be calculated without
difficulty.

73. Since equatorial coordinates have been used hitherto, the elliptic
elements of the orbit will also be referred to the equatorial plane. If new
coordinates (£, 7, ¢) be taken so that the axis of £ passes through the node
and the axis of ¢ through the N. pole of the orbit, the transformation scheme
is (cf. § 65):

z y z

i . | |

2 cos () sin Q) 0 |
7 | —sinQ cosz’ cos ' cos 1’ sin 1’

& | sinQ’'sine’ | —cosQ'sini’ cost’
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Hence in the plane of the orbit,
£=wsin Q’sins’ —ycos Q'sind’ + zcos i’ =0
t=sin Q’s:in'é' —gcossine’ +Zcost’ =0
giving for the determination of Q’ and 3’

sin ' sind’ _cosQ'sins’ _ cosd’

e e L L 0Ll e o (6)
Yz —1yz xi—dz @y — &y
Also, if w is the argument of latitude (or rather of declination),
< E=rcosu=axcosQ +ysinQ ...cooriiiiiniiiniiiinnnns )
and :
p=—az8inQ cost’' + ycosQ cos ¢’ +zsine’
or
PSINU =2 COSLCE ireiieiieiiniiin e (8)

by the above equation for £ Similarly, if V7 is the velocity and y the angle
between V and the radius vector produced,

E=Veos(u+y)=dcosQ +¢sinQ’ ... )
B=Vsin(w+ x¥)=7c086ct" .ccoiveeerniiiniiiniiinens (10)
Thus V and y, as well as r and u, are determined. Now if w is the true
anomaly at the point, the polar equation of the orbit gives ‘
P=1(1l+8COSW) .eoreeeurrrracerrnninses (11)
DICOTRYI= IS guR e e SR S LT AL (12)

since tan y = rdw/dr. But the constant of areas is

h=Vrsiny=o/(up)=kyp ....lvcecurerercn. (18)
giving p and hence ¢ and w. The mean distance a can be deduced from the
known values of p and e, or directly from the relation

Al s ol s T A P (14)
and the mean motion n from the equation u =4*=n’¢% Also the element &’
is given by &' = Q'+ u —w. Finally the epoch of perihelion passage is deter-
mined by the two equations

tan%E:N/G—I—D tan §w

nE—T)=E—esinE..ccccoveriiiiinninnininiind (15)
L being the eccentric anomaly at the point of the orbit observed.

T4. We now return to the consideration of the solution of equations (3)
and (4), following the method of Charlier, which gives the clearest view of
the geometrical conditions of the problem. The first of these equations is
based on the assumption that the point of observation is. moving under
gravity about the Sun. The point which so moves is in reality the centre
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of gravity of the Earth-Moon system and, strictly speaking, the observations
should be reduced to this point and not the centre of the Earth. But this is
a matter of detail which our immediate purpose does not require us to stop
and consider. Similarly we may neglect the mass of the Earth as well as that
of the planet and put R=1. Then the equations become simply

where [ and yr are known. The position of the planet becomes known when
either p or » has been found, and it is simpler to eliminate p. Thus
Brd =128+ 203 (r* — 1) cos yr + (r* — 1)
3 Pra—(P+2lcosYy+1)r+2(cosy+1)r*—1=0 ..... (18)
Now the coefficient of 72 is
2 (Leos ¥ + 1) = (1= 1/r%) (1 — p?) + 2p7)p?
={1-1/r) (* =1)+p* A+ 1/r%)}/p*

which is obviously positive, whether r is greater or less than 1. And the
coefficient of ¢ is essentially negative. Hence, by Descartes’ rule of signs,
there are at most three positive roots and one negative root. The latter
certainly exists because the last term is negative (the equation being of
even degree), and two positive roots must satisfy the equation, namely + 1
(corresponding to the Earth’s orbit) and the root required. There must
be a fourth real root, and therefore in all three real and positive roots, one
real and negative root and four imaginary roots. But the third positive
root may or may not satisfy the problem.

Now by (16) r is greater or less than 1 according as ! is positive or
negative. If then the two roots which are in question lie on opposite sides
of 1, the spurious root can be detected and a unique solution of the problem
can be found. But if they lie on the same side, they cannot be discriminated
between in this way, and an ambiguity exists. If we divide (18) by (r—1),
we obtain

f@)=trs(r+1)—Q@hcosy + 7 —1) (2 +7r+1)=0.

JfO)=+1, f(+1)=20(—3cosy)
so that the roots are separated by +1, and a unique solution exists, if
1 (I — 8 cos ) is negative.

Thus

75. The geometrical interpretation is instructive. The equation (16)
for different values of the parameter ! represents a family of curves in bipolar
coordinates, the poles being E (the Earth) for p and S (the Sun) for 7. The
planet lies at the intersection of one of these curves with a straight line



[on. vir

Conditions for the Determination

78




75] of an Elliptic Orbit 79

drawn through E in a given direction. But there may be two intersections,
and this will happen if f(+ 1) or

PLA=Beosy) = (1= 1) (1= 1/r+§ (L+p~19)]

is positive. This expression changes sign when we cross the circle r=1 and
again when we cross the curve

1-1/P+31+p*—15)=0.

Putting p*=1+17"— 2r cos ¢ we get for the polar equation of this curve with
the origin at S
4—8rcosp=1/r ..cccooiviiiiiiiiennniinnnd (19)

or in rectangular coordinates,
r(4-3r)=1

showing that the curve has an asymptote 3z=4. Moving the origin to ¥
we find at once that £ is a node, the tangents being y=+ 2z. The whole
curve consists of a loop crossing the SE axis at the point » = 5604, ¢ =, and
an asymptotic branch, and is shown as the “limiting” curve in the figure.
The plane of the figure is that containing S, E and P (the planet); it is
only necessary to show the curves on one side of the axis because this is one
of symmetry.

A few curves of the family (16) are also shown in the figure, for values
of I which indicate sufficiently the different forms. When {=0 we have the
circle r=1, called here the “zero” circle. It is evident that when [ is
negative r < 1 and the curve lies entirely within the zero circle, while when !
is positive 7 >1 and the curve lies entirely outside this circle.  When { has
a large negative value, the curve consists of a simple loop surrounding 8 and
an isolated conjugate point at E. As — I decreases from w the loop increases
in size until, when [=—3, the loop extends to X, where there is a cusp.
Afterwards as I approaches 0 the loop, still passing through #, approximates
more and more closely to the zero circle.

When [ is positive the form of the curves is rather more complicated. It
must be remarked that ! cannot be greater than +3. For

= =1)/rp=0"+r2+r*)(r—1)/p.

But »r>1and r—1<p. Hence the limit is established and we have only to
follow the values of  from + 3 to 0. At first the curve consists of a small
loop passing throngh £. As the value of I falls the loop expands, tending
to enfold the zero circle. Finally, when =+ 02959, it reaches the axis again
and forms a node on the further side of S. As the value of / falls still further
the curve breaks up into two distinct loops. The larger continues to expand
outwards at all points and recedes to infinity, while the inner, always passing
through E, contracts until finally it becomes the zero circle. These features
in the development of the family of curves will be evident in the figure.
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It will now be apparent that the limiting curve and the zero circle divide
space into certain regions and that the solution of the problem of determining
an orbit by the method indicated is unique or not according to the region in
which the planet happens to be. Thus we distinguish four cases:

(1) If the planet is within the loop of the limiting curve there are two
solutions.

(2) In the space between the loop and the zero circle the solution is
unique.

(3) Outside the zero circle and to the left of the asymptotic branch of
the limiting curve there are again two solutions,

(4) If the planet lies to the right of the asymptotic branch of the
limiting curve only one solution is possible. It happens that newly dis-
covered minor planets are usually observed near opposition and therefore
this is the case which most commonly occurs.

76. There is another curve which has considerable importance in the
problem of determining an orbit by a method of approximation and to which
Charlier has given the name of the “singular” curve. We may find it thus.
If we eliminate » between the equations (16) and (17) we have

lp=1—(1+2pcosyr+p?) ¥
which is an equation giving the values of p for a line drawn through £ in
the direction 4. Two of the values become equal and the line touches the
curve (16) if
i =3 (cosyr+ p)(1+2pcosyr +p*)_%
= 3 (cos Y + p)/r2.
Hence the locus of the points of contact of the tangents from X to the family

of curves (16) is
(1 =1/1*)/p =3 (cos ¥ + p)/r°

20 (P = 1) =3 (p* +7° 1)

or

or again
307=215 = 51248 eeeeiieeieeeieeens (20)

This is the equation of the singular curve. If we change from bipolar
coordinates to the polar equation with the origin at S, we obtain

3(1—2rcos¢+1r?)=2r"—5r2+3
or
T3=4 — B OB P/Teuuriuniinirinirnnniianienns (21)

Comparison of this form with the equation (19) of the limiting curve shows
at once that these two curves are the inverse of one another with respect to
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the zero circle. From this relation the form of the singular curve, which is
shown in figure 3, becomes apparent.

The importance of the singular curve arises thus. In general a line
through £ meets a curve of the family (16) either in one point (besides E)
or in two distinct points. In the latter case the coordinates of the planet
are regular functions of the time and can be expanded in powers of the time,
but each is expressed by two distinct series between which it is impossible to
discriminate. When, however, the planct is situated at a point on the singular
curve, the two distinet series coalesce and each point of the singular curve
corresponds to a branch point where we may expect the coordinates of the
planet to be no longer regular functions of the time. This is in fact the
case. Charlier obtained the equation of the singular curve by noticing that
along this curve expansion of the coordinates as power series in the time
ceases to be possible.

T7. If the masses of the Earth and of the planet be neglected, (2) may
be written in the form
' ~o_% _B(jr=1R) .
vt A (22)

where A, A, A, represent three determinants and I = A)/&*A,. Tt is clear,
as we have already noticed, that r< R if I is negative and »> R if [ is
positive. Now the equation of the plane of the great circle tangent to the
apparent orbit at (a, b, ¢) is

@ @ » 3|S5 W oco0obooo0ata00000000 8 008 ...(23)
b b oy '
¢ ¢ z

The coordinates of the Sun on the celestial sphere are (— X/R, — Y/R, — Z/R)
and of a neighbouring point to (a, b, ¢) on the apparent orbit (a + af + §dt?,
b+ ...,c+...). Hence the ratio of the perpendiculars from these points to
the above plane is —A,/R +1#8;, =~ 2/lk**R. Thus ! is negative if the
Sun and the are of the planet’s orbit lie on the same side of the great circle
touching the orbit, and positive if the Sun and the arc are on opposite sides.
In the first case r < R, in the second r> R. Hence we have the theorem
due to Lambert, which may be expressed by saying that an arc of the orbit
of an inferior planet appears concave to the corresponding position of the
Sun, but the arc described by a superior planet appears convex. This test
makes it immediately apparent whether a planet or the Earth is the nearer
to the Sun.

It may happen that A, vanishes. It is then necessary to express
the coordinates of neighbouring points on the orbit to the third order

P.D. A. 6
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(atdt+%at*+ kit b+ ..., c+...). The result of substituting in th'e left-
hand side of (23) is
tit|a & a|

b b b

c 6 ¢
and the double sign shows that the curve crosses the tangent great circle. In
the language of plane geometry there is a point of inflexion on the apparent
orbit. Now if A, vanishes either r=R or A,=0. Thus such a point of
inflexion occurs either when a comet reaches the same distance from the Sun
as the Earth or when the great circle which touches the orbit of a planet
passes through the position of the Sun.

78. When the apparent orbit of a planet reaches a stationary point the
curve either crosses itself and forms a loop, or without crossing itself it pursues
a twisted path, passing through a point of inflexion. At such a point, as we
have just seen, the tangent in general passes through the Sun. There is a
related theorem, due to Klinkerfues, which applies to the case of a loop.
Let P,, P,, P; be three positions of the planet in space, F,, E,, E; the corre-
sponding positions of the Earth and S the position of the Sun. If the first
and third positions correspond to the double point on the loop, E, P, and E, P,
are parallel and lie in one plane. Let SP, meet the chord P, P;in p, and SE,
meet the chord %, F; in e,. If ¢, is the time taken to describe P, P, or E, F,
and ¢, the time along P,P,or E,E;, t, : ¢, is the ratio of the sectors SP,P,,
SP,P, or very nearly the ratio-of the triangles SPp,, Sp.P;, that is
P.p, : p.P;. But similarly ¢, :¢, is nearly equal to the ratio Ee,: ek,
Hence P,P; and E, K, are divided by p, and e, in approximately the same
ratio and therefore e,p, is parallel to £, P, and E,P,. Consequently the
three planes E,SP,, E,e,Sp, P,, E,SP; have a common line of intersection,
namely the line through S parallel to £, P, and E;P;,. But on the geocentric
sphere these three planes correspond to three intersecting great circles. The
first and third intersect in P, the double point on the apparent orbit. Hence
the great circle joining any intermediate point on the loop to the corre-
sponding position of the Sun also passes through the double point, at least
very approximately.

It may be inferred then that if any three points on such a loop be joined
to the corresponding positions of the Sun, the three great circles will meet in
one point which is also a point on the apparent orbit.

79. There is some interest in finding the geometrical meaning of the
three determinants A,, A, A; in (2) or (22). Bruns has noticed that
A, = V3, where k is the geodetic curvature of the apparent orbit on the
sphere and V the velocity in this orbit at the point (a, b, ¢), so that -

Ve=a?+ b2+ &
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Here A, B, C are of course constants. Now (a,, b,, ¢,) is the pole P, of the
tangent at P, (a, b, ¢). The arc PP, passes through the centre of the circle
of curvature and while P is initially describing a circle of angular radius o
about this centre P, is describing a. circle of radius 90° — » about the same
centre. If the velocity of P,, which is in the direction of the pole of PP,
opposite Py, is V7,

V'/jcosw=V/sinw, @V =—a/V, b/V'==b/V, &V =—¢|V.
Hence

A,=A,V/V+ RV cot w (Ad + Bb + C6).

Again ;

A, =— RV (Aa,+ Bb, + Cc,)
=—RVecosSP,=— RVsinr

S being the position of the Sun on the sphere, and 7 the perpendicular arc
from S to the tangent PP, at P to the apparent orbit (positive if drawn from
the same side of PP, as P, or the centre of curvature). Also

Ad+ Bb+ Cé=VeosSP, = Vsinw
where » is the perpendicular arc from S to the normal PP, to the apparent
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