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PREFACE

X HIS book is intended to provide an introduction to those parts of Astronomy

which require dynamical treatment. To cover the whole of this wide sub-

ject, even in a preliminary way, within the limits of a single volume of

moderate size would be manifestly impossible. Thus the treatment of bodies

of definite shape and of deformable bodies is entirely excluded, and hence no

reference will be found to problems of geodesy or the many aspects of tidal

theory. Already the study of stellar motions is bringing the methods of

statistical mechanics into use for astronomical purposes, but this development

is both too recent and too distinct in its subject-matter to find a place here.

Nevertheless the book covers a wider range of subject than has been

usual in works of the kind. Thereby two advantages may be gained. For

the reader is spared the repetition of very much the same introductory matter

which would be necessary if the different branches of the subject were taken

up separately. But in the second place, and this is more important, he will

see these branches in due relation to one another and will realize better that

he is dealing not with several distinct problems but with different parts of

what is essentially a single probleni. In an introductory work it therefore

seemed desirable to make the scope as wide as was compatible with a reason-

able unity of method, the more so on account of the almost complete absence

of similar works in the English language.

The first six chapters are devoted to preliminary matters, chiefly connected

with the undisturbed motion of .two bodies. These are followed by five

chapters VII to XI dealing with the determination of orbits. This section is

intended to familiarize the reader with the properties of undisturbed motion

by explaining in general terms the most important and interesting applica-

tions. It is in no sense complete and is not intended to replace those works

which are entirely devoted to this subject. Otherwise it would have been

necessary to describe in detail such admirably effective methods as Professor

Leuschner's and to include fully worked numerical examples. Here, as else-

where, the aim has been to give such an account of principles as will be
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instructive to the reader whose studies in this branch go no further, and at

the same time one which will help the student to understand more easily

the technical details to be met with in more special treatises. Though the

actual details of practical computation are entirely excluded, the fact that all

such methods end in numerical application has by no means been overlooked.

A distinct effort has been made to leave no formulae in a shape unsuitable

for translation into numbers. The student who feels the need will have no

difficulty in finding forms of computation in other works. At the same time

the reader who will take the trouble to work out such forms for himself will

be rewarded with a much truer mastery of the subject, though he should not

disdain what is to be learnt from the tradition of practical computers.

An outline of the Planetary Theory is given in the seven chapters XII to

XVIII. The first of these deals exclusively with the abstract dynamical

principles which are subsequently employed. It is hoped that this synopsis

will prove useful in avoiding the necessity for frequent reference to works on

theoretical mechanics. The reader to whom the methods are unfamiliar and

who wishes to become more fully acquainted with them may be referred to

Professor Whittaker's Analytical Dynamics, where he will also find an intro-

duction to those more purely theoretical aspects of the Problem of Three

Bodies which find no place here. To those who are familiar with these

principles in their abstract form only the concrete applications in the follow-

ing chapters may prove interesting. A chapter on special perturbations is

included. Here, as in the determination of orbits, the need for numerical

examples may be felt. To have inserted' them would have interfered too

much with the general plan of the book, and they will be found in the more

special treatises. But it was felt that the subject could not be omitted

altogether, and a concise and fairly complete account of the theory has there-

fore been given. It may seem curious that with the development of

analytical resources the need for these mechanical methods becomes greater

rather than less, but so it is.

Chapter XIX on the restricted problem of three bodies is intended as an

introduction to the Lunar Theory contained in Chapters XX and XXI. The

division of these two chapters is partly arbitrary, for the sake of preserving a

fair uniformity of length, but it coincides roughly with the distinction

between Hill's researches and the subsequent development by Professor

Brown. In the second a low order of approximation is worked out, and it is

hoped that this will serve to some extent the double purpose of making the
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whole method clearer and of pointing out the nature of the principal terms,

which are apt to be entirely hidden by the complicated machinery of the

systematic development.

The rotation of the Earth and Moon is discussed in Chapters XXII and

XXIII. The treatment of precession and nutation is meant to be simple

and practical, and the opportunity is taken to add an account of the astro-

nomical methods of reckoning time in actual use. In the final chapter of the

book the theory of the ordinary methods of numerical calculation is explained.

This is necessary for the proper understanding of Chapter XVIII, but it also

bears on various points which occur elsewhere. Numerical applications find

no place in this work. But let the mathematical reader be under no mis-

apprehension. The ultimate aim of all theory in Astronomy is seldom

attained without comparison with the results of observation, and the medium

of comparison is numerical. Hence few parts of the theory can be regarded

as complete till they are reduced to a numerical form. This is a process

which often demands immense labour and in itself a quite special kind of

skill. It is just as essential as the manipulation of analytical forms.

Originality in the wider sense is not to be expected and indeed would

defeat the object of the book, which aims at making it easier for the student

to read with profit the larger and more technical treatises and to proceed

to the original memoirs. A certain freshness in the manner of treatment is

possible and, it is hoped, will not be found altogether wanting. Few direct

references have been given as a guide to further reading, and this may be

regretted. But the opinion may be expressed that for the reader who is

qualified to profit by a work like the present, and who wishes to go further,

the time has come when he should acquire, if he has not done so already, the

faculty of consulting the library for what he wants without an apparatus of

special directions. Sign-posts have their uses, and the experienced traveller

is the last to despise them, but they are not conducive to a spirit of original

adventure.

Since the main object in view has been to cover a wide extent of ground

in a tolerably adequate way rather than to delay over* critical details, the

absence of mathematical rigour may sometimes be noticed. Very little

attention is given to such questions as the convergence of series. It is not

to be inferred that these points are unimportant or that the modern astronomer

can afford to disregard them. But apart from a few simple cases where the
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reader will either be able to supply what is necessary for himself, or would

not benefit even if a critical discussion were added, such questions are

extremely difficult and have not always found a solution as yet. It is pre-

cisely one of the aims of this book to increase the number of those who can

appreciate this side of the subject and will contribute to its elucidation.

The reader who wishes to proceed further in any parts of the subject to

which he is introduced in this book will soon find that the number of

systematic treatises available in all languages is by no means large. He

must turn at an early stage to the study of original memoirs. It is not

difficult to find assistance in such sources as the articles in the Encyklopadie

der Mathematischen Wissenschaften, which render it unnecessary to give a

bibliography. The subject is one which has received the attention of the

majority of the greatest mathematicians during the last two centuries and in

which they have found a constant source of inspiration. Their works are

generally accessible in a convenient collected form.

For the benefit* of any student who wishes to supplement his reading and

has no means of obtaining personal advice, the following works may be

specially mentioned :

Determination of Orbits and Special Perturbations.

1. J. Bauschinger, Bahnbestimmung der Himmelskorper.

(A source of fully worked numerical applications.)

2. Publications of the Lick Observatory, Vol. vn.

(Contains an exposition of A. O. Leuschner's methods.)

Planetary and Lunar Theories.

3. F. Tisserand, Traite de mecanique celeste.

(The most complete account of the classical theories.)

4. H. Poincar6, Lemons de mecanique celeste.

5! H. Poincare, Methodes nouvelles de mecanique celeste.

6. C. V. L. Charlier, Die Mechanik des Himmels.

7. E. W. Brown, An introductory treatise on the lunar theory.

(Gives full references to all the earlier work on the subject.)

The great examples of the classical methods in the form of practical

application to the theories of the planets are to be found in the works of

Le Verrier (Annales de I'Observatoire de Paris), Newcomb (Astronomical
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Papers of the American Ephemeris) and Hill (Collected rforks). The most

suggestive developments, apart from the researches of Poincare, are contained

in the work of H. Gyld6n (Traite analytique- des orbites absolues des huit

planetes principales) arid P. A. Hansen. All these works will repay careful

study, but the suggestions are not to be taken in any restrictive sense.

The author of the present book has the best of reasons for acknowledging

his debt to most of the writers mentioned above and to others who are not

mentioned. Some of the proof sheets have been very kindly read by the

Rev. P. J. Kirkby, D.Sc., late fellow of New College, Oxford. Acknowledge-

ment is also due to the staff of the Cambridge University Press for their

care in the printing. It is not to be hoped, in spite of every care, that no

errors have escaped detection, and the author will be glad to have such as

are found brought to his notice.

H. C. PLUMMER.

DUNSINK OBSERVATORY, Co. DUBLIN,

20 February 1918.
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CHAPTER I

THE LAW OF GRAVITATION

1. The foundations of dynamical Astronomy were laid by Johann Kepler
at the beginning of the seventeenth century. His most important work,

Astronomia Nova (De Motibus Stellae Martis), published in 1609, contains

a profound discussion of the motion of the planet Mars, based on the obser-

vations of Tycho Brahe. In this work a real approximation to the true

kinematical relations of the solar system is for the first time revealed.

Kepler's main results may be summarized thus :

(a) The heliocentric motions of the planets (i.e. their motions relative to

the Sun) take place in fixed planes passing through the actual position of the

Sun.

(6) The area of the sector traced by the radius vector from the Sun,

between any two positions of a planet in its orbit, is proportional to the time

occupied in passing from one position to the other.

(c) The form of a planetary orbit is an ellipse, of which the Sun occupies
one focus.

These laws, which were found in the first instance to hold for the Earth

and for Mars, apply to the individual planets. In a later work, Harmonices

Mundi, published in 1619, another law is given which connects the motions

of the different planets together. This is :

(d) The square of the periodic time is proportional to the cube of the

mean distance (i.e. the semi-axis major).

These deductions from observation are given here in the order in which

they were discovered. The third (c) is generally known as Kepler's first law,

the second (6) as his second law, and the fourth (d) as his third law. But the

first statement is of equal importance. In the Ptolemaic system the "
first

inequality" of a planet, which represents its heliocentric motion, was assigned
to a plane passing through the mean position of the Sun. Even in the

Copernican system this
" mean position

"
becomes the centre of the Earth's

orbit, not the actual eccentric position of the Sun. In consequence no

astronomer before Kepler had succeeded in representing the latitudes of the

planets with even tolerable success.

p. D. A. 1
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2. It is undeniable that in making his discoveries Kepler was aided by

a certain measure of good fortune. Thus his law of areas was in reality

founded on a lucky combination of errors. In the first place it was based on

the hypothesis of an eccentric circular orbit and was later adopted in the

elliptic theory. In the second place Kepler supposed (a) that the time in a

small arc was proportional to the radius vector, (6) that the time in a finite

arc was therefore proportional to the sum of the radii vectores to all the

points of the arc, (c) that this sum is represented by the area of the sector.

Both (a) and (c) are erroneous, and indeed Kepler was aware that (c) was

not strictly accurate. Mathematically expressed, the argument would appear

thus :

hdt = rds, ht = [rds
= 2 (area of sector).

Both the supposed fact and the method of deduction are wrong, yet the

result is right. But if it should be supposed that Kepler owed his success

to good fortune it must be remembered that this fortune was simply the

reward of unparalleled industry in exhausting the possibilities of every

hypothesis that presented itself and in checking the value of any new principle

by direct comparison with good observations. It must also be remarked that

Tycho Brahe's observations were of the proper order of accuracy for Kepler's

purpose, being sufficiently accurate to discriminate between true and false

hypotheses and yet not so refined as to involve the problem in a maze of

unmanageable detail.- Another factor in Kepler's success was his knowledge
of the Greek mathematicians, in particular of the works of Apollonius.

3. Kepler had no conception of the property of inertia and he was

therefore unable to make any progress towards a correct dynamical view "of

planetary motion. It is interesting to analyze his results and to see what is

implied by each of the above statements taken by itself.

According to the first statement the planets move in a field of force which

is such that every trajectory is a plane curve. If we suppose that the

acceleration at each point is a function of the coordinates of the point, an

immediate deduction can be made as to the nature of the field of force. For

let A, B be two points on a certain trajectory, and let P be a third point not

in the plane of this curve. Then P can be joined to A and to B by plane

trajectories. The planes in which AB, PA and PB lie meet in one point

(which may be at infinity). The acceleration at A is in the plane OAB and
also in the plane OA P. Hence it is along AO. Similarly the acceleration

at B is along BO, and the acceleration at P is along PO. But the point
is determined by the two points A and* B. Therefore the acceleration at

every point of the field is directed towards the fixed point 0, and the field of

force is central (or parallel). Now the planes of the orbits all pass through
the Sun. Hence the Sun is the centre of the field of force in which the
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planets move. For an analytical proof of the general theorem see Halphen

(Comptes Rendus, LXXXIV, p. 944).

4. To this the second statement adds nothing with regard to the nature

of the forces, and might indeed have been deduced from the first. For it

tells us that

= \(xdy ydx} = ht

the Sun being the origin of coordinates and h being a constant. By differen-

tiation we have

xy yx = h

or

xy yx = 0.

Thus yl'x
=

y\x, which proves that the acceleration is towards the Sun at

every point, i.e. the field of force is central. Clearly the argument might be

reversed, and the law of areas deduced from the fact that the accelerations

are directed towards a fixed centre, which has already been obtained from the

first statement. Both this theorem and its converse are given in Newton's

Principia, Book I, Props. I and II.

5. We shall now investigate the law of acceleration towards a fixed point

under which elliptic motion is possible. In the first instance it will not be

assumed that the fixed point is the focus of the ellipse. Apart from the

interest of the more general result, this is the more desirable because many

pairs of stars are known in the sky the components of which are observed to

revolve around one another in apparent ellipses ;
but the plane of the motion

being unknown it is only a matter of inference that either star is in the focus

of the relative orbit of the other. For it is the projection of the motion on

a plane perpendicular to the line of sight which is observed. Let then the

ellipse

be described freely under an acceleration to the fixed point (/, g). Any point

on the ellipse can be represented by (a cos E, b sin E). The angle E which

is known in analytical geometry as the eccentric angle is called in Astronomy
the eccentric anomaly of the point. The accelerations being

-asinE.E-acosE.E*, b cos E. E - b sin E. E*

along the two axes, we have

- a sin E . E - a cos E . E 2

_ b cos E . E- b sin E . E 2

acosE f b siii E g
whence

E _ ag cos E bfsin E p
E ab ag sin E bfcos E

'

12
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This is an integrable form, giving immediately

E = h(ab-agsinE-bfcosE)-
1

(2)

or

abE + ag cos E -
bfsin E = h(t-t }

where h and t are constants of integration. If we put h = dbn,

~
a

S1>
b

C

and this may be considered a generalized form of what is known as Kepler's

equation. By adding 2?r to E it is evident that 2?r/n
= T is the period of a

whole revolution. Kepler's form applies when the motion is about a focus of

the ellipse, and can be obtained by putting/= ae, g = Q,so that

This equation is of fundamental importance. The point for which E = is

the nearest point on the orbit to the attracting focus and is sometimes called

the pericentre. The corresponding time is t and n is called the mean

motion.

By (1) and (2) the components of the acceleration become

T
-

., j,, ab(f-acos E)h?-asmE.E-acosE.E n- = r-r ^. ^ o =-
(ab ag sin A bfcos E)

3

_. ^ ,
. ab(g b sin E) A2

bcosE.E-bsm E. E2 = ^r ^
~-

^r-.
(ab ag sin E bj cos A)

3

so that the total acceleration is equal to

ft \ 3

(5)

where r is the distance of the point on the orbit from (/, g).

6. Before examining this result more closely, it may be noticed that the

method is quite general and may be applied to any central orbit. For if the

coordinates of a point (x, y) on the curve be expressed in terms of a' single

parameter a, we have similarly

y-9

= .

x"(y-9~}-y"(x -f} &
*<*-*)- jf (?-/)'

where
', y'. . . denote derivatives with respect to a, and a, a derivatives with

respect to the time. Hence on integration,

j(xdy
-
ydx) -fy +gx = h(t-
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By taking the last integration over one revolution in a closed orbit it is

seen that h represents twice the area divided by the periodic time. The

components of the acceleration become i

^

AVsT-aY)(-/) Lnd
AaW-*Y)(y-g)

. K(y-0)-y<>-/)}8
e

K(y-0)-y(-/)?
and the total acceleration is therefore

R = h*r (x'y"
-

x"y') {x (y
-

g)
-

y' (x -/)}-

-Mr/ft
where p is the radius of curvature at the point and p is the perpendicular
from (f, g) to the tangent at the point. This of course is the well-known

expression for the acceleration towards the centre of attraction.

The same orbit will be described in the same periodic time under the

central attraction R' to another point (/', g') if

R' = h?r'lp'*p

that is, if

R'/R=p3

r'/p'
s
r.

This result is equivalent to Principia, Book I, Prop, vn, Cor. 3.

7. We now return to equation (5) which may be written

.(6)

where q and
<?

are the perpendiculars on the polar of (f, g) from the point

(x, y} on the orbit and the centre of the ellipse respectively. Hence the

ellipse represented by the general equation

ax2 + Zhxy + by* + 2gx + 2fy + 1 = .................. (7)

can be described under an acceleration directed towards the origin if the

acceleration follows the law

(8)

where A and G have their usual meaning for the conic (7). Conversely, if the

law (8) is given, the trajectory is always a conic whatever the initial conditions

may be. For (7) is a possible orbit, and / and g are determined by the law,

while a, b and h are three arbitrary constants which can be chosen so as to

satisfy *any given conditions, such as the initial velocity given in magnitude
and direction at a particular point.

There now arises the interesting question whether any other form of law

besides (8) exists, for which the trajectories are always conies (Bertrand's

problem). Let

(x, y)
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be such a law. Then if (7) is to be an orbit,

f(x, 2/)
= (l+^+/2/)

3

must be satisfied by the coordinates of every point on (7), i.e. this equation

must be equivalent to (7). But (7) can be written in either of the forms

1 + gx +fy = | (1
- a#2 - Wixy

-
by

2

)

and clearly in no other way which does not introduce a greater number of

independent constants on the right-hand side. The first of these forms gives

an expression for/(#, y) which is (like an infinite number of others) compatible

with (7), but only under restricted conditions. For it fixes the constants a, b

and h and leaves only /and g arbitrary ;
and these are not in general sufficient

in number to satisfy the initial conditions. On the other hand, the second

form gives an expression for the acceleration which may be written

72/
2
)~ ..................... (9)

This only requires the constants in (7) to satisfy the two relations

and thus three other relations can be satisfied which are required by the

initial conditions. Hence motion under a central acceleration given by (9)

is always in a conic which by the two relations found touches the lines (real

or imaginary)
oix

1 + 2/3xy + 7?/
2 = 0.

The laws (8) and (9) are the only ones under which a conic is always
described in a given plane whatever the initial conditions may be. Their

character was first established by Darboux and by Halphen (Comptes Rendus,

LXXXIV, pp. 760, 936 and 939).

8. A point on a central orbit at which the motion is at right angles to

the radius vector is called an apse. At such a point -^
= and the radius

cLv

vector is in general either a maximum or a minimum. Since the motion is

reversible the radius vector to an apse is an axis of symmetry in the orbit

and the next apsidal distances on either side are equal. There can be there-

fore only two distinct apsidal distances recurring alternately and the angle
between any two consecutive apses is constant and is called the apsidal

angle.

The differential equation of a central orbit is known to be

d?u P
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where u = l/r and P is the force to the centre. If we write P = u?U the

radius of a circular orbit is given by u= U/h
2
. Let the circular orbit be

slightly disturbed, so that we may write u + x instead of u, where u is con-

stant and x is so small that only the first power of x need be retained. Then

d*x U' uU' dU
~i7> + x = TT x = ~~rT X, U = -j- .

d6* h? U du
If we put

l-uU'/U=m2

the equation becomes

and the solution is

x = a cos m (0 ).

The apsidal angle is therefore

7f = 7r/m = IT (I -uU'/U)~* .....................(10)

For example, if P =
fj,r

p
,
U = fj,u~P~

2 and

This result is given in the Principia, Book i, Prop. XLV, Ex. 2.

9. Let us push the approximation further in order to see, if possible,

under what conditions the apsidal angle remains unchanged by a higher
order of the increment x. The equation of the disturbed circular orbit

becomes

+ iZT'V) .................. (11)

and we assume a solution

x a + i cos md + a2 cos 2md + a3 cos 3ra#.

If aj is of the first order, a and a2 must be of the second order at least,

and it will become clear that a3 is of the third order. Hence

a? = i!2 + (2 a
1 + a^) cos mO + \a? cos 2md + a^a^ cos 3m0

or = aj
3 cos md +

All terms of order higher than the third have been omitted and products
of the cosines have been changed into simple cosines of the multiple angles.
We now substitute in (11) and equate coefficients. Thus

m,a = i uir
a ,

4 U '

o=\.^f. .(20,0,

-***-\$.
1 uU" I uU'"

2 U '

24' U
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The last of these equations confirms the statement that as is of the third

order, but will not be needed here. The first three after the elimination of

a
fl
and a, give " uU" luU'"

U +
8 U

.

This equation expresses a necessary condition which must be satisfied if

the apsidal angle is to remain constant when the displacement from a circular

orbit is considered finite.

10. Let us consider any closed orbit to be determined by a central

acceleration under a finite range of initial velocities. The number of apses
in a complete orbit must be finite and (10) shows that m must be a com-

mensurable number. It must be a constant therefore, for otherwise it would

change discontinuously as u changes continuously. Hence

is an equation giving the form of U, and the solution is

U=kul~m\

But if all the orbits are to be re-entrant, so that K is constant, the

equation (12) must also be satisfied. Hence substituting the form just

found, we have

5m4
(1
- ra2

)
2 + 3m4

(1
- ra4

)
=

or

2ra4

(4
- ra2

) (1
- m2

)
= 0.

Since K is finite, ra is not zero and we have

1 - m2 = or 1 - m2 = - 3

giving
U = k or U=ku~*

and

R =
k/r

2 or R = Icr.

Thus we have Bertrand's remarkable theorem (Comptes Rendus, LXXVII,

p. 849) that these are the only laws, expressible as functions of the distance,
which always give rise to closed orbits whatever the initial circumstances

may be (within a certain range). In these two cases ra = 1 or 2 and the

apsidal angle K = TT or \ TT.

11. The results obtained can now be brought together. According to

Kepler's law the planetary orbits are ellipses with the centre of attraction,
the Sun, situated in one focus. The polar of the focus being the corresponding
directrix, we have in (6) q = a/e and q = r/e, so that the acceleration towards
the Sun is

When the centre of attraction is an arbitrary point and it is merely
known that the orbits are ellipses, the acceleration towards the centre must
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follow one of the two laws expressed by (8) and (9). These are not in general

simple functions of the distance and it is only by induction that we should

infer from the apparent orbits of double stars that these bodies obey the law

given by (13). But the law (8) provides a simple function of the distance,

R = m2
r, when /= g = 0, in which case the centres of all possible orbits are

at the origin, i.e. coincide with the centre of attraction. Similarly the law (9)

provides a simple function of the distance, R = m2

/r
2
,
when a = 7 and /3

= 0.

In this case every orbit touches the lines x* + y^
=

0, showing that the centre

of attraction at the origin is the focus for every path. These are the only
two laws of central acceleration which give rise to elliptic orbits in general
and can be expressed in simple terms of the distance. But we have also

seen that the same restriction is imposed when it is merely required that the

paths shall be plane closed curves of any kind. It is moreover obvious that

the law of the direct distance, which makes the attraction of a distant body
more effective than that of a near one, cannot be the law of nature. The

only alternative is that the acceleration varies inversely as the square of the

distance, and this law can therefore be based upon these simple suppositions :

(a) the planets describe closed paths in planes passing through the Sun,

(6) the centripetal acceleration towards the Sun, required by (a), is a simple
function of the distance and does not become infinite when the distance is

infinite.

12. We have now to consider Kepler's law connecting the periodic times

of the planets with their mean distances from the Sun. This states that T2

varies as a3
. But T 27r/n, so that ri*a? is constant for all the planets. Hence

by (13) the acceleration of each planet towards the Sun is /u/r
2 where

//.
is

constant. The force of attraction acting on a planet is therefore m/i/r
2 where

m is the mass of the planet. And observation shows that the same form ot

law holds for the satellites of any planet, e.g. the satellites of Jupiter. , Thus

not only does the Sun attract the planets but the planets themselves appear
to attract their satellites in the same way. It is but natural to suppose that

the forces of attraction in either case arise from an inherent property of matter,

and that a stress exists between the Sun and a planet, or between a planet

and its satellite. Action and reaction being equal and opposite, we must

suppose the force proportional not only to the mass of the attracted body but

equally to the mass of the attracting body. We are thus led to Newton's law

of gravitation that the mutual attraction between two masses m, m at

a distance r apart is measured by

Gmm'/r
2

where G is an absolute constant, independent of the masses or their distance.

It must be noticed that the law has been arrived at from the consideration of

cases in which the dimensions of the bodies are small in comparison with the

distances separating them. But since the action in these cases is proportional



10 The Law of Gravitation [OH. I

to the total masses, it is to be supposed that it applies to the individual

elements of the matter composing them. This is the true form of the law of

universal gravitation.
When it is a question of bodies whose dimensions are

not negligible in relation to the distances of surrounding bodies, a modification

of the simple statement must be expected. The examination of all conse-

quences of the law of gravitation, including a comparison with the results

of observation, practically constitutes the complete function of dynamical

Astronomy.

13. Since the Earth possesses only one satellite, it is impossible to verify

Kepler's third law in our own system. But it is of historic interest to calcu-

late from the observed motion of the Moon the acceleration towards the centre

of the Earth which a body would have at the Earth's surface. The Moon's

sidereal period is 27d 7h 43m 11 8
'5 or 2360591'5 sees. Let a be the Moon's

mean distance and b the radius of the Earth. The required acceleration is

tfa? 47r2

The ratio a/6 is 60'2745 and b may be taken to be 6'378 x 108 cm. The

result of substituting these numbers is to give for the acceleration 989 cm./sec.
2

In point of fact the acceleration of a body at the Earth's surface is in the

mean g = 981 cm./sec.
2 But the discrepancy is not surprising. The Moon

describes its orbit not only under the attraction of the Earth but also under

the disturbing influence of the Sun. Moreover g is a variable quantity over

the Earth's surface, owing to the Earth's rotation and figure. The above

calculation is altogether too rough to give really comparable results. But it

suffices to show that the quantity is quite of the same order as g, and to this

extent supports the identification of the force which retains the Moon in its

orbit with that which in the case of terrestrial objects is known as weight.

As stated, the point is of historical interest because it presented a difficulty

to Newton who was long misled by adopting erroneous numerical data.

14. The numerical value of the constant G depends upon the units

adopted. Its dimensions -are given by

G = M^L*T-\
In c.G.s. units it is the force between two particles each of 1 gramme

placed 1 cm. apart. The first determination of the force in absolute units by
a laboratory experiment was made by Cavendish. Several determinations

have since been made, of which perhaps the two best, those of C. V. Boys and
K. Braun, agree in giving

G = 6-658 x 10~8

corresponding to 5'527 for the mean, density of the Earth and 5'985 x KFgr.
for the total mass of the Earth.



CHAPTER II

INTRODUCTORY PROPOSITIONS

15. As we have seen, the simple facts of observation lead us to assume

that 'between two particles of masses m and m' situated at the points

*P(#, y, z) and P'(x, y , z'} there exists a force Gmm'/r
2

,
where r is the

distance PP'. Now the direction cosines of PP' are

x' x y y z
1

z

r r r

and hence the components of the force acting on the particle m are

,oc x .1111 . z
1

zGmm , Gmm . ,
Gmm

or

_dU _d_U _d_U
dx

'

dy
'

dz

where
U = - Gmm'jr.

If m is attracted not by a single particle m' but by any number typified

by mi at (xi} yiy Zi) the components of the total force are similarly

_du _d_u _d_u
dx

'

dy
'

dz

where
U=

It is evident that U is the work which the system of attracting particles

will do if the particle m is moved from its actual position by any path to

some standard position, except for a constant
;

it is the potential energy of m
due to its position relative to the attracting system. If we put

F=02mi/ri ,
U=-mV

i

V is called the potential of the attracting system at the point P. When
the potential is known it is evident that the components of the attraction

can be easily calculated.
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16. The case of a homogeneous spherical shell is of elementary im-

portance. Let m be the mass per unit area, a the radius and r the distance

of the point P from the centre. If is the centre of the sphere, two cones

with semi-vertical angles </>
and

<j> + d<f),
each having its vertex at and OP

as its axis, will contain between them an annulus on the surface of the

sphere. The potential of this annulus at P is

dV Gm . 2-Tra sin
<f)

. ad<f>/p

where

p*
= r* + a? 2ra cos

<j>

or

pdp = ra sin < . d<j>

so that

dV=Gm. <

2iradp/r.
Hence

V = 2TrGma (p2
-

pj/r

where p2 and p l
are the values of p at the ends of the diameter through P.

These values are

p2
= r + a, Pl

=
\

r -a\.

If r > a, P!
= r a and p2 p^

= 2a
; .

if r < a, pl
= a-r and p2

-
pl
= 2r.

Also the whole mass of the shell is M = 4nrma*. Hence when P is a point

outside the shell

V= GM/r

or the potential and the forces derived from it are the same as if the whole

mass of the shell were concentrated at the centre. On the other hand, when

P is a point inside the shell,

V= GM/a
or the potential is constant and the forces derived from it are zero.

17. From this elementary proposition follow immediately two corollaries :

(1) A sphere of uniform density, or one composed of concentric strata

of uniform density, may be treated, so far as its action at an external point
is concerned, as equivalent to a single particle of equal mass placed at its

centre.

'(2) For a point within such a sphere, the sphere may be divided into

two parts by the concentric sphere passing through the point. The outer

part is inoperative and may be ignored, while the inner may be replaced by
a particle of equal mass situated at the centre.

The heavenly bodies are for the most part approximately spherical in

shape, and though not uniform in density their concentric strata are in

general fairly homogeneous. They may therefore be treated in most cases,

as regards their action on other bodies, as simple particles.

The motion of a body within a sphere may be illustrated by the motion
of a meteor within a spherical swarm, or of a star in a spherical cluster. If
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the swarm fills a sphere uniformly the mass operative at any point varies as

the cube of the distance from the centre. Hence the effective force towards

the centre varies directly as the distance. As another example it may be

proved that if the density of a globular cluster varies as (1 + ?'
2
)~*, r being the

distance from the centre, each star moves under a central attraction varying

asr(l+r2

)-
f

.

18. An approximate expression can be found for the potential of a body
of any shape at a distant point. Let the origin of coordinates, 0, be taken

at the centre of gravity of the body and the axis of x be drawn through the

point P, the distance OP being r. Let dm be an element of mass at the

point (x, y, z). The corresponding element of the potential at P is

Gdm Gdm7T7-_

{(r
- x? + y

2 + z*\
*

(r*
-

e .
r p r2

e*.|
P M

/,yr
(

r \pj \rj \pj<pj \rj \pj

where P
a ,
P2 , ... are the functions known as Legendre's polynomials.

The first terms are easily obtained by expansion in the ordinary way, and

we have

P (
x\ _ x p i

x
} - 3x2

-p*
l

\p)~~p'
2 W~~2^~

Hence if the expansion is not carried to terms beyond the second order,

But if A, B, C are the principal moments of inertia at 0, and / is the

moment of inertia about Ox, since p
2 has been written for a? + y

2 + z2
,

A+B+C=
fadm,

I = t(p
2

and since is the centre of gravity,

(x dm = 0.

Hence

and we see that the potential of the body at P differs from the potential of a

particle of equal total mass placed at the centre of gravity by a quantity

depending only on 1/r
3

. Except in a few cases this quantity is negligible
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in astronomical problems not only by reason of the great distances which

separate the heavenly bodies in comparison with their linear dimensions,

but because they possess in general a symmetry of form which makes
A + B + C 37 itself a small quantity.

19. We see then that in general a system of n bodies of finite dimen-

sions can be replaced by a system of n small particles of equal masses

occupying the positions of their centres of gravity. The total potential

energy of the system is

U= G^miinj/rij

where mi, trij
are two of the masses and r^ their distance apart. For if we

start with any one of the particles this sum, which consists of $n(n-l)
terms, represents the potential energy of a second in the presence of the

first, of a third in the presence of these two, and so on. The equations
of motion are 3n in number and, according to 15, of the form

dU dU dU* R , ***--. **~J5;-
Now

Hence

or

and

= z 2m^ = a3t + b3

where (x, y, z} is the centre of gravity of the system. Thus we have the six

integrals corresponding to the -fact that the centre of gravity moves with

uniform velocity in a certain direction.
CavJU U ^. ; , )

Again, we have

dU dU

TT * 3
T

ij

Hence

or

and similarly
= c2
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These are called the three integrals of area and express the fact that the sum
of the areas described by the radius vector to each mass, each multiplied by
that mass and projected on any given plane, is constant. They also show that

the total angular momentum of the system about any fixed axis is constant.

Finally we have

dU . dU . dU

= -dU/dt
whence, on integration,

^mi(x* + y? + z?} = h-U
i

where h is constant. This is the integral of energy.

There are then in all ten general integrals for the motion of a system of

particles moving under their mutual attractions : and it is known that no

others exist under certain limitations of analytical form (Bruns and Poincare).

They are in fact simply those which apply in virtue of the absence of external

forces acting on the system.

20. Let the centre of gravity (x, y, z) of the system be now taken as the

origin of coordinates. If (ft, rji} &) are the new coordinates of mi}

and

2mt ft
= 2m i r) i

= '

m,:& = 0.

The equations of motion become

v dU dU dU

where U is the same as before, but r^ is now given by

n/ = (ft
-

ft)
2 + (17,

-

For the integrals of area we have

= 2^ {(y + ^) (I + Jo
-

(z + Q (y + fa)

= Sm^ (rj^i
-

bra) 4 (yz
-

~zy)/2mi

(since ^m^i = Swf& = Sm^- = Sm t-^ = 0)

- &) + (a3 62
- a263)/Swf

and similarly
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The integral of energy becomes

h-U= 2w* {(x +& + (y + mY + (z + &)
a

;

# + &) + iK3 + a2 + a,')/2m,

+ tf + Sfl-A'-ff

' = h-% (af + a* + .

3
2

)/2m;.

or

where

21. An interesting equation involving the mutual distances of the masses

can be deduced. We have

2 2

8
. 2m,- + 2m; . 2m,-f/

- 22m<& . 2m,-&

with similar equations for the other coordinates. Hence

2mimj rtf
= 2mi . Sm* (^

2 +^ + #).

It follows that

2- (2^^ (^^ + r,^ + ^-^)}

= 4 (^ - U) + 2 tf= 4A' - 2 ?7

since Z7 is a homogeneous function of the coordinates of degree 1. The

form of the result is due to Jacobi. Now U is essentially negative. Hence

if h' be positive the second derivative of ^m^m/r^ will be always positive and

the first derivative will increase indefinitely with the time. Thus the first

derivative, even if negative initially, will become positive after a certain time

and therefore 2m$Wtyrg
s will increase without limit. This means that at least

one of the distances will tend to become infinite. We see therefore that

a necessary (but not sufficient) condition for the stability of the system is that

h' must be negative.

,
22. The angular momenta whose constant values are cl} c2 , C3 are the

projections on the coordinate planes of a single quantity. They are there-

fore the components of a vector which represents the resultant angular
momentum about the axis

tf/Cj
=

y/c2
=

z/c3 .............................. (1 )

For this axis, which is fixed in space, the angular momentum is a maximum.
The plane through the origin 0. which is perpendicular to this axis and
therefore fixed is called the invariable plane at 0. About any line through
in this plane the angular momentum is zero, and about any line through
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making an angle 6 with the invariable axis (1) the angular momentum is

V(ci
2 + c2

2 + c3
2

) cos 6. The position of the invariable plane is dependent on

the position of the chosen origin of reference.

Here we have considered the angular momentum as arising purely from

the translational motions of the bodies treated as particles. In reality the

total angular momentum of the system includes also that part which arises

from the rotations of the bodies about their axes. This part itself is constant

if the system consists of unconnected, rigid, spherical bodies whose concentric

layers are homogeneous. Under these conditions the invariable plane at a

point, as determined by the translational motions of the system alone,

remains permanently fixed. The conditions hold very approximately in a

planetary system. But precessional movements and the effects of tidal

friction cause an interchange between the rotational and translational parts
of the angular momentum, without disturbing the total amount, and to this

extent affect the position of the astronomical invariable plane as defined

above.

The centre of gravity of the system may be taken instead of an origin

fixed in space. The invariable plane is then

c/^O .............................. (2)

and this is the invariable plane of Laplace. Its permanent fixity is subject

to the qualifications just mentioned.

A simple proposition applies to the motion of two bodies, namely that

the planes through a fixed point and containing the tangents to the paths
-of the two bodies intersect the invariable plane at in one line. This is

easily seen to be true. For the first plane passes through the origin, the

position of the first body (x1} ylt z^) and the consecutive point on its path

(x1 + xl dt, yi + yidt, 2l -}-z1 dt). Hence its equation is

x (y& - Vizi) + y Oi^i
- ^i) + z fayi

- ^ 2/0
= -

Similarly the equation of the second plane is

x (y2z2
-
y2z2) 4- y (z2x2

- zzx2) + z (x2y2
-

The equations of these planes together with that of the invariable plane

may therefore be written

and these evidently meet in a common line of intersection.

23. When we deal with the motions in the solar system it is convenient

to refer them to the centre of the Sun. as origin. Let M be the mass of the

Sun, ra the mass of the planet specially considered and let there be n other

P. D. A. 2
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planets, of which the typical mass is m{ . Then the total potential energy of

the system is

where pt is the distance of rm from the Sun, A; the distance of mt from m

and r the distance of m from the Sun, so that

-
2/j)

2 + 0; - z-f

The equations of motion of the Sun are

MX dU MY- dU M7- dU
~dX> ~dY'

M/ =
~dZ

and of the planet considered

dU W . dU
-^ ,

' my =
-^ , mz

dx dy

If (^, rj, ) are the relative coordinates of the planet,

.

mx = -^ ,

' my =
-^ , mz ? .

dx dy 02

Hence, if (&, 17*1 are the coordinates of m{ relative to the Sun,

m dx M dX

^nn(x-Xj) M(x-X) ^mj(X-Xi) m(X-x)}~* Al~~ ~^ + Z^ ~^I + ^ r 1*

If then we put

we have for the equations of relative motion

3
+ ........................ (4)

and similarly

+
d

........................ (5)

(6)
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The function R is called the disturbing function. When, as in the solar

system, the masses of the planets are small in comparison with that of the

central body, M, we see that the forces derived from this function are small

in comparison with the attraction of M. Indeed a first approximation to the

motion of the planet considered, which may now be called the disturbed

planet, is obtained by putting R = 0.

24. A double star, or system of two stars physically connected and at the

same time isolated from external influences, may be considered to present a

case of the problem of two bodies. In the solar system the disturbing effect

of the other planets is always operating. Since, however, this effect is small

in comparison with the attraction of the Sun it is useful to neglect R and to

consider the orbit which a particular planet would have if at a given instant

the disturbing forces were removed and the planet continued to move as part

of the system formed by itself and the Sun alone, its velocity in direction and

amount at the given instant being that which it actually possesses. Such an

orbit is called the osculating orbit corresponding to the given instant. The

actual orbit from the beginning will depart more and more from the osculating

orbit, but for a short interval of time the divergence between the two will be

so small that an accurate ephemeris can be calculated from the elements of

the osculating orbit. The usefulness of the conception of the osculating orbit

goes much deeper than this, as will appear later.

Now the equations (4) to (6) show that in the problem of two bodies, since

R 0, the relative motion is that which is determined by an acceleration

(m + M) Gfr* towards the body M which is considered fixed. But by 1 1

(13) a law of this form leads to an elliptic orbit with mean distance a and

periodic time T, where

We can now introduce the usual system of astronomical units. Provision-

ally they are taken to be :

Unit of time : one mean solar day.

Unit of length : the Earth's mean distance from the Sun.

Unit of mass : the Sun's mass.

Corresponding to this system G is replaced by the constant k2
,
so that

which differs little from the Earth's mean motion. Here T is the sidereal

year expressed in mean solar days and m is the mass of the Earth expressed
as a fraction of that of the Sun. The numerical values adopted by Gauss

were :

T = 365- 256 3835

m = 1/354 710

22



20 Introductory Propositions [CH. u

which lead to

k = 0-017 202 098 95, log k = 8-235 581 4414 - 10.

It may be useful to add that

180 . k/TT
= 3548"-18761, log (180 . k/ir)

= 3-550 006 5746

which differs little from the Earth's daily mean motion expressed in seconds.

The number k is called the Gaussian constant. The numerical values

of m and T on which it is based are no longer considered accurate. Never-

theless it would cause great practical inconvenience to adjust the value of &

to more modern values which themselves could not be regarded as final.

Hence it is agreed to adopt the above value of & as a definite, arbitrary

constant and to recognize that the corresponding unit of length is only an

approximation to the Earth's mean distance from the Sun. According to

Newcomb the logarithm of this distance is O'OOO 000 013.

It is also possible to put the constant k = 1 by adopting as the unit of

time I/A;
= 58-132 44087 mean solar days.

For brevity we may often put

fj,
= k2

(1 + m) = n?a3

in the case of a planetary orbit, and for a double star

where M, m are the masses of the two components when the mass of the

Sun is taken as unity.



CHAPTER III

MOTION UNDER A CENTRAL ATTRACTION

25. If the attraction of the Sun alone is considered, the relative motion

of any other body of spherical shape is conditioned by the central acceleration

//r~
2
, p, being a constant the value of which has been explained. The equations

of motion expressed in polar coordinates are :

r - rfc = -
p/r>

r'e + 2rB = 0.

The latter equation gives immediately

r*6 = h

where h is the constant of areas. Let v be the velocity in the orbit, P the

perpendicular from the origin on the tangent and
i/r

the angle which the

tangent makes with the radius vector. Then

re . P= sin i/r
= -r-

v r

so that

Pv = r*e = h

or the velocity is inversely proportional to P. The result of eliminating f)

from the equations of motion is

whence
r2 =

2/i/r
- h2

/r
2 + c .................... '. ......... ( 1 )

and from these again

^2 (r^

The equation of energy is

tf = r2 + r2 2 =
2/^/r + c ...........................(2)

The geometrical meaning of the 'constant c has yet to be found.
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26. From the second equation of motion

d
2
d

dt
= hu

d0

where u = 1/r. Hence the first equation of motion becomes

d 2u fj, A& + *-if-
the integral of which is

-7)} ........................... (3)

where e and 7 are the two constants of integration. But this is the polar

equation of a conic section of which the eccentricity is e and the focus is at

the origin. The semi-latus rectum in this connexion is more usually called

the parameter and denoting it by p we have

p = h*fp or h = ^(jip).

Also

r = -r^ = -A~ =
^sin(0-7).

But by (1) and (3)

f2 =
^ {1

- e
2 cos2

(0
-

7)} + c.

Hence

Thus if 2a is the transverse axis of the orbit, c = //./a
for an ellipse, c = for

a parabola and c = + //./
for an hyperbola. The equation of energy (2)

becomes therefore

.(4)

Again, i/r being the angle which the direction of motion at (r, 6} makes

with the radius vector (drawn towards the origin),

LiG
v cos ^ = r = - sin (# 7)

are the components of the velocity along the radius vector (inwards) and

perpendicular to it. The form of these expressions is to be noted. For they

evidently represent (a) a constant velocity V=fjb/h = V(/V.P) perpendicular to
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the radius vector, and (6) a constant velocity eV in a direction making an

angle ^ir+O 7 with the radius vector, that is, perpendicular to the transverse

axis. Thus at perihelion the velocity is 7(1 + e) and at aphelion (in the case

of elliptic motion) the velocity is F(l e).

Since h = vr sin
xjr,

the preceding equations may be written

pe sin (0 7) = vzr sin ty cos ^r

p,e cos (6
-
7)
= v*r sin2

i/r /j,

giving e and 7 when v and
-/r

are given at (r, 6). Thus

27. In finding the relations which subsist between positions in an orbit

and the time it is necessary to consider separately the three kinds of conic

section. The closed orbit, or ellipse, will be discussed first.

The line 6 = 7 is drawn from the pole (the Sun) in the direction of peri-

helion. The angle 8
<y

is measured from this line and is called the true

anomaly. Let it be denoted by w. Then, if t is the time at perihelion,

t-to^h'1
! r*d0
y

dw

(1 + ecosw)
2

'

The corresponding result in terms of the eccentric anomaly E has already
been found ( 5). It will be convenient to write down the relations between

the radius vector and the true and eccentric anomalies in the forms which are

most frequently required. We have

x = r cos w = a (cosE e)

y = r sin w = a V(l e
2

) sin E.

Hence
-

) ..................... (5)
1 +6COSW

r cos2
\w = a (1

-
e) cos2 \E

r sin2

%w = a (1 + e) sin
2 \E

(6)

This last equation may be regarded as the standard form of the relation

between w and E. If we write e = sin < (0 <
</>
< 90), as is commonly done,

then

tan.^w; = tan (45 + <) tan \E
tan \E= tan (45

-
0) tan \w
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where \w and \E are always in the same quadrant. Also

cosE-e v e + cos w=

V(l - e
2
) sin E . V(l - e2) sin w

sin w = -'
fr- ,

sin A = ^
1 - e cos E l+ecosw

and it readily follows that

If now we employ (5) and (7) we obtain

dw

v/.
V*-

dE 1-ecosE

V(l
- e

2
) 1 -

e sin #.

But /*
= n*a3 where n is the mean motion

;
the angle n (t 1 ) is called the

mean anomaly and may be denoted by M. We have therefore once more

obtained Kepler's equation

M = n(t-t )
= E-esmE ........................ (8)

the angles M and E being expressed in circular measure
;
or if M and E are

expressed in degrees, e must also be converted to the same form by the

factor 180/7r.

28. The complete solution of the problem of elliptic motion is contained

in the equations given above. No difficulty in numerical solution arises

except in the case of Kepler's equation when E is to be found for given
values of e and M. The general method applicable in such cases may be

illustrated here. By some means an approximate solution E is found. Let

be the exact solution, and

M = E e sin E .

Then
M = M + (1

- ecos E ) &E + ...

when E e sinE is expanded in , a power series in &E by Taylor's theorem.

Neglecting higher powers of &EQ we have

A# - (M - M )/(l
- e cos E )

and hence a second approximation E1
= E

<> + ^E . If this value is not

sufficiently accurate the process may be repeated until a satisfactory result is

obtained.
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In order to obtain a good approximate solution at the outset a great

variety of methods have been devised. These depend upon (a) the use of

special tables, (6) an approximate formula or a series, or (c) a graphical

method. Thus to the first order in e,

Ea
= M + e sinM

and to the second order in e

tan E = sec $ tan 2

where
tan x = tan (45 +

the verification of which may be left as an exercise.

Among graphical methods we can refer only to one, given by Newton

(Principia, Book I, Prop. xxxi). Consider a circle of unit radius and centre C

rolling on a straight line OX. Let E be the point of contact and A the

point on the circumference initially coinciding with 0. Let P be a point on

the radius GA such that CP = e and M and N the feet of the perpendiculars
from P on OX and CE. Then if E = Z ACE= arc AE = OE,

OM = OE-ME=OE-PN

Hence if the circle is rolled (without slipping) along OX until the point
P is on the ordinate PM where OM= M, the point of contact gives OE= E,
which can therefore be read off when M is given. The locus of P is evidently
a trochoid. It may also be noted that the ordinate

PM=CE-CN=I-ecosE

which is the corresponding value of r/a or of dM/dE, and so gives the factor

required for the improvement of an approximate value E . For references

to practical applications of the above principle see Monthly Notices, R. A. S.,

LXVII, p. 67.
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29. In the case of parabolic motion

t-\
>

2
J (1 +cos^y)

2

-
(tan ^w + 1 tan3

$w)

and therefore a quantity M may be defined by the relation

............... (9)

A table, known as Barker's Table, gives M (or M multiplied by a certain

numerical factor) with the argument w. An inverse table giving w with the

argument M will be found in Bauschinger's Tafeln (No. xv). Or w may be

deduced when t t is given thus. The equation (9) may be compared with

the identity

Hence

if

-.-.
Let

X, = tan 7, X3 = tan ft.

Then

tan ft
= tan3

7
and

tan ^w = 2 cot 27.

By these equations w can be calculated directly when t is given.

30. Hyperbolic motion along the concave branch of the curve under

attraction to the focus may be treated in an analogous way to elliptic motion

by using hyperbolic functions instead of circular functions of the eccentric

anomaly. Thus we have

x = r cos w = a (e cosh F)

y = r sin w = a V(e
2 1 ) sinh F

so that
r, ( 1 _ 1 \

1) (10)
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r cos2

\w = a (e
-

1) cosh2

$F
r sin2

\w = a (e + 1) sinh2

$F

(11)

e cosh F , e + cos w
e cosh F 1

'

1 + e cos w

VO2 -
1) sinh F . , V(e

2
-l)sinw;~-- '

ecoshFl'
By employing (10) and (12) we now obtain

--~--
,

.

e cosh t 1 1 + e cos w

.........(12)

(1 + e cos wy
dF ecosh.F-1

(13)

which is the analogue of Kepler's equation for this case.

Analogy suggests the use of hyperbolic functions, but full and accurate

tables of these functions are not always available. Hence it is convenient to

introduce /, the Gudermannian function of F, where (Log denoting natural

logarithm)
F= Log tan (45 + */)

or

sinh F = tan/, cosh F = sec/, tanh ^F= tan \f.

We may also put e = seci|r. The principal formulae (10), (11) and (13) then

become
r = a(esec/-l) ........................... (14).

tan w = cot^T/r tan^-/ ...........................(15)
and

V(/4cr
3

) (t -t )=e tan/- Log tan (45 + /) ............(16)

The last equation may also be written

V(/*a~
3
) \(t- t )

= \e tan/- log tan (45 + /)

where log denotes common logarithm and log\ = 9'6377843.

Comets moving in hyperbolic orbits are few in number, and in no case

does the eccentricity greatly exceed unity.

31. There are certain astronomical problems which require the con-

sideration of repulsive forces according to the law /j,r~
2 which are of the

same form as gravitational attraction but differ in sense. The small particles

which constitute a comet's tail are apparently subject to such forces and
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finely divided meteoric matter in the solar system must move under the

pressure due to the Sun's radiation. Hence we shall consider the effect of

replacing +//,, the acceleration at unit distance, by -//. The differential

equation of the orbit becomes
d 2u u'

a* + M + =

the integral of which is

= p-1

(ecosw l) ..............................(17)

If we restrict w to such a range of values that u (or r) is positive, this

equation gives only the branch of the hyperbola convex to the centre of

repulsion at the focus, just as under the same restriction the equation (10)

gives only the branch concave to the centre of attraction. As compared
with 26 the signs of p and e, as well as of /*, have been changed. Hence

the constant c in the equation of energy becomes

so that the equation of energy is now

*2 = //a-2///r ..............................(18)

Also, if
i/r

is the angle which the direction of motion at (r, 0) makes with the

radius vector drawn towards the origin,

, du tie . ff. ,

v cos y = r =
ja
= ~

^T sm (" "

v sin
i|r
= rd = hu =

^ [e cos (6 7) 1
}

are the components of the velocity along the inward radius vector and

perpendicular to it. These are evidently equivalent to (a) a constant

velocity
- V =

fi/h V^'/p) perpendicular to the radius vector, the

negative sign meaning that V is drawn in the sense opposite to that in

which the radius vector is rotating, and (b) a constant velocity eV in a

direction making an angle \tr -f 6 - 7 with the radius vector, that is, perpen-
dicular to the transverse axis. Thus at perihelion the velocity is V (e 1)

as compared with the velocity V (e + 1) at perihelion on the concave branch

under an attracting force.

If the circumstances of projection are given in the form of v and
i/r

at the

point (r, 6}, we have

pfp = h? = 2r2 sin2

ty

(j,'e sin (0 7) = tfr sin ty cos ty

(ji'e cos (6 7)
= v2r sin2 ^ -f /*,'

which determine p, e and 7 in terms of given "quantities. In particular

//
2

(e
2 -

1) = v2r (v
2r + 2/j,') sin2

^r.
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32. Expressing the coordinates in terms of hyperbolic functions we now

have, since the centre is at (ae, 0),

x = r cos w = a (e + cosh F)

y = r sin w = a \/(e
2

1) sinh F.

Hence

r cos2

r sin2

e cos w - 1

a(e + l) cosh 2

a(e l) sinh2

.(19)

.(20)

e + cosh F
cosh F = e cos w

e cos w 1

. ,

sinh F=~
e cos w 1

ecosw-1

It then follows that

t-t =

-VfcHVV U/ Jo\A>

ecoshF+1

.(22)
-

/J(esinh/
l+J?

)

which corresponds to Kepler's equation for this case.

As in the case of an attracting force we may now put

tan \f= tanh \F, sec/= cosh F, tan f= sinh F

secT/r. With these transformations the principal formulae of theand

solution become

r = a(esec/+l)

tan \w = tan^ tan ^/

x/(/i'a-
3
) (<

- f )
= e tan/+ Log tan (45 + 1/)

or, as the last may be written,

V(/~3

) \(t- to)
= \e tan/+ log tan (45 + \f )

in the notation previously explained.

(23)

(24)

(25)
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33. The simple and important representation of the velocity in all cases

as the resultant of two vectors both constant in magnitude, and one constant

in direction also, may be illustrated by considering the hodograph of the

motion. This curve is clearly a circle of radius V and centre at a distance

eV from the origin. The four figures given correspond with the four distinct

types of motion, (a) elliptic, (6) parabolic, (c) hyperbolic, under attraction to

the focus, and (d) hyperbolic, under repulsion from the focus. In all cases

is the origin, C the centre, and OP represents the velocity at perihelion. If

Q is any point on the hodograph, OQ represents the velocity in the orbit at

one extremity of the focal chord which is at right angles to GQ. The radius

CP being V, OC = eV and as the eccentricity increases moves along the

radius opposite to CP from the position C for a circular orbit to a point on

the circumference for a parabolic orbit. As e increases beyond the value 1

p

c

o
(a) (b) Fig. 2. (c) (d)

the point passes outside the circle. But the hodograph corresponding to

hyperbolic motion is no longer a complete circle since the possible directions

of motion are limited by the asymptotes. If OA, OB are the tangents from

to the circle the angles COA, COB are each equal to sin"1 e~l and it is easily

seen that OA, OB are parallel to the asymptotes of the orbit, that AOB is

equal to the exterior angle between the asymptotes, and that the arc APB
constitutes the whole hodograph. When the attraction is changed to a

repulsion and motion takes place along the convex instead of the concave

branch of the hyperbola, OP = V (e 1), and the hodograph is confined to

that arc of the circle which is at all points convex to 0, whereas in case (c)

it was everywhere concave to 0.

34. From the point of view of practical calculation there are points con-

nected with orbits nearly parabolic in form which require special attention.

Kepler's equation for elliptic motion may be written

M=E-sinE + (l-e)sin E.

When 1 e is small the accurate calculation of M depends on that of

E sin E. But if E is small the latter expression is the difference of two

nearly equal quantities and cannot be calculated directly unless each is
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expressed by a disproportionate number of significant figures. Hence the

need for special tables (e.g. Bauschinger's Tafeln, No. XL) or an approximate
formula. Under the latter head may be mentioned the function

which is so close an approximation to E sinE over the range of E from

to 70 that the logarithms of the two expressions never differ by more than

2 in the seventh place.

It is evident that in the parabola itself E is evanescent and generally in

the ellipse of great eccentricity E is small at all points near the attracting

focus. The method given by Gauss in the Theoria Motus for the treatment

of Kepler's equation is a particularly instructive example of the construction

and use of special tables and as at the same time it brings out clearly the

relation to parabolic motion its principle will be explained here.

Kepler's equation may be written in the form

M = (1-e) (aE + j3 sin E) + (j3 + ae) (E - sin E)

if a + /3
=

1, or

M= (l-e).24*B + ( + ae).f4
f
J3 .....................(26)

if

A = 3 (E - sin E)/2 (aE + j3 sin E)
and

which differs from unity by a quantity of the fourth order only in E if

/3
=

1/10, a = 9/10. With these values it is readily found that

Hence \ogB is a small quantity of the fourth order which is tabulated with A,

itself of the second order, as argument.

We now put, in view of (26),

so that

M = 2 V-5 (1
- ef (1 + 9e)

"
4 B (tan |w, + tan3

But

where q is the perihelion distance, in the present problem a more convenient

element than the mean distance a. Hence
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the analogy of which with (9) of 29 is evident. Here B is unknown, but

the supposition that B = 1 will lead to a good first approximation to tan ^w1

and hence to A, and a nearer value for log.fi can then be taken from the table.

This in turn will lead to a second approximation to tan^, and so on until

the correct value is reached. Now let

where G is a function of the second order in A, i.e. a small quantity of the

fourth order in E, which like log B can be tabulated with the argument A.

Hence

A

Finally, by 27,
r cos2 w = a (1

-
e) cos2^ =

g/(l + r)

so that the problem of finding w and r is solved by the aid of the tables

giving log B and C with the argument A without introducing E explicitly

into the calculation. The method with very little change is adapted equally

to hyperbolic orbits. The tables will be found in the Theoria Motus of Gauss,

or in an equivalent form in Bauschinger's Tafeln, Nos. xvn and xvm.



CHAPTER IV

EXPANSIONS IN ELLIPTIC MOTION

35. The fundamental equations of elliptic motion found in the last

chapter, namely
M.= EesmE, e = sin< (1)

tan \w = Y/(I~ ~~)
tan \ = tan ($0 + 1 77

")
tan \E I

<2 >

i~ir
tan %E> & = tan ? c

-=,
1 ~ e = l-ecos^ (3)a I + e cos w

give at once the means of calculating the coordinates at any given time. But

for many purposes it is necessary to express them as periodic functions in the

form of series. Some of the more important forms of expansion will now be

investigated.

But certain changes in these equations are sometimes useful. Let

Then from (2)
x-l = 1._+0 y-l
+.! l-0'-y + l

Also by (1)

log z = log y
-
\e (y

- y~
1

}

y-
1

)] (4)

1+0*

x (1 4- fixr
1

) (1 + /3x)~
l

exp. [/3 cos < {(/3 + x)~
l

(0 + or1

)"
1

}']
. . .(5)

3
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The equation (3) gives

It is evident that some expansions will be made more simply in terms of

$ than of e. Hence it will be useful to have the development of any positive

power of 13 in terms of e. Now
1 = tan < + cot^ = 2 cosec < = 20- 1

or

/3
= +

Hence by Lagrange's theorem

H^ S
/SN -i

! [daft-** U/ J,=0

for the only terms which survive arise when q
= 2p + m. Hence

and it is readily seen that this series is absolutely convergent.

36. Since

^ = (2/-yS)(l-W-
1

it follows that

log x = ldg.y + log (1
-

ySy-
1

)
-

log (1
- #y)

Hence

3^+...) ......... (8)

But x and T/ can be interchanged if the sign of ft is changed at the same time.

Therefore

E = w - 2 (/3 sin w - /3
2 sin 2w + J/3

3 sin 3iu -...).

It is also easy to express M in terms of w. For, by (5),

log z = log an + log (1 + par1

)
-

log (1 + fix) + /3 cos d> {(x + ft)'
1 -

(x~* + /3)-'}

=
log x

-
ft (x

- x-1

) + %/3~ (a;
2 - *-2

)
-

i/3
3

(a;
3 - ^~3

) + . . .

+ ft cos {- (a?
- a;"1

) + Or
2 - ar2

)
-

yQ
2

(a;
3 - x~3

) + ...
j

=
log a: - /S (1+ cos

<^>) (x
- or1

) +& (% + cos 0) (a?
- -2

)
-

. . .
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and therefore

M = w - 2
{/3 (1 + cos <) sin w - @? (^ + cos <) sin 2w + ft

3
( +cos </>)sin3w- . . .

}.

By this expansion the equation of the centre, w M, is expressed as a series in

terms of the true anomaly.

37. We have now to consider the expansions in terms of M, which are of

the greatest importance because they are required in order to express the

coordinates as periodic functions of the time. And first we take the case of

r"1
. Now

This is an even periodic function of E and consequently of M. Hence

( 1 e cos E)~l dM + cos pM ( 1 e cos E)~l cospMdM
r TTJo 7T J

=-
f

*

dE + - 2 cospM ["cos (pE-pe sin J) d#
*n"Jo "" Jo

= 1 4- 2 2 Jp (pe)cospM (9)

where

Jp (pe)= -I cos (^)E -pesinE) dE.

Jp (pe) is called the Bessel's coefficient of order p and argument pe. We shall

briefly study the properties of these coefficients so far as they are required for

our immediate purpose.

Let
+ 30

F (t)
=

exp. {{a; (t
- t'1

)}
=

-00

For t write exp. (- n/r). Then

exp. ( ix sin i|r)
= 2 ap exp. (

-00

This is a Fourier expansion, showing that

1 f
2jr

Op
=
g~ exP- * (Ff ~ x

and combining the parts of the integral which are due to ^r and 2?r
i/r

we

have

Op
=-

J
COS C^i/r

- a; si

32
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Thus the coefficients in the expansion of F(t) are precisely the coefficients

which we have to study. Now

F(t) = exp. (\a) exp. (- ^arT
1

)

Hence Jp (x) is the coefficient of those terms for which a = +p, or

If p is positive, /3 takes the values 0, 1, 2, ... and the expansion becomes

Ifp is negative, /3 takes the values p, p + 1
,

. . .
,
because a cannot be negative.

38. The effect of changing the signs of x and t is to leave F(t) unaltered.

Hence

x) ....................... (12)

Similarly F(fy is unchanged if - t~* is substituted for t. Hence

jp (x}
= (-\yj_p (x} ...........................(is)

Again, the result of differentiating F(t) with respect to t, gives

i# (1 + t~*} 2 Jp (x) t? = $pjp (.r) tP-\

Equating the coefficients of tf~* we have

\x{Jp^(a^ + Jp+,(x)}= PJp (x} ..................... (14)

On the other hand, if we differentiate F(t) with respect to x, we have

%(t- t~ l

) %Jp (x)tP = 2 Jp (x) ff

or, equating the coefficients of tp
,

%{Jp^(x)-Jp+l (x}}
= Jp'(x} .....................(15)

These simple recurrence formulae show that, with any given argument, Bessel's

coefficients of any order, and their derivatives, can be expressed as linear

functions of the coefficients of any two particular orders, or of any one

coefficient and its derivative, e.g. J1 (x) and //(#). In particular,

% [J'p^ (x)
- J'p+l (x)}
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This shows that Jp (x) is a particular solution of the equation

.....................<>

The general theory of Bessel's functions, defined as solutions of this dif-

ferential equation, is not required for our purpose. We need only the

solutions of the first kind, with integral values of p, and the definition given
above is sufficient.

39. The desired expansions in M can now be resumed. We take

sin mE which is an odd function of E and M. Therefore

2 f
77

sinmE = - 5 sin pM \ smmEsinpMdM
TT .0

2 f
17 1= -- S sinpM - sinmE . d {cos (pE pe sin E)}T .Op

2 \

v fn= -^smpMl cosmE cos (pE pesin E)dE
n~ Jo P

(by integration by parts, the integrated part vanishing at the limits)

= 2 sinpM \ {cos (p mE pe sin E)

-f cos (p + mE pe sin E)} dE

.-(17) .

In particular, when m =
1, by (14)

. 2 ,, sin pM T . ,

sin hi = 2, .Jp(pe) (A"/
e p

and therefore

.Jp (pe) (19)

Similarly, since cos mE is an even function of E and M,

2 ^ /'"'

cos mE = a H ^ cospM I cosmE cospMdM
IT JO

f*lr
7r

a + - 2 cos pi
- cos mE . d {sin (pE pe sin E}}

7T JO P

a + - S cospM I sin
7T J P
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(integrating by parts as before)

{cos(p mE pesinE)
P

cos (p + mE pe sin E)} dE

p-m (pe)-Jp+m (pe)} ..................(20)

The constant term has not been determined. It is

i [*
a cos mEdM

tr J o

= - !''cos mE (l-e cos E) dE
7T Jo

= - (cos m^E" - ^e cos (m + 1) # ie cos (m -
7T Jo

and thus

a = 1 if m =

= \e if m = 1

= ifm>l.

The particular case of w= 1 is simplified by (15), so that

(21)

40. From the last expansion it follows that

(22)

Any positive power of r can be expanded by means of (20). For example

- = (l-e cos E)-a

= l + ^-2e cos E + -|e
2 cos 2E

Now, by (14) and (15),

/_, (pe)
- Jp+2 (pe)

= 2(

^~
1}

Jp-> (pe)
- ~ ^+1 (pe)

=
l^(pe)-~JP (pe).

Hence

,) .................. (23)



39-41 ] Expansions in Elliptic Motion 39

The expansions of the rectangular coordinates can be written down at once

by means of (18) and (21). Thus, if x, y have this meaning and not as in 35,

x = a cos E ae

(24)

and
= ^/l e

2
) a sin E

Jp(pe) (25)
P

Other important expansions can be derived from those already obtained by
differentiation or integration. For instance, the equations of motion give

directly

dm- r*

whence

^=-2pJp'(pe)cospM (26)

^ =
cot</> *2pJp (pe) sinpM (27)

41. The expansion of functions of the true anomaly in terms of the

mean anomaly is in general more difficult. But sin w and cos w are readily

found. For (27) - e2) sin E
.4 sin w =

1 - e cos E

^dE

by (22). And

cos w

dM \a/

(28)

1 - e cos E

e r

2 (1 e2 )= _ e -\ 2, Jp (pe) cospM (29)

by (9).
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Hence also for the equation of the centre,

sin (w -M} = e sin M - -

1 - - 2 Jp (pe) {sin (p + l)M- sin '(p
-

1) Jl/|

+ V(l - e
2
) 2 Jp

7

(pe) {sin (_p + 1)M + sin (_p
-

1) M}

where

+ V(l - e
2

) {JV-i (p
- 1 ) + Afi (P + l

)}

This expansion for the equation of the centre in terms of the mean

anomaly is important, although the coefficients are
'

rather complicated.

Hence, as far as e3
,

sm(w-M) = e(2- fe
2
) sin M + \& sin 2M + ffe

3 sin 3M
w - M = e (2

-
|e

2
) sinM + fe

2 sin 2i/ + if e3 sin 3JW

as can easily be verified.

*42. For some purposes Laurent series in the exponentials as, y, z of

35 are more convenient than Fourier series in w, E, M. Clearly

x~i- doo = i dw, y~
l

dy = i dE, z~l dz = l dM.
Let

$ = + 2 (ap cos p6 + bp sin p9}

where log r = id. By Fourier's theorem

r 2ir r 2n-

Trap
= S cospQ dd, irbp

= S sinpd d6
.' o .'o

7T (Op
-

t&p)
-

f"".^T-^ d^, 7T (Op + 6p)
= 1^ ST? d6.

Jo Jo
Hence

8= 2 ^T^
where

r
"Jo

This well-known form, intermediate between Fourier's arid Laurent's, is

general and includes the case > = 0. It has been used already in 37.

Formulae have been found which make it possible to pass from any
Fourier's expansion in E to one in M. The general result may be expressed
in a slightly different way. For, since y has the same period as z,

yv
= 2 Am zm

* The reading of 4246 can quite conveniently be deferred till after Chapter XIII.
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where

%rrAm = I yPz~
m dM = im~l

\f>d (z~
m

}

= [- im- l

yPz-
m
]
- ipm-

1

\if-
lz-m dy

=pm~l

\ yPz~
m dE

Jo

j-2n= pur 1
I exp. [tpE im (E e sin E)} dE
Jo

= 27rpm~
lJm_p (me)

(m 4= 0). But when m = 0,

2irA = f
*

yP dM = fV (1
- cos E) dE

Jo Jo

Hence generally, for any function of y,

S=ZBv = 2 2 BA

43. There is another form of calculation, due to Cauchy, in which Bessel's

coefficients do not appear explicitly. Let S be any periodic function, such

that

Here, by (4),

27rAp =
Jo

= t

n

Sy-f exp. \^pe (y
-
y~

1

)] (1
- e cos E) dE

{l-e(y 4-y"
1

)} exp.

= I Uy~p dE
Jo

where

2T
1

)] (31)

the coefficient Bp of V expanded in powers of y
l

being thus identical with

the coefficient Ap of S expanded in powers of z l
.
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Again,

=
Jo

where

ar
1

)] .............................. <32 >

the coefficient -B'^-j of V expanded in powers of y
l

being thus identical with

the coefficient Ap of 8 expanded in powers of z\ The form (32) becomes

illusory when p = 0.

Now the exponential function occurring in (31), (32) can be expanded in

a series with Bessel's coefficients having the argument pe. That returns to

the methods already considered. But another process is possible and has

advantages if 8 is of suitable form. This consists in developing first in

powers of y y~
l

. Let

where j and q are integers (not negative). The numerical coefficients N are

called Cauchy's numbers and it is evident that a knowledge of them will be

required in this method. By comparing coefficients of tp in the identity

it is evident that

From a double-entry table giving N-p> 0> q
with the arguments p, q, therefore,

similar tables giving N_pjltq , J\
r_p)2i9 ,

... can be readily constructed. The
effect of interchanging t and t~l shows that

The expansion is either even or odd and the highest term is V+q . Hence

j + q
- p is a positive even integer, and if p=j + q,N=l.
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It is now only necessary to consider the construction of the table for

N-p, o, g
when p is positive. But this is indicated by

(t
-

IT*)'
= * N_p , 0> , t* = 2 -

whence p = 2r q, and

The tabulation of Cauchy's numbers, which are all positive or negative

integers, is therefore an extremely simple matter.

44. To consider an example, let

8

Then

U = -

+ (- Je)'^
1

(y + y-
1

)"
1 -^ 1 2 (ipe)*-

1

(y
-
y~

l

)
q
-l

l(q
-

1) !

and

p _/ yxmv(^e)
g
TAT 9 AT^ - V~ 2 e> *

rt
,

iV -p, m, g
-
M-p, m+l, q-l

1 V : L ^ J

is the coefficient of y
p in U, and therefore of^ in S.

When p = the exponential function disappears and the constant term is

given by
U = (- \*T (y + y~

ir + (- !<0
wm

(y + y~
l

)
m+1

and is therefore the first or the second of the forms

m I [(ii) !]-
2

, (er+1
(m + 1) ! {ft (m + 1)] !}

according as m is even or odd.

On the other hand,

and therefore

F = ^ (-
P

Hence
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is the coefficient of y
p~l in V and therefore also the coefficient of zp in S.

Comparison with the previous result shows that

is an identity. From this the recurrence formula

(m -p + q + 2) N_p+ .

2> m>q -2(m- q) N_ p> m> q + (m + p + q + 2) N-p-2
,
m

, q

can be easily deduced.

45. The development in terms of M or z of the functions

\aj

is of special importance. Here n is any positive or negative integer, and if

m is also a positive or negative integer it is only necessary to consider the

second form. This involves Hansens coefficients X".'
m

,
where

\aj Jo \al

Now

dM=-dE= - sec <bdw = --
(

rfw
a W 1 - P* V*/

of which the last form follows from the areal property of elliptic motion,

r2dw = hdt = n-^hdM = ab . dM = a- cos <j>dM.
Also

x = y(l-i3y^}(l-py}-*

and therefore X*'
m
can be expressed by a definite integral involving y and

E, or by one involving x and w, by means of (4), (5), (6), thus

27TX*' =
I

^
(1 + p*)-r-iy-i (l

_
fiyY+i-m (!

_

exp.
and

exp. 0'/3 cos
<^> {(/3 + ^- 1

)"
1 -

(/8 + ^)-
1

}] dw.

The first of these forms shows that (1 +/3
2

)
n+1 Z"' is the coefficient of y

i~m

in the expanded product FjFj,, where

Yl
=

(1
-

/32/)+
1

exp. (iicy)

F2
=

(1
-

/3y-
1

)
n+1+m

exp. (- ^Vy-
1

).

Similarly the second form shows that (1 + /3*)
n+l

(1
-

fp)-*
nr*X*'

m
is the

coefficient of a?*'- in the expanded product Xj JT2 ,
where

^: = (1 + j3x)-
n-*+i

exp. [i cos
</>

. ySar (1 + fa)'
1

]

X2
=

(1 + y&zr
1

)-
71-2-*

exp. [- i cos < . /Sa;-
1

(1
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The deduction of Hansen's formulae in this way is not difficult, and has been

given by Tisserand (Mec. Gel., i, ch. xv).

An obvious method consists in expanding the exponential function oc-

curring in the first of the two integral forms in a series with Bessel's

coefficients. Thus

.'27T

n l S* T /
'

\ I o+mi ( 1'

2<Jp(ie) I ymrut {I

where X"'" is clearly the coefficient of if-p~
m in the expansion of

y; (0) = (1
-W+1-

(1
- #,-7^+

and therefore equally the coefficient of y-*+p+' in the expansion of

Now

where h = p + k, and if
jf

is positive the coefficient of y
p is

in the ordinary notation for a hypergeometric series. Hence there are two

possible forms for X "'
:

~ m
] F(i-p -n-l, - m -n-l, i-p-m + l, /3

2
)

i - p m)

n + l+i
^i + p + m,

of which the first is available if ip m>0 and the second if ip m < 0,

for then the third argument of the series is positive and the binomial coeffi-

cient has a meaning. If i p m both forms become

When n is assumed to be positive, at least one of the first two arguments of

the series is always negative, and therefore the series is a polynomial in yS
2
.

For in the first form with i p m > 0, the second argument is certainly
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negative if m is positive ;
if m is negative, n + 1 m > and the

.

binomial

coefficient shows that i p m < n + 1 m, so that the first argument is

negative. Similarly when the second form is valid it also is a terminating

series. When n is negative one of the known transformations of the

hypergeometric series may be necessary to give a finite form. Hence

Hansen's coefficients are reduced to the form

X?
m = (l+ /3

2
)-"-' 2 Jp (ie) X

JP

where Xn ' m
represents, with a simple factor, a hypergeometric polynomial

in yS
2

. This form was first given by Hill.

46. The
pjeriodic series in M found above are evidently legitimate

Fourier expansions, satisfying the necessary conditions with e < 1, and as

such are convergent. The Bessel's coefficients are given in explicit form by
the series (11) which also is at once seen to be absolutely convergent for

all values of e. But in practical applications the expansions are generally

ordered not as Fourier series in M but as power series in e. Under these

circumstances the question of convergence is altered and needs a special

investigation. Now
E = M + e sin E

considered as an equation in E has one root in the interior of a given contour,

and any regular function of this root can be expanded by Lagrange's theorem

as a power series in e, provided that

\esmE\<\E-M\

at all points of the given contour*. We have then to find a contour with the

required property, and to examine its limits.

We are to regard e and M as given real constants. The equation

E = M + p cos x + tp sin ^

where p is constant, defines a circular contour. At any point on it

sin E = sin (M + p cos %) cosh (p sin %) 4- fc cos (M + p cos %) sinh (p sin ^)

so that

|

sin E
|

2 = sin2 (M + p cos ^) cosh2

(p sin ^) + cos3

(M + p cos ^) sinh'- (p sin %)

= cosh2

(p sin ^) cos2
(M + p cos %)

while

\E-M\ = P .

*
Cf. Whittaker's Modern Analysis, p. 106; Whittaker and Watson, p. 133.
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The most unfavourable point on the contour for the required condition is

that at which
j

sin E
\

is greatest. And our series is to be valid for all real

values of M. Hence the condition is always fulfilled if it is fulfilled when

sin % = 1, cos (M + p cos %)
=

in which case

|

sin E
\

= cosh p.

Thus the required condition becomes

e < /3/cosh p.

The greatest value of e is therefore limited by the maximum value of

p/cosh p, which is given by
cosh p = p sinh p.

Inspection of a table of hyperbolic cosines shows at once that /o/cosh p is

greatest when p is about T20 and that its value is then about f. With

ordinary logarithmic tables an accurate value can be obtained without

difficulty thus. Let tan a be the greatest possible value of e, so that

tan a = p/cosh p = 1/sinh p.

It easily follows that

exp. p
= cot a, coth p = sec a

whence, by the equation giving p,

cos a Log cot | a = 1

or, using common logarithms and taking logarithms once more,

log cos a + log log coU a + 0'362 215 69 = 0.

In this form it is easily verified that

a = 33 32' 3"-0, tan a - 0'662 7434 ....

This last number is then the limiting value of e, within which the expansion
of any regular function of E in powers of e is valid for all values of M. The

orbits of the members of the solar system have eccentricities which are much

below this limit, with the exception of some, but not all, of the periodic

comets.

47. In the form in which Bessel's coefficients occur most frequently in

astronomical expansions,

'(;cv-P'
eY"

1 l
fijW ~V2; (j-l)!(
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It may be convenient for reference to give the following table :

2 62 c
4

e
6

2 T . . ,

e
/4 (4e)

=

2
r 625e4 / 2oe2 625e4

^5(oe)
=
^8

2 81e'

-\ 7- / / \ -t *J t/ I C/

SJ.-W -T +
192 -9216

+ -

(O2
x,4 x,6

1 -T + |-fo + -

These can easily be carried further if necessary, but they are often enough for

practical purposes.

Bessel's coefficients occur naturally in several physical problems discussed

by Euler and D. Bernoulli from 1732 onwards. In 1771 Lagrange* gave
the expression of the eccentric anomaly in terms of the mean anomaly, the

result (19) above, and found the expansions of the coefficients as power series,

thus anticipating Bessel's work (1824) of more than half a century later.

*
Oeuvres, in, p. 130. This reference, which seems to have been overlooked, is due to

Prof. Whittaker.



CHAPTER V

RELATIONS BETWEEN TWO OR MORE POSITIONS IN AN ORBIT

AND THE TIME

48. Since a conic section can be chosen to satisfy any five co'nditions it is

evident that when the focus is given, and two points on the curve, an infinite

number of orbits will pass through them. The orbit becomes determinate

when the length of the transverse axis is given, though in general the solution

is not unique. For let the points be Plt P2 and the focal distances n, r2 .

In the first place we take an elliptic orbit with major axis 2 a. The second

focus lies on the circle with centre Px and radius 2a - r, ;
it also lies on the

circle with radius P2 and radius 2a -r2 . These two circles intersect in two

points provided (c being the length of the chord

2a - r\ + 2a rs > c

or

4a> TJ + *

s + c ................................ (1)

If this inequality be satisfied two orbits fulfil the given conditions
;

if not,

no such orbit exists. We notice that the two intersections lie on opposite
sides of the chord P1P2 ,

so that in the one case the two foci lie on the same
side of the chord, in the other on opposite sides. In other words, in one

orbit the chord intersects the axis at some point between the foci, while

in the other orbit it does not. Only when 4a = rl + r2 + c the two circles

mentioned touch one another in a single point on PiP2 and the two orbits

coincide. In this case the chord passes through the second focus.

When the orbit is the concave branch of an hyperbola the second focus

lies on the circle with centre P1 and radius r-j + 2a and also on the circle

with centre P2 and radius r2 + 2a. These circles always intersect in two

distinct real points since

always. There are therefore always two hyperbolas which satisfy the con-

ditions. The second foci lie on opposite sides of the chord and hence in the

one case the chord intersects the axis between the two foci and the difference
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between the true anomalies at the points Plf P2 is less than 180, while in

the other case the chord intersects the axis beyond the attracting focus and

the difference between the anomalies is greater than 180.

Under a repulsive force varying inversely as the square of the distance the

convex branch of an hyperbola can be described. The position of the second

focus is again given by the intersection of two circles, the one with centre Pa

and radius i\ 2a and the other with centre P2 and radius r2 2a. These

circles intersect in two points provided

r.2 2a > c

r2 -c ................................. (2)

There are then two hyperbolas and in the one case the chord intersects the

axis at a point between the two foci while in the other it cuts the axis at a

point beyond 'the second focus.

It is easy to see similarly that it is always possible to draw four hyper-
bolas such that one branch passes through P1 while the other branch passes

through P2 . These have no interest from the kinematical point of view

since it is impossible for a particle to pass from one branch to the other.

The case of parabolic solutions, two of which always exist, can be inferred

from the foregoing by the principle of continuity. . But it is otherwise clear

that the directrix touches the circles with centres P,, P2 and radii n, r2 . These

circles, which intersect in the focus, have two real common tangents either of

which may be the directrix. The corresponding axes are the perpendiculars
from the focus to these tangents. In the case of the nearer tangent it is

evident that the part of the axis beyond the focus intersects the chord PiP3

and the difference of the anomalies is greater than 180. In the case of the

opposite tangent, on the other hand, it is the part of the axis towards the

directrix which cuts the chord and the difference of the anomalies is less

than 180.

These simple geometrical considerations show that, when the transverse

axis is given, two points on an orbit may be joined in general by four elliptic

arcs (of two ellipses), by two concave hyperbolic arcs, by two convex hyper-
bolic arcs

;
and in particular by two parabolic arcs. This conclusion is qualified

by the conditions (1) and (2) which of course cannot be satisfied simul-

taneously. All these different cases must present themselves when we seek

the time occupied in passing from one given point to another, as we shall

at once see.

49. Let El} E2 be the eccentric anomalies at two points P1} P2 on an

ellipse, and let

2G=E2 + E,, 2a = E.2 - E,.
Then

r
l
= a(l e cos E^), r2

= a (1 e cos E^)
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and

r-i + r2
= 2a {1

- e cos \ (E2 + EJ cos | (E2
- EJ}

= 2a (1 e cos G cos
<?).

Again, c being the chord P1P2 ,

C
2 = a2

(cos #2
- cos J^)

2 + a2
(1
- e

2

) (sin #2
- sin E^

= 4a2 sin2 sin2

# + 4a2

(1
- e

2

) cos2 sin2

#.

Hence if we put
cos h = e cos G

then

C
2 = 4a2 sin2

#(l -cos3

A)
or

c = 2a sin # sin A
and

7*1 + r3
= 2a (1 cos # cos A).

If further we now put

or

e-S=E2-El> cos^(e+8) = ecos^(E2 + E1 ) ..... ....... (3)
we have

r1 + r2 + c = 2a{l
- cos (A + 0)} =4asin

2

|e ............... (4)

ri + rz
- c = 2a

{
1 - cos (h

-
g}}

= 4a sin2

^B ............... (5)

But on the other hand, if E2 > El and

p = A;
2
(1 + m) = 2 3

the time ^ of describing the arc PjP2 is given by

nt = E2
- E1 e (sin E2

- sin 7^)

= e - S - 2 sin 1
(e
-

S) cos (e + 8)

= (e- S)
-

(sin e - sin 5) ................................ .(6)

where e and 8 are given by (4) and (5) in terms of r^ + r.2) c and a
;
and this

is Lambert's theorem for elliptic motion.

50. It is evident that (4) and (5) do not give e and 8 without ambiguity,
and this point must be examined. We suppose always that E2

- E
l < 360,

i.e. that the arc described is less than a single circuit of the orbit
;
and we

assume that the eccentric anomaly is reckoned from the pericentre in the

direction of motion. Now it is consistent with (3) to take ^ (e + S) between

and TT and we also have (e 8) between the same limits. Hence e lies

between and TT and |S lies between ^TT and + ^TT. But the equation of

the chord P1P2 referred to the centre of the ellipse shows that it cuts the

axis of x in the point

- EJ/cos $ (E2 + EJ, y =

42
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/

so that, if Q is this point, A the perieentre and Ft
F9 the foci,

FiQ _ x ~ ae _ cos 2 (<L~ ^)
~ cos i (e + &) sin ^e sin |S

ZQ
~

IzT^et
~

cos \ (E2 EI)
- cos \ (E2 + EJ

~
sin \E^ sin^

F2Q ._x + ae _ cos (e 8) + cos (e + 8) cos |e cos 8

Z ' #- a
~

cos #2 AY - cos Ez + A a

~~

snT^ sin /?2

'

Now sin ^ and cos |-S are always positive. We may also take El less than

2?r and sin \E positive ;
then sin \EZ is negative or positive according as

the arc includes or does not include the perieentre. In the first equation

the left-hand side is negative when the chord intersects the axis between

the perieentre and the first (attracting) focus; in the second when the

intersection falls between the perieentre and the second focus. Otherwise

both members are positive. Hence we see that sin |8 is positive if (1) the

arc contains the perieentre and the chord intersects F^A, or (2) the arc does

not contain the perieentre and the chord does not intersect F^A ;
and that

cos |e is positive if (3) the arc contains the perieentre and the chord inter-

sects F2A, or (4) the arc does not contain the perieentre and the chorYl does

not intersect F2A. In other words, sin JS is positive when the segment
formed by the arc and the chord does not contain the first focus, and cos e

is positive when the segment does not contain the second focus.

Let Cj and ^ be the smallest positive angles which satisfy (4) and (5).

The other possible values are 2?r ex and 81 . If we put

ntz ei sin e1} nt^ = 8j sin 81

there are four cases to be distinguished, namely :

(a) . t = t,
-

t,

when the segment contains neither focus;

when the segment contains the attracting, but not the other focus :

(c) t = 27T/n
- L - t,

when the segment contains the second, but not the attracting focus
;

(d) t = 2-rr/n -t2 + t

when the segment contains both foci. It is easy to see from 48 that when
the extreme points of the arc alone are given these four cases are always

presented by the geometrical conditions and can only be distinguished by
further knowledge of the circumstances. Usually it is known that the arc is

comparatively short and hence that the solution (a) is the right one.
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51. The corresponding theorem for parabolic motion is easily deduced as

a limiting case. For when a is very large e and 8 are very small. Hence

(4) and (5) become
ae2 = T! + r2 + c, a 2 = r

l + r.2 c.

At the same time, if we replace n by fjfjo?, (6) becomes

Fi(ri*r8 -c)
f

.

As this applies to the motion of a comet, and the mass of a comet may be

considered negligible, we may therefore write

Qkt = (rj + r2 + c)* + (n + r2 cf (7)

which is the required equation. It was first found by Euler. As regards
the ambiguous sign, the second focus is at an infinite distance and does not

come into consideration. But B is negative or positive according as the

segment formed by the arc described and the chord contains or does not

contain the focus of the parabola. Hence the lower (+) sign is to be used

when the angle described by the radius vector exceeds 180, and the upper

( ) sign is to be used when this angle is less than 180, as it almost

always is in actual problems.

52. The solution of (7) as an equation in c is facilitated by a trans-

formation due to Encke. We put

c = (rj + r2) sin 7, < 7 < 90
and

Then (7) becomes

877
=

(1 + sin 7)
f + (1

- sin y)
1

=
(cos |y + sin |y)

3 + (cos 7 sin iy)
3

............... (8)

First we take the upper sign, in which case

877
= 6 sin 1 7 cos2 7+2 sin3

^7

= 6 sin 7 4 sin3

7.

If we put

then

and

Hence

where

sin ^7 = v/2 sin 0, <

377
= 2V2sin, 0<

sin 7 = 2

< 30

< 90 (9)

sn

= sin 7/7?
= 3 sin J V(cos )/sm @

(10)

(11)
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Since /* and 77
are both functions of

, /JL
can be tabulated with the argument rj.

When such a table is available (cf. Bauschinger's Tafeln, No. xxn) and 77 is

known, c is immediately given by (10).

In the second place we take the lower sign in (8), so that

377
= 2 cos3 ^7+6 sin2

7 cos 7

= 6 cos 17
- 4 cos3

-|7.

If now we put

cos 7 = \/2 sin J, 30 < J < 45

then

3i7
= 2V2sin, 90 < < 135 (12)

and

sin 7 = 2 V2 sin @ V(cos @)

as before. Hence (10) and (11) apply equally to this case, with the difference

that as given by (12) is an angle in the second quadrant instead of the

first. Except for this the solution is formally the same in both cases, but

different tables would be necessary. The case of angular motion exceeding

180, however, seldom demands consideration in practice.

53. For motion along the concave branch of an hyperbola under attraction

to the focus we have ( 30)

n = a (e cosh E1 1), rz a (e cosh E2 1)

and we may suppose E2 > El . Hence

TI + rz
= 2a [e cosh % (Ez

-
E-,} cosh (E2 + EJ - 1

}

= 2a {cosh $ (e
-

B) cosh (e + 8)
-

1}

where
e-S = E2 -El ,

cosh %( + S)
= e cosh ^(E2 + E,) (13)

Again, the chord c is given by

c
2 = a2

(cosh EZ - cosh E^ + a2

(e
2 -

1) (sinh Ez
- sinh Etf

= 4a2 sinh2

(#2
-

E,) sinh2
(#2 + EJ

+ 4a2

(e
2 -

1) sinh2

\ (Ez
-
E,) cosh 2

1 (^2 + ^)
= 4a2 sinh2

|(e
-

8) {- 1 + cosh2

(e + 8)}

or

c = 2a sinh | (e
-

&) sinh (e + 8).

Hence

n + r2 + c = 2a(coshe - 1)
= 4asinh2

|e (14)

r, + r2
- c = 2a (cosh S - 1 )

= 4a sinh 2

^S (15)
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But on the other hand if

nt = e sinh Ez
- E2

-
(e sinh El

- EJ
= 2e sinh | (E2

- E^ cosh (E3 + E,)
- (E2

- EJ
= 2 sinh (e

-
8) cosh (e + 8)

-
(e
-

8)

= sinhe-sinh8-(e-8) .................................... (16)

where e and 8 are given by (14) and (15). This is the form which Lambert's

theorem takes in this case.

We may take (e + 8) as denned by (13) positive ;
and ( 6 8) is positive

since E% > El
. Hence e is positive. Now the equation of the chord referred

to the centre of the hyperbola gives for the intercept on the axis

x = - a cosh (E2
-

j,)/cosh | (E2 + E,), y =

or, ( ae, 0) being the attracting focus within this branch,

x + ae = - a (cosh (e
-

8)
- cosh (e + 8)}/cosh (^ 4- ^)

= + 2asmhesinh8/coshi(#2 + #1) .....................(17)

The left-hand side is negative or positive according as the intersection falls

beyond the focus or on the side of the focus towards the centre. Hence

sinh ^8 is positive when the angular motion about the focus is less than 180,
and negative when it exceeds 180. Thus the sign of 8 is determined. If

we put
mi*

=
(r\ + r2 + c)/4a, m2

2 =
(r^ + r2 c)/4a

then

sinh \ e = + m 1 ,
sinh ^ 8 = + m 2

exp. e = + W! + w^ + 1, exp.
= m2

sinh e = 2mx Vm^TT, sinh 8 = +

Hence (16) can be written (Log denoting natural logarithm)

nt = 2m1 Vm/ + 1 + 2m2 V'/n.,
2 + 1

- 2 Log (TO! + Vm^+1) + 2 Log (r 2 + Vm2
2 + 1)

where the upper or the lower sign is to be taken according as the angular

motion about the attracting focus is less or greater than 180.

54. The corresponding theorem for motion along the convex branch of

an hyperbola under a repulsive force from the focus can be proved similarly.

In this case ( 32)

TI = a(e cosh El + 1), r.2
= a (e cosh E2 + 1).

Hence

ri + r2
= 2a {cosh \ (e + 8) cosh \(e - 8) + 1}
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where
e-8 = E2 -E1 , cosh$(e + 8)

= ecosh^(E2 + El ) ......... (18)

and as in 53
c = 2a sinh |(e 8) sinh \ (e + 8).

We have therefore

ri + r2 + c = 2a(coshe + I) = 4acosh2
^e ...............(19)

ri + r2 -c= 2a(coshS+ l)
= 4acosh2

|S ............(20)

Then by 32 (22), if // = 2a3
,

.nt = e sinh E.2 + E2 (e sinh El + EJ
= 2e sinh i (#2

- E^ cosh (^ + E,) + E2 -El

= 2 sinh \ (e- 3) cosh \ (e + 8) + e - 8

= sinhe-sinhS + e- 8 ....................................(21)

where e and 8 are given by (19) and (20). This is analogous to the other

forms of Lambert's equation.

Putting as before

^i2 = fa + r2 + c)/4a, w2
2 = (^ + r2

-
c)/4a

we have of necessity
cosh | e = + ml ,

cosh ^ 8 = + m2

but there is again an ambiguity in the values of e and 8. Now we may take

E2 > EI and (e 8) positive ;
and we may define \ (e + 8) as the positive

value which satisfies (18). Hence e is positive and exp. (e) > 1. To the

equation (17) now corresponds

x - ae = - 2a sinh e sinh |8/cosh | (E2 + EJ

showing that 8 is positive if the chord intersects the axis at a point on the

side of the focus towards the centre. It must be noticed that this focus is,

as before, the focus within the branch and not the centre of force. Hence

exp. 8 > or < 1 according as,the angular motion about this focus < or > 180.

It follows that

exp. (e) = + raj + V^,2 -1, exp. (|8)
= + w2 Vm2

2 - 1

sinh e = 2m1 *Jmf 1, sinh 8 = 2m2 *Jm<?
- 1

and hence that

nt = 2m V^ 2 -

+ 2 Log (in, + VwV^T) + 2 Log (w2 + >Jm?- 1)

where Log denotes natural logarithm and the upper or the lower sign is to be

taken according as the motion about the internal focus (not the centre

of force) is less or greater than 180.

In all cases, whether the motion is along a parabola 9r either branch of

an hyperbola, when two focal distances are given in position and nothing
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more is known about the circumstances, the discussion of 48 shows that

the ambiguities in the expressions for the time of describing the arc corre-

spond to the distinct solutions of the geometrical problem. Hence they
cannot be decided without further information. In practice, however, it

rarely happens that the angular motion about a focus exceeds 180 and

this limitation, by which the upper sign can be taken, will be generally
understood.

55. A quantity of great importance in the determination of orbits is the

ratio, denoted by y, of the sector to the triangle. The case of elliptic motion

is taken first. Since n = hfab, where h is the constant of areas, twice the

area of the sector is, by (6),

ht = ab {e
B (sin e sin

8)}.

But if (a?!, T/J), (#2 , y2) are the extremities of the arc, twice the area of the

triangle is

2A= fay, -a?sy,)

= ab {sin E2 (cos E1 e) sin El (cos E2
-

e)}

= ab (sin (E,
-

E,)
- 2e cos $ (E.2 + EJ sin $ (E2

-
E,)}

= ab {sin (e
-

8) (sin e - sin 8)}

by (3). Hence

6-8-(sine-sin8)
9 sin (e

- 8)- (sine- sin 8)
"

This expression contains a implicitly and this quantity is to be eliminated.

Let 2/ be the angle between r*i and i\ and let g, h have the meaning assigned

to them in 49. Then

1 6a2 sin2
e sin2

! 8 = (r1 + r2 + c) (n + r.2 c)

= (n + rj*
- n2 - r2

2 + 2r,r2 cos 2/

= 4rv2 cos
2/

whence

2a (cos g cos k) = 2 cos/ x/r, rz .

Also by (4) and (5)

r, + r2
- 2a (sin

2

|e + sin2
8)

= 2a(l-cos#cos A)

and therefore

rv + r.2 2 cos/cos # VVir2
= 2a sin2

$r.

Again, by (22), __nt_
^ ~ sin 2g 2 sin g cos h

ant

. 2cos/Vr1r2
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Hence

y2 (n + Vz
_ 2 cos/cos g Vr,r2)

= 2^2

/(2 cos/Vr, r,)
2
.........(23)

since ?i
2a3 = ^. On the other hand

i_ e - 8 - sin (e
-

g)
~~

sin (e
-

8)
-

(sin e - sin 8)

sin 2$r

2 sin g (cos </
cos h)

a (2ff
- sin 2# )

sin^r. 2cos/Vr1r2

and therefore

- / _ n = __ _
-

(24)

(2cos/Vr1
r.2)

3

'
'

sin3
^

In the notation of Gauss we write

-
,-

(2cos/Vr1r2 )
3

and then (23) and (24) become

(25)

(26)

The value of y is to be found by solving this pair of equations in y and g, the

solution being performed by some method of approximation.

56. The corresponding ratio in the case of a parabola can be expressed
in several forms. The simplest can be derived as a limiting case from the

ellipse when a is large and e and 8 are small. For (22) then gives

But by 51, 52

a2
e
2S2 =

(i\ + r2)
2 - c

2 = (n + r2)
2 cos2

7.

Hence

=
3 (ra + r2) cos 7

where
c = 0"i + ^2) gin 7-

Thus y, like 77 and
/*, is a function of 7 (or @) and can therefore like

be tabulated with the argument 77, where

77
=

2fa/(r1 + rg)
= 2 sin 7 (2 + cos 7).

(Cf. Bauschinger's Tafeln, No. xxn a.)



55-57] in an Orbit and the Time 59

57. In the case of the branch of an hyperbola concave to the focus of

attraction, twice the area of the sector is by (16)

ht = ab {sinh e - sinh 8 - (e
-

8)}

since h = V0p) = nab. And, if (a?,, yO. (a, 2/2) are the extremities of the arc,

twice the area of the focal triangle is

2A = xz y^
-

x^yz

= ab {sinh E, (cosh E2 -e)- sinh E2 (cosh E, - e)}

= ab {sinh (E.-E^-e (sinh El -sinh E2)}

= ab {sinh e - sinh 8 - sinh (e 8)}

by (13). Hence
sinh e - sinh S- (e -8)

?
sinhe-sinh8-sinh(e-S)"-

Now we have by (14) and (15)

16a2 sinh2 e sinh2
1 8 = fa + r2)

2 - c
2

= 4/^2 cos2/
or

2 cosf^r1 r2
= 2a (cosh A cosh #)

where 2A = e + 8, 2$r
= e 8. Also by addition of the same equations (14)

and (15)
?i + r2 = *2a (cosh g cosh h 1 )

and therefore

rx + r,
- 2 cos/cosh # Vrv^ = 2a sinh2

^r.

But by (27)

y = %^/(2 sinh g cosh & sinh 2g)

= a nt/sinh g (2 cos/ Vrj?-2)

and therefore

2/
2

(n + ra
- 2 cos/cosh # Vr^) = 2/^

2

/ ( 2 cos/V^)2

(28)

since w2a3 =
/u,.

On the other hand

_1 = sinh (e -8) -(e -8)~
sinh e sinh 8 sinh (e 8)

sinh 2<7 2<jr

2 sinh g (cosh h cosh g)

a sinh 2g 2g

2008/^7-^2' sinhgr

Hence

y
z (y\) =

.
vf \s (^)

(2cos/Vr1 7-2)
3

As in the case of the ellipse we write

2 cos/Vn r,

'

(2 cos/V r x r2)
3
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and thus (28) and (29) become

f = m*j (I
- sinh2

%g) .......... ................. (30)

y -y = ms
(sinh25r-25r)/sinh3

5 r ...............(31)

This pair of equations in y and g must be solved by some process of approxi-

mation so that the value of y may be found.

58. The case of the branch which is convex to a centre of repulsive

force at the focus ( ae, 0) needs slight modifications. Twice the area of the

sector is by (21)
ht= ab (sinh e sinh 8 + 6 8)

while twice the area of the triangle is

2A=a?1ya -afcy1

= ab {sinh E9 (cosh El + e)- sinh E, (cosh E2 + e)}

= ab {sinh (E2
-

ti\) + 2e sinh $(E2
- E,} cosh 1 (E2 + E,)}

= ab {sinh (e 8) -f sinh e sinh 8}

by (18). Hence the ratio of sector to triangle is

sinh e sinh 8 + e 8

2 sinh g (cosh </
4- cosh h)

a sinh
2$r 2<

2cos/\/r^' sinh^r

^sinh (e 8) + sinh e sinh 8

In this case we have by (19) and (20)

16a2 cosh2

\e cosh2 8 = (t\ + r2)
2 - c

2 = 4rjr2 cos
2/

or

2 cos/Vr^ = 2a (cosh A + cosh #)
and

r
\ + ra

= 2a (1 f cosh 7t cosh g)

where 2/t = e + 8, 2# = e - 8. Hence

2 cos/cosh g VVjr,, (ri -f r2)
= 2a sinh^.

But (32) may be written

y nt /(sinh 2^ + 2 sinh g cosh A)

= aw^/sinh g (2 cos/Vr^^)
and therefore

2/

2

(2 cos/ cosh ^ Vrjr2
- ^ - r2)

=
2yu,'^

2

/(2 cos/ V/'j?^)
2

(33)

since w2a3 =
/ti'.

Also by (32)

_ sinh (e
-

8)
-

(e
-

8)

sinh (e 8) + sinh e sinh 8

sinl
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Hence

2/

2
<

If as before we write

in an Orbit and the Time 61

(2 cos/Vr-jr.,)
3

'

fi^fcri

.(34)

2cos/Vr1r2

'

then (33) and (34) become

(2cos/Vr1r2)
3

-f = m2
(sinh 2g

-
.(35)

.(36)

and these again, when solved by a method of approximation, give the value

of y in this case when rI} r2 and /are known.

59. Some useful approximations can be obtained from a proposition
which is easily proved. Let X be any regular function of t. If we neglect

powers of t beyond the fourth order we may write

X = a + a1 t + Ozt? + a^P + a^
X = 2a2 + 6a3 t + 12a4 t

2
.

Let Xlt X2 ,
X 3 be the values of X when t = - T,, and TX . Then we have

three pairs of equations, obtained by substituting these values in the above.

From these six equations the coefficients a
, ..., a4 can be eliminated and the

result expressed in determinant form is clearly

The determinant can be calculated without difficulty, and the result after

dividing by 12^ T3 (TJ + r3) is

- l2Xl
r

1 + X, T: (rx

2 -
TI T3

- T3
2
)

- 12J 2 (T! + T,)
- 12 (rx + T3) (Tl

9 + 3Tl ra + T3
2

)

If we put T2
= T! + TS and write

this becomes

=

2 -T3
2
......(37)

X3 r3 l - *> ...(38)
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60. Now in the case of the motion of two bodies in a plane we have

Hence substituting x and y successively for X in the formula just obtained

we have, to the fourth order in the intervals of time,

= arlTl

= ylTl (1 + Mi/ri') - 2/2
T2 C1

~
A*4 B/V2

8
) + y3 r3 (l

The solution of these equations in the ordinary form gives

T, (1 + Mi/n3

) T. (1
- M/r.3

) _ T3 (1

But the denominators are respectively double the areas of the triangles whose

sides are pairs of rl} r2 ,
r3 . Hence we have the formulae of Gibbs,

for,] for,] [r,r,]

where, according to the customary notation, [r2r3] denotes double the area of

the triangle whose sides are ra ,
r3 ,

and A 1} A 2 ,
A 3 have the values found

above (37). This expresses the ratio of the triangles correctly to the third

order of the time intervals.

A second interesting example is provided if we take X = r2
. In this case

wehave( 25 and 26)

Hence the formula (38) gives

= - (A 1 r1 + A 2r2 + A

= -
{T! (T2T3

-
Tj

2
) + T2 (Tl T8 + T2

2

) + T3 (r^ ~ T3
2

)} ^/6

= -
(STjTaTs

-
Tj

3 + T2
3 - T

:i

3
) /i/6a

=
{STjTaTg + STiT;, (TJ + T3)j yU-/6

=
-yLtT 1

T2 T3/a .................................................... (40)

The form (40) applies to an ellipse and gives the means of calculating an

approximate value of a when ru r2 , r3 are known. It must be adapted
to the hyperbola by changing the sign of a. For the parabola ,the right-hand
side vanishes and we have the relation between the three radii vectores

T-I'T!
- r2

2 T2 + r3
2 T3

which holds provided we may neglect terms of the fifth order in the time.
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61. Returning to the formulae of Gibbs (39), in which the denominators

are correct to the fourth order, we have

*.lf.rj-

T3[^i r3] 1 ~~
Afc^2/^2

3 r3 r
-2

LLA
l
lrl

3
t^A, iJ'Ao

Ti ~,

~ 1 H T- + C
T-

Q8r3]

to the third order. But to the first order

Hence

ii a - /AS-I /x 2---
1~

T.lr,rJ r2
3 r2

4

T2 [rxr2] 14 (A 3 + AZ) 3/ur2

1=: 1 "T
a 2 .------ -a. i T3 .

r2
3 r2

4

-
1

nr3]

For the coefficients we easily find from (37)

12 (A a + A 5)
= T1 T3 + T2

2 + Tl T2
- T3

2 = 2 (T2
2 - T3

2

)

12 (^ + A 2)
= TlT3 + T2

2 + T2 T3
-

T,
2 = 2 (T2

2 -
T!

2

)

12 (A 3 T, + A^z) = Tl (TlT2
- T3

2
) + T3 (T2 T3

-
T,

2
)
=

T!
3 + T3

3

and therefore

5nJ T2

> (41)

These formulae are correct to the third order and if the terms involving

r2 be omitted they express the ratios of the triangles in terms of the single

distance r2 to the second order. Hence their value for the determination of

orbits.
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62. Without loss of accuracy the ratios can be expressed in terms of the

two distances r and r3 instead of r2 and r2 . The forms found by Encke

may be derived thus : we have to the first order

whence

and therefore

r,
-

rj
= r2 r2 ,

r
l + rs

= 2r2 + r.2 (TI
- r3 )

1 L 3

In the terms of the third order we have simply

Hence the ratios of the triangles to the required order become

far,

[r2r3]

..-(42)

where, if t1} t2) t3 are the times corresponding to the distances r1} r2 ,
r3 ,

Equivalent but rather simpler expressions in terms of the extreme distances

may be obtained by observing that

1 1 3r2 1 1 3ra

3 '2 '2

whence

Ti = Ti + ! e!i T =1 __L
ra

3
rf ?3

3 '

-r2
4 2

i\
3 r3

3
'

By substitution in (41) it is easily found that

(43)

From the method by which all the expressions of this kind have been derived

it is clear that the results -apply equally to all undisturbed orbits, elliptic or

hyperbolic.



CHAPTER VI

THE ORBIT IN SPACE

63. Hitherto we have considered the relative motion of two bodies only
as referred to axes in the plane in which the motion takes place. It is now

necessary to specify the manner in which the motion in space is usually

We take a sphere of arbitrary unit radius with the Sun at its centre.

The ecliptic for a given date is a great circle on this sphere. That hemi-

sphere which contains the North Pole of the Equator may be called the

northern hemisphere. On the ecliptic is a fixed point 7 which represents
the equinoctial point for the given date and from which longitudes are

reckoned in a certain direction. The plane of the orbit is also represented

by a great circle which intersects the ecliptic in two points. One of these

ft corresponds to the passage of the moving body from the southern to the

northern hemisphere and is called the ascending node
;

the other node is

called the descending node. The longitude of ft, or 7ft, may be denoted also

by ft : it is an angle which may have any value between and 360. The

angle between the direction of increasing longitudes along the ecliptic and

the direction of increasing true anomaly along the orbit is called the in-

clination and may be denoted by i. It is an angle which may lie between

and 180.

Let P be the point on the great circle of the orbit which represents the

radius vector through the perihelion and Q any other point on the same

great circle representing a radius vector Avith the true anomaly w, so that

PQ = w. We may denote the arc ftP lying between and, 360 by a>, so

that ftQ = w + w. This angle, reckoned from the ascending node to any

point on the plane of the orbit, is called the argument of the latitude. It is

possible to regard as an element of the orbit, but it has been more usual

to define the element -BT, which is called the longitude of perihelion, as the

sum of the two angles ft + co although only one of these is measured along
the ecliptic. The angle ta + w or ft + w +- iv is called the longitude in the

orbit. We have thus defined the three elements, the longitude of the

P. D. A. 5
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ascending node, the inclination of the orbit and the longitude of perihelion,

required to fix the position of the orbit in space, and with these it is

necessary to mention the date of the ecliptic and equinox to which they
are referred.

64. The motion must now be definitely related to the time. Let t be

an epoch arbitrarily chosen and T the time of perihelion passage. Then,

n being the mean motion, the mean anomaly corresponding to the epoch is

M = n(t -T).

Either MQ or T might be regarded as an element of the orbit, but in the

case of a planetary orbit it is more usual to employ the mean longitude at

the epoch, e, which is defined as the sum vr +M . Thus at any time t, if

u = TZ + w is the longitude in the orbit and E the eccentric anomaly, the

position of the planet is given by

where

The mean motion and the mean distance are connected by the relation ( 24)

where ra is the mass of the planet (negligible in the case of minor planets).

The complete elements can now be enumerated and illustrated by the case of

the planet Mars :

Epoch .........
Mean longitude

Longitude of perihelion

Longitude of node

Inclination ......

Eccentricity ......

Mean motion ......

Log of mean distance

The number of independent elements is six, corresponding to the six con-

stants of integration which enter into the solution of the equations of motion,
these being in their general form three in number and of the second order.

When the orbit is parabolic the eccentricity is 1 and the mean distance

is infinite. The scale of the orbit is indicated by the perihelion distance q
and the time of perihelion passage T is given instead of the mean longitude
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at a chosen epoch. Thus preliminary parabolic elements of Comet a 1906

(Brooks) are shown as follows :

T 1905 Dec. 22-29263 G.M.T.

w 89 51' 53"-7 "I

ft 286 24 22 -1 Y 1906.0

i 126 26 7 -sj

q 1-296318.

65. If axes (xl} y1} z^) be taken such that Ox^ passes through the node,

Oy^ lies in the plane of the orbit, and Ozj. is in the direction of the N. pole of
the orbit, the coordinates of the planet (or comet) are

Xl = r cos (w + w), 2A
= r sin (a + w), zl

= Q

when its true anomaly is w. Let the axes be turned about Ox1 so that 0^
takes the position Oy2 in the plane of the ecliptic and Oz2 is directed towards

. the N. pole of the ecliptic. Then

#2
= #1 , y2

= yl cos i zl sin t, z9
= zl cos i + yl sin i.

Next let the axes be turned about Oz2 so that Ox3 passes through the equi-
noctial point and Oy3 is in longitude 90. Then

x3
= #2 cos ft y2 sin ft, y3

= y2 cos ft + xz sin ft, z8 = zz .

Hence the relations between (x3 , y3 ,
z3) and (x1} y1} z^) are given by

xl y1 z1

xs cos n cos i sin fl sin t sin H
y3 sin n cos t cos fl sin i cos O
^3 sin i cos i.

This scheme will give the heliocentric ecliptic coordinates of the planet.

It is convenient to write

sin a sin A = cos Q, sin a cosA = cos i sin ft

sin 6
X
sin 5' = sin ft, sin b' cos

' = cos i cos ft

for then
x3
= r sin a sin (-4 + o> 4- w)

y3
= r sin 6' sin (5' + &> + w)

zs
= r sin t sin (w + w).

Hence, if R, Llt Bl are the geocentric distance, longitude and latitude (the

last always a very small angle) of the Sun, which may be taken from the

Nautical Almanac, and A, X, y8 are the geocentric distance, longitude and

latitude of the planet,

A cos \ cos ft R cos L! cos Bi + r sin a sin (A' + a> + w)

A sin X cos ft
= R sin Zj cos Bl + r sin 6 sin (.B' + a> + w)

A sin /3
= R sin 5X + r sin i sin (&> + w)

whence the geocentric ecliptic coordinates of the planet.

52
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66. Were the elements given with reference to the equator instead of

the ecliptic, and this is sometimes done (though not often), the same

formulae would give equatorial coordinates with the substitution of R.A. and

declination for longitude and latitude. To obtain equatorial coordinates

from ecliptic elements another transformation is necessary. Let the last

system of axes be turned about Ox3 so that Oy3 comes into the plane of the

equator and the new axis Ozt is directed towards the N. pole of the equator.

Then the obliquity of the ecliptic being denoted by e
,

#4 = Xs> 2/4
~

2/3
cos eo

~
Z-A sift o >

Z4
= z% cos e + 2/3

sin e .

From the above relations between (x3 , ys ,
z3 ) and (xlt y1} z^ it follows

that (#4 , 2/4 > z*) and (xlt y1} z^) are related by the scheme :

x1 2/1
gi

oc4 sin a sin A sin a cos A cos a

2/4
sin b sinB sin b cos B cos b

zt sin c sin G sin c cos C cos c

where it is easily seen that

sin a sin A = cos ft

sin a cos A = cos i sin ft

cos a = sin i sin ft

sin b sin B = cos e sin ft

sin b cos B = cos e cos i cos ft sin e sin i

cos b = - cos e sin * cos ft sin e cos i

sin c sin C = sin e sin ft

sin c cos C = sin e cos i cos ft + cos e sin i

cos c = sin e
fl
sin i cos ft + cos e cos i.

The heliocentric equatorial coordinates of the planet now become

#4
= r sin a sin (A + w + w)

2/4
= r sin 6 sin (B + co + w)

zt = r sin c sin ((7 + eo + w).

Thus, for example, the above elements for Comet a 1906 lead to

x, = r [9-803389] sin (243 29' 42"'3 + w)

2/4
= r [9-999830] sin (331 33 15 ! + ;)

4
= r [9-887772] sin ( 60 14 19 '5 + w)

referred to the equator of 1906'0.

Let
(as, y, z) be the geocentric equatorial coordinates of the planet and

(X, Y, Z) the corresponding geocentric coordinates of the Sun, which may
be taken directly from the Nautical Almanac or other ephemeris. Thus
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But
x = A cos a cos 8, y = A sin a cos 8, z = A sin S

where A, a, 8 are the geocentric distance, right ascension and declination of

the planet. These coordinates can therefore be calculated from the equations

A cos a cos 8 = X + r sin a sin (A -f co + w}
A sin a cos 8 = Y + r sin b sin (B + D + w)

A sin 8 =Z +r sin c sin (G + to + w).

This form of equations, introduced by Gauss, is very convenient for the

systematic calculation of positions in an orbit.

67. The direct transformation of the elements from one plane of refer-

ence to any other may be made as follows. Let <yAB represent the first

plane of reference, ^AC the second plane and BCP the plane of the orbit.

The first set of elements are yB = Sl, BP = w and 180 -B = i. The new
elements are 71C=n /

, CP=w, and C=i'. Also the position of the new

plane of reference relative to the old may be defined by jA = Oj, A = ^ and

the arbitrary origin yj by yiJ. = O . Hence the sides and angles of the

triangle ABC are

a = co -co', b = n'-no , 0=11-0!
A = ilt B = 180-i, C = i'.

Now the analogies of Delambre may be written in the single formula, easily

remembered,

sin {45 (45
-

jfrT^)} = sin {45 + (45
- lTA)}

sin {45 + (45
-

c)} cos {45 + (45
-

G)\

where the ambiguities + + must be read consistently but independently in

two sets of three. Hence taking (1) all lower signs, (2) all + signs, (3) all

signs and (4) all upper signs in the above formula, we have

sin | (n' no + co <o') sin \i!
= sin J (fl O^ sin | (i + Q

cos (fl
7 - H + co w'} sin \i'

= cos (H - fta) sin (i ^)

sin (O'
- O co + &)') cos i

7 = sin \ (ft
-

Ilj) cos (i + i\)

cos (ry
- n - w + &)') cos \y = cos $ (a - no cos \ (i

-
1,).

These formulae will serve directly if for example it is required to refer the

elements of a minor planet to the plane of Jupiter's orbit instead of to the

ecliptic. Or again, if n, eo and i are the elements referred to the ecliptic

and equinox at the date T and II', &/ and i' the elements for the equinox

T+ t, we may put flj = n if t\
= TTX and O = Hx + -^ where ^ is the general

precession. Hence when these quantities are known the effect of precession

is given by

tan \ (Q!
- H :

- ^ - Aw) = tan \ (1 - II,) sin \ (i + TrO/sin $ (i
-

w-j)

tan | (0'
- H! -^ + Aw) = tan |(O - UJ cos | ( + TT^/COS ^ (t

-
TT^
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where Ao> = o> -co, and (by Napier's analogy involving B + C and A)

'-
211, -1

68. When the interval is moderately short, however, these rigorous

equations for the effect of precession are not required and it is more con-

venient to use differential formulae. We now consider yAB as the fixed

ecliptic of 1850.0 and ^AC as a variable ecliptic. Since

cos C = sin A sin B cos c cos A cos B

sin C . dC = (cos A sin B cos c + sin J. cos 5) dA sin -4 sin B sin c . dc

= sin (7 cos b . dA sin a sin sin (7dc

or

dC= cos 6 . dA + sin a sin 5 . dc .................................(1)

Also, since

sin C sin b = sin B sin c

sin C cos b .db = sin 5 cos c . cfc cos C sin 6 . dC

= sin 5 (cos c cos (7 sin a sin 6) dc + cos C sin 6 cos 6 . dJ.
or

sin C .db = cos Csinb.dA + sin B cos a . dc ........................ (2)

Similarly, since

sin C sin a = sin A sin c
/

sin C cos a.da= cos .4 sin c . cL! + sin A cos c.dc cos (7 sin a . d(7

=
(cos A sin c + cos (7 sin a cos b) dA

+ (sin J. cos c sin 4 cos C sin a sin 6) dc

= cos a sin b . dA + sin A cos a cos b . dc

or

sin(7.da= sinb.dA + sin J. cos 6 . c?c ........................... (3)

By a slight change of notation we now put n o , w and i for the elements

at T= 1850.0, O, o) and i for the elements at time T+ t (instead of H', &>'

and *') and define the position of the ecliptic and equinox at T + 1 relative to

those at T by Hj = II, ^ = TT and fl = II -f i/r,
so that

a = &>o
-

,
6 = n - n -

-^ ,

A=TT, B = 180 -i
,

Hence by substitution in (1), (2) and (3)

di = cos (H II
T/T) (for sin (<BO o>) sin i . dH

sin i . d (fl II ^) = cos t sin (fl II
A/T) C^TT cos (<u o>) sin ^ . dH

sin i.du>= sin (H II
i/r) ^TT cos (fl II

i/r)
sin TT .
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But in the coefficients of dH we may put i = i
,

o> = &> and TT = 0, this being
the mutual inclination of the fixed and moving ecliptic. Hence we have

simply
di /dt = - cos (ft

- H -
i/r) dirfdt

dfl/dt = d^/dt + cot i sin (fl
- II - -fr) dir/dt

dm jdt = - cosec t sin (ft
- U -

-^) d-TT/dt.

These are to be integrated between t = t and t = t^, and the coefficients of

dir/dt are variable with the time. Provided the interval is no more than a

few years, it is sufficiently accurate to proceed thus. Writing

i.2
= ^ - (t,

-
tj cos (n - n -

i/r) dirjdt

ft2
= H! + (t,

-
$,) {d^/dt + cot i sin (ft

- II - -f) d7r/<&]

0)2
=

cDj (t2
-

^) cosec i sin (ft IT -
i/r) cfor/c&

we take II + i/r, d-Tr/cfa and dty/dt from appropriate tables (e.g. Bauschinger's

Ta/efo, No. xxx) with the argument T + (tz + 1,). With ft = f^ and i = ^
approximate values of ft2 ,

iz can be obtained and the calculation is then

repeated with the corresponding values ^(f^ + I12), '^(^ + 1'2) substituted for

fl and i.

69. It is impossible to correct the first observations of a moving body
for parallax in the ordinary way because its distance is unknown. But the

line of observation intersects the plane of the ecliptic in a certain point,

called by Gauss the locus fictus, the position of which can be calculated. If

the observation is then treated as though made from this point the effect of

parallax is allowed for and also the latitude of the Sun.

Let the observation be made at sidereal time T at a place whose geo-
centric latitude is

<f>.
Let a, 8 be the observed R.A. and declination, reduced

to mean equinox. The geocentric equatorial coordinates of the place of

observation are (p cos $ cos T, p cos
<f>

sin T, p sin <), p being the Earth's radius

at the place, and the corresponding ecliptic coordinates (ph, phz, ph^), where

hi = cos I cos b = cos
<f>

cos T
h.2
= sin I cos b = cos

<f>
sin T cos e + sin < sin e

h3
= sin b = sin $ cos e cos

</>
sin T sin e

e being the obliquity of the ecliptic and I, b the longitude and latitude of

the Zenith. Similarly

H! = COS X COS $ = COS 8 COS

H2
= sin X cos /9

= cos B sin a cos e + sin 8 sin e

H3
= sin /S $= sin B cos e cos 8 sin a sin e

are the direction cosines of the line of observation, X, /3 being the geocentric

longitude and latitude of the observed object. The Nautical Almanac gives

Jtlf L! and -Bj the geocentric radius vector, longitude and latitude of the Sun.
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Hence in heliocentric ecliptic coordinates the equation of the line of obser-

vation is

x + RI cos Lj. cos B1 -hlp _ y + Ri sin l/
t
cos B1

- h2p

~~irr H,

_ z + RI sin Bl
hsp _ .

~^ffT~

where A is the distance from the place of observation to the point (x, y, z)

positively in the direction away from the object. If then this line intersects

the plane of the ecliptic in the point (the locus fictus)

x = R cos L, y = RsinL, z =
A = (h3p

- R, sin BJ/H,
-RcosL^-R, cos L, cos Bl + ph,

-
(h3p

- R, sin B^ HJH,
R sin L = R! sin L^ cos Bl + ph2 (hsp Rl sin B^ H2/H3 .

But these exact equations can be simplified, regard being had to the small

quantities involved. For Bl < I" in general, so that sin Bl
= Bl) cos B^ = 1.

Also we may put p = pRi where p is the solar parallax, 8"'80. Hence writing

R = R! + dRi, L=L! + dLlf we have

- cos L, . dR, + R, sin L, . dL, ^pR.h, - (h3p - B,) R.H./H
- sin L, . dR^ - R, cos L, . dL, =pR,h2

-
(h3p - BJR^/H

whence
- dR1/Rl =p (fh cosA + h2 sin L,)

-
(h3p - BJ (Hl cos L^ +H2 sin

dL^ =p (Aj sin L^ h2 cos L^ (hsp B^ {H^ sin L^ H2 cos

or again

dRi/Ri =p cos b cos {L-i I) ( p sin b Bj) cos (L: \) cot ft

dli^ = p cos b sin (L^ l) (psmb B^ sin (Zj X) cot ft

A/BJ =O sin 6 - ^/siri

Here both p and B^ are naturally expressed in seconds of arc. Thus dL^ ,
the

additive correction to the Sun's longitude, is appropriately expressed in the

same unit. The Nautical Almanac gives log-Rj, to which the additive

correction is

, , dR l logJ0 6 ^ir/I.QOQxl lAld . log R, = -
. ,

= -
[4 3234 - 10].

Finally, had the observation actually been made from the locus fictus it

would have been made later in time by the interval required for light to

travel the distance A. But the light equation, or the time over the mean
distance from the Sun to the Earth, is 4988>

5. Hence the additive correction

to the time of observation is (in seconds)

The reduction to the locus fictus is a refinement rarely employed in practice.



CHAPTER VII

CONDITIONS FOR THE DETERMINATION OF AN ELLIPTIC ORBIT

70. There are certain properties of the apparent motion of a planet or

comet on the celestial sphere which bear on the problem of determining the

true orbit and which can be considered with advantage apart from the details

of numerical calculation which are necessary for a practical solution. They
are closely connected with the direct method of solution devised by Laplace,

but they equally contain principles which are fundamental to all methods.

Let (x, y, z) be the heliocentric coordinates of the planet, (X, Y, Z) the

heliocentric coordinates of the Earth. Then

/. = *(!+ wi,)

m and m being the masses of the planet and the Earth. Let (a, b, c) be the

corresponding geocentric direction cosines of the planet, so that

x = X + ap, yY + bp, z = Z + cp .................. (1)

p being the geocentric distance of the planet. The observed position of the

planet is given in right ascension and declination (a, 8), -and if the equatorial

system of axes be chosen,

a = cos a cos 8, b = sin a cos 8, c = sin 8.

Since

x = X + dp + Zap + ap

fjuejr
3 - n X/R3 + dp + Zap + ap'

=

or

X (yu/r
3 - n /R

3

) + dp + 2dp + a(p + w/r*) =

and similarly
-

/* /.fl
3
) + bp + 26/3 + b (p + /^/r

3

)
=

0.
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These are three equations in p, p and p +
written down at once in the form

a d X
\

a d X
b b Y b b Y

c c Z
\

c c Z

the value of p not being required.

,
the solution of which can be

...(2)a a a

b b b

c c c

71. The determinants in (2) can be calculated when the first and second

derivatives of the three direction cosines are known. Now

a = sin a cos 8 . d cos a sin 8 . 8

a = sin a cos 8 . a cos a cos 8 . d2
-f 2sin a sin 8 , 08 cos a cos 8 . 82- cos a sin 8 . 8

, .

-

c = cos 8 . 8 sin 8 . 82
.

The derivatives a, 'd, 8, 8 are most simply calculated from a series of observed

values by Lagrange's interpolation formulae. If the number of observations

is three, made at the times tl ,
t2 ,

t3) we have according to this rule,

* '

whence
2t-t2 -t3

**+;i-

2*
ts ) ft-^ft-*,) ft-*,) ft-*.)

or, if we choose t = t2 ,
the time of the middle observation,

a= 2

TjTaTg . d = Tj
2

. ! + T2 (T! TS) . 2 + T3
2

. O3
= Tj

2
( 2 l) + T

:?

2
(3 ~ tts)

TiT2rs . a = 2rj . ! 2r2 . 2 + 2r3 . as
= 2^ (a2 QJ) + 2r3 (ot3

a2)

where

These formulae, which apply equally to the declinations, mutatis mutandis,

are only correct if the observations are made at very short intervals of time

and are ideally accurate. Since the accuracy of observations has practical

limitations, moderately long intervals must be used and a greater number

of observed places is necessary for satisfactory results. Our immediate

concern, however, is rather with general principles than practical methods

of calculation.
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72. It is now possible to calculate the quantity I given by

75

and we then have by (2)

lp
= (1 + (3)

The mass of the planet, m, must be neglected in a first approximation to the

orbit and this is one relation between p and r. In essence it is fundamental

in all general methods of finding an approximate orbit. A second relation

is available because we know the angle ty between R and p, namely

r2 = R2 + /a

2 + 2Rp cos^ ........ ................... (4)

while the projection of .R as a vector in the direction of p gives

R cos
o/r
= aX + bY + cZ, (0 < ^ < 180).

If r be eliminated between (3) and (4) an equation of the eighth degree in

p results, and it will be necessary to examine the nature of the possible roots.

For the moment we suppose that the appropriate value of p has been found.

Then the corresponding value of p is given by (2) and the components of the

velocity can be calculated, since by (1)

nc = X -f dp -f a/5, y=Y+bp + bp, z = Z + cp + cp .........(5)

where X, Y, Z must be found from the solar ephemeris by mechanical

differentiation. Thus when p and p are known, (1) and (5) give the three

heliocentric coordinates of the planet and the three corresponding components
of velocity at a given time t. From these data the elements of the planet's

orbit, assumed for the present purpose to be elliptic, can be calculated without

difficulty.

73. Since equatorial coordinates have been used hitherto, the elliptic

elements of the orbit will also be referred to the equatorial plane. If new

coordinates (, 77, ) be taken so that the axis of passes through the node

and the axis of f through the N. pole of the orbit, the transformation scheme

is(cf.65):

x y z
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Hence in the plane of the orbit,

= x sin ft' sin i' y cos ft' sin i' + z cos i' =

= x sin ft' sin i' y cos ft' sin i' + z cos i' =

giving for the determination of ft' and i'

sin ft' sin i
'

cos ft' sin i
'

cos i
'

(6)^ yz xz xz xy xy

Also, if u is the argument of latitude (or rather of declination),

= r cos u x cos ft
7 + y sin ft' .............................. (7)

and

77
= # sin ft' cos i' + ,y

cos ft' cos i' + z sin i'

or

r sin u*= z cosec i' ...................................................(8)

by the above equation for . Similarly, if P
T

is the velocity and % the angle

between V and the radius vector produced,

= F cos (w + x)
= a; cos ft

' + sin ft
'
.................. (9)

i) Fsin(w + x) = & cosec i' ...........................(10)

Thus V and %, as well as r and w, are determined. Now if w is the true

anomaly at the point, the polar equation of the orbit gives

p = r (1 + e cos w) ........................ (11)

pcot x = re sm w .................................(l^)

since tan x = rdw/dr. But the constant of areas is

A = Frsinx = V(A*p)
= &\/p ..................... (13)

giving p and hence e and w. The mean distance a can be deduced from the

known values ofp and e, or directly from the relation

F2 = 2p/r
-

fi/a ..............................(14)

and the mean motion n from the equation /*,
= k2 = n 2a3

. Also the element ta'

is given by sr' = ft' + u w. Finally the epoch of perihelion passage is deter-

mined by the two equations

..............................(15)

E being the eccentric anomaly at the point of the orbit observed.

74. We now return to the consideration of the solution of equations (3)

and (4), following the method of Charlier, which gives the clearest view of

the geometrical conditions of the problem. The first of these equations is

based on the assumption that the point of observation is. moving under

gravity about the Sun. The point which so moves is in reality the centre
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of gravity of the Earth-Moon system and, strictly speaking, the observations

should be reduced to this point and not the centre of the Earth. But this is

a matter of detail which our immediate purpose does not require us to stop

and consider. Similarly we may neglect the mass of the Earth as well as that

of the planet and put -R = \. Then the equations become simply

lp
= l-l/r> .......................................(16)

r2 =l + 2
/ocos^ + /

>
2

...........................(17)

where I and ^ are known. The position of the planet becomes known when

either p or r has been found, and it is simpler to eliminate p. Thus

JV _ (J2 + 21 cos
i|r + 1) r6 + 2 (I cos

ijr + 1) r3 - 1 = ......(18)

Now the coefficient of r3 is

2 (I cos + + 1)
=

{(1
-W (r

2 - 1 - p
2

) + 2p}/p

which is obviously positive, whether r is greater or less than 1. And the

coefficient of r6
is essentially negative. Hence, by Descartes' rule of signs,

there are at most three positive roots and one negative root. The latter

certainly exists because the last term is negative (the equation being of

even degree), and two positive roots must satisfy the equation, namely + 1

(corresponding to the Earth's orbit) and the root required. There must

be a fourth real root, and therefore in all three real and positive roots, one

real and negative root and four imaginary roots. But the third positive

root may or may not satisfy the problem.

Now by (16) r is greater or less than 1 according as I is positive or

negative. If then the two roots which are in question lie on opposite sides

of 1, the spurious root can be detected and a unique solution of the problem
can be found. But if they lie on the same side, they cannot be discriminated

between in this way, and an ambiguity exists. If we divide (18) by (r 1),

we obtain

f(r) =
2r6

(r + 1)
- (2^008 ^ + r3 - 1) (r

2 + r + 1) = 0.

Thus

so that the roots are separated by + 1, and a unique solution exists, if

I (I 3 cos -^) is negative.

75. The geometrical interpretation is instructive. The equation (16)

for different values of the parameter I represents a family of curves in bipolar

coordinates, the poles being E (the Earth) for p and 8 (the Sun) for r. The

planet lies at the intersection of one of these curves with a straight line
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C/?
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drawn through E in a given direction. But there may be two intersections,

and this will happen if/(+ 1) or

fl (1-3 cos VT)
=

(1
-

1/r
3
) [1

-
1/r

3 + f (1 +? - r2

)}

is positive. This expression changes sign when we cross the circle r = I and

again when we cross the curve

Putting p
2 = 1 + r2 2r cos

<f>
we get for the polar equation of this curve with

the origin at $
4 - 3r cos

</>
=

1/r
3

...........................(19)

or in rectangular coordinates,
r (4-3*0 = 1

showing that the curve has an asymptote 3# = 4. Moving the origin to E
we find at once that E is a node, the tangents being y = 2x. The whole

curve consists of a loop crossing the SE axis at the point r = '5604, < = TT, and

an asymptotic branch, and is shown as the "
limiting

"
curve in the figure.

The plane of the figure is that containing S, E and P (the planet); it is

only necessary to show the curves on one side of the axis because this is one

of symmetry.

A few curves of the family (16) are also shown in the figure, for values

of I which indicate sufficiently the different forms. When I = we have the

circle r = 1, called here the "
zero

"
circle. It is evident that when I is

negative r < 1 and the curve lies entirely within the zero circle, while when I

is positive r > I and the curve lies entirely outside this circle. When I has

a large negative value, the curve consists of a simple loop surrounding S and

an isolated conjugate point at E. As I decreases from oo the loop increases

in size until, when I 3, the loop extends to E, where there is a cusp.

Afterwards as I approaches the loop, still passing through E, approximates
more and more closely to the zero circle.

When I is positive the form of the curves is rather more complicated. It

must be remarked that I cannot be greater than + 3. For

f
I = (r

3 - 1 )/rp = (r-
1 + r~2 + r~3

) (r
- 1 )/p.

But r > 1 and r 1 < p. Hence the limit is established and we have only to

follow the values of I from + 3 to 0. At first the curve consists of a small

loop passing through E. As the value of I falls the loop expands, tending
to enfold the zero circle. Finally, when I = + 0'2959, it reaches the axis again
and forms a node on the further side of 8. As the value of I falls still further

the curve breaks up into two distinct loops. The larger continues to expand
outwards at all points and recedes to infinity, while the inner, always passing

through E, contracts until finally it becomes the zero circle. These features

in the development of the family of curves will be evident in the figure.
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It will now be apparent that the limiting curve and the zero circle divide

space into certain regions and that the solution of the problem of determining
an orbit by the method indicated is unique or not according to the region in

which the planet happens to be. Thus we distinguish four cases :

(1) If the planet is within the loop of the limiting curve there are two

solutions.

(2) In the space between the loop and the zero circle the solution is

unique.

(3) Outside the zero circle and to the left of the asymptotic branch of

the limiting curve there are again two solutions.

(4) If the planet lies to the right of the asymptotic branch of the

limiting curve only one solution is possible. It happens that newly dis-

covered minor planets are usually observed near opposition and therefore

this is the case which most commonly occurs.

76. There is another curve which has considerable importance in the

problem of determining an orbit by a method of approximation and to which

Charlier has given the name of the "singular" curve. We may find it thus.

If we eliminate r between the equations (16) and (17) we have

//>
= 1 -(1 + 2/9 cos

which is an equation giving the values of p for a line drawn through E in

the direction
i/r.

Two of the values become equal and the line touches the

curve (16) if

I = 3 (COS >Jr + p) (1 + 2p COS
i|r + p

2

)

~
*

= 3 (cos i/r + p}/r
5

.

Hence the locus of the points of contact of the tangents from E to the family

of curves (16) is

or again
3p

2 = 2r5 - 5r2 + 3 ........................(20)

This is the equation of the singular curve. If we change from bipolar

coordinates to the polar equation with the origin at S, we obtain

3 (1
- 2r cos

<f> + r2
)
= 2r6 - 5r2 + 3

or

r3 = 4 - 3 cos
<f>/r

..............................(21)

Comparison of this form with the equation (19) of the limiting curve shows

at once that these two curves are the inverse of one another with respect to
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the zero circle. From this relation the form of the singular curve, which is

shown in figure 3, becomes apparent.

The importance of the singular curve arises thus. In general a line

through E meets a curve of the family (16) either in one point (besides E)
or in two distinct points'. In the latter case the coordinates of the planet
are regular functions of the time and can be expanded in powers of the time,
but each is expressed by two distinct series between which it is impossible to

discriminate. When, however, the planet is situated at a point on the singular
curve, the two distinct series coalesce and each point of the singular curve

corresponds to a branch point where we may expect the coordinates of the

planet to be no longer regular functions of the time. This is in fact the

case. Charlier obtained the equation of the singular curve by noticing that

along this curve expansion of the coordinates as power series in the time
ceases to be possible.

77. If the masses of the Earth and of the planet be neglected, (2) may
be written in the form

where Ax ,
A 2 ,

A3 represent three determinants and I = Ag/A^Aj. It is clear,

as we have already noticed, that r<R if I is negative and r > R if I is

positive. Now the equation of the plane of the great circle tangent to the

apparent orbit at (a, b, c) is

.(23)a a

b b

c c

The coordinates of the Sun on the celestial sphere are ( X/R, Y/R, Z/R)
and of a neighbouring point to (a, b, c) on the apparent orbit (a + at + ^dt*,

b+ ..., c +...). Hence the ratio of the perpendiculars from these points to

the above plane is - A,/# 4- ^2A 3
= -

2/lk
2
t
2R. Thus I is negative if the

Sun and the arc of the planet's orbit lie on the same side of the great circle

touching the orbit, and positive if the Sun and the arc are on opposite sides.

In the first case r < R, in the second r > R. Hence we have the theorem

due to Lambert, which may be expressed by saying that an arc of the orbit

of an inferior planet appears concave to the corresponding position of the

Sun, but the arc described by a superior planet appears convex. This test

makes it immediately apparent whether a planet or the Earth is the nearer

to the Sun.

It may happen that A3 vanishes. It is then necessary to express

the coordinates of neighbouring points on the orbit to the third order

p. D. A. 6
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(a dt + ^dt
2

I'dt
3

,
b ..., c + ...). The result of substituting in the left-

hand side of (23) is

+ \i? a a d

b b b.

c 6 c

and the double sign shows that the curve crosses the tangent great circle. In

the language of plane geometry there is a point of inflexion on the apparent
orbit. Now if A3 vanishes either r = R or Aj = 0. Thus such a point of

inflexion occurs either when a comet reaches the same distance from the Sun

as the Earth or when the great circle which touches the orbit of a planet

passes through the position of the Sun.

78. When the apparent orbit of a planet reaches a stationary point the

curve either crosses itself and forms a loop, or without crossing itself it pursues
a twisted path, passing through a point of inflexion. At such a point, as we

have just seen, the tangent in general passes through the Sun. There is a

related theorem, due to Klinkerfues, which applies to the case of a loop.

Let Pj, Pz ,
P3 be three positions of the planet in space, Elt E.2 ,

E3 the corre-

sponding positions of the Earth and the position of the Sun. If the first

and third positions correspond to the double point on the loop, ElPl and E3P.A

are parallel and lie in one plane. Let SP2 meet the chord P1P3 in p2 and SE2

meet the chord E^EZ in e2 . If ^ is the time taken to describe P1
P2 or E^2

and t2 the time along P2P3 or E2E3 , t-i
: t2 is the ratio of the sectors 8P1P2 ,

SP.2P3 or very nearly the ratio -of the triangles SP^, Sp2P3 ,
that is

Pip2
'

p2Ps - But similarly ^ : t2 is nearly equal to the ratio E& : e2E3 .

Hence PjPs and E1E3 are divided by p2 and e.2 in approximately the same

ratio and therefore e2p2 is parallel to E1P1 and E3P3 . Consequently the

three planes ElSPl ,
E2 e2Sp2P2 ,

E3SP3 have a common line of intersection,

namely the line through S parallel to E1Pl
and E3P3 . But on the geocentric

sphere these three planes correspond to three intersecting great circles. The

first and third intersect in P, the double point on the apparent orbit. Hence

the great circle joining any intermediate point on the loop to the corre-

sponding position of the Sun also passes through the double point, at least

very approximately.

It may be inferred then that if any three points on such a loop be joined

to the corresponding positions of the Sun, the three great circles will meet in

one point which is also a point on the apparent orbit.

79. There is some interest in finding the geometrical meaning of the

three determinants At ,
A2 ,

A3 in (2) or (22). Bruns has noticed that

A3
= V3

k, where k is the geodetic curvature of the apparent orbit on the

sphere and V the velocity in this orbit at the point (a, 6, c), so that

V 2 = d2 + 62 + c2
.
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But we shall now express these determinants in terms of the small circle

of closest contact or circle of curvature. This passes through the points

(a, b, c), (a + at, b + bt,c+ct) and (a+ at' + |a'
2

, 6+..., c +...), and the

equation of its plane is

|

x y z 1

a b c I

a b c

a b c

or

x(bc
-

bc) + y(cd - cd)+z (db db) = A3 ...............(24)
Now

a? + b- + c- = 1

ad + bb + cc =

ad + bb + cc = V 2

by successive differentiation. Solving these as linear equations in a, b, c, we

obtain

a&3 =bc-bc-V*(bc-bc)

and two similar equations. But (a/F, b/V, c/F) are the direction cosines of

the point Pl on the tangent 90 from (a, 6, c), and the pole of the tangent is

(a ,
b , c ) where

Fa = be - be, Vb = cd- da, Vc = ab- db

so that

ic-6c = aA3 + F3a0> ...

and

S(6c-6c)
2 = A3

2 + F fi

.

The equation of the circle of curvature (24) becomes then

(aA3 + a F3
) x + (6A3 + 6 F 3

) y + (cA 3 + c F3
) z = A3 .

Hence, if o> is the angular radius of this circle,

cos2 w = A3
2

/(A3
2 + Vs

)

and therefore

A3
= F3 cot w.

This then is the geometrical meaning of the third determinant.

80. Next we take A2 . If (-4, B, 0} are the geocentric direction cosines

of the Sun, X = - AR, Y = -BR,Z=-CR and

A2
= - R [A (be

-
be) + B (cd

-
ca) + C(ab - db)}

-.R?L{A (be
-

be) + B(cd- ca) + C(ab- db)}

Bb + Cc ) -RV(Ad + Bb + Cc \

62
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Here A, B, C are of course constants. Now (a ,
6 , c ) is the pole P of the

tangent at P, (a, b, c). The arc PPn passes through the centre of the circle

of curvature and while P is initially describing a circle of angular radius &>

about this centre P is describing a circle of radius 90 - to about the same

centre. If the velocity of P0) which is in the direction of the pole of PP
opposite Pj, is V,

F'/cosoi
= F/sin a), Oo/F' = - d/F, b /V = -

b/V, c /F' = -
c/V.

Hence

A2
= A, VIV+ RV cot (4d + 56 + Cc).

Again

S being the position of the Sun on the sphere, and r the perpendicular arc

from S to the tangent PPj at P to the apparent orbit (positive if drawn from

the same side of PPj as P or the centre of curvature). Also

Ad + Bb+Cc=VcosSP1 =Vsmv

where v is the perpendicular arc from S to the normal ,PP to the apparent
orbit at P (positive if drawn from the same side of PP as Pj). Hence

A2
= - JRFsin T + RV2 cot o> sin v.

Thus the geometrical significance of the three determinants has been

determined and we may write (2) in the form

_ _
jRFsin T R ( F2 cot o> sin v - Fsin r) F3 cot w

which shows in the clearest way how this method of determining the orbit

depends on a knowledge of the simple quantities F, F, T, v and <u, which can

be specified without reference to any particular axes. To these must be joined

the equation (4), which enjoys the same property.

It has been remarked ( 75) that I cannot be greater than + 3. Now

I = AS/^AJ = - F2 cot w{k*-R sin T.

Hence for a superior planet,

F2 < 3&R
|

tan w sin T
I

which sets a limit to the apparent velocity when o> and r are known, or to the

curvature of the path when F and T are known.



CHAPTER VIII

DETERMINATION OF AN ORBIT. METHOD OF GAUSS

81. Since a planetary orbit requires for its complete specification six

elements, it is to be expected that three positions of the planet, i.e. three

pairs of coordinates, observed at known times, will suffice to determine its

path. And this is in general true, though there are exceptional circumstances

in which further observations may be necessary. The formulae are a little

simpler when ecliptic coordinates are employed, and though this is not

essential we shall take as the data of the problem :

the times of observation tlt t2 ,
t3

the longitudes of the planet \l} \^, X3

the latitudes of the planet ft, ft, ft

the longitudes of the Earth Ll} Lz , L3

the Earth's radii vectores Rl} R2 ,
R3 .

The angular coordinates are referred to a fixed equinox which will apply to

the resulting elements. The Earth's longitude (which differs by 180 from

the Sun's longitude) and radius vector can be derived from the Nautical

Almanac or other national ephemeris : the Earth's latitude can be neglected,

or, if desired, allowed for by using the method of the locus fictus ( 69).

At the time tt let rf be the heliocentric distance of the planet and pt
- its

geocentric distance. Referred to a fixed system of rectangular axes through
the Sun let (#, yt, Zi) be the coordinates of the planet, (Ai, Bt, Gi) the

direction cosines of Ri and (c^, bi, ct-)
the direction cosines of pt, so that

zt
=

Cipi + Ct Ri.

82. Since the three positions of the planet lie in a plane passing through
the Sun

=

2/3
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But

plane of the areas [r2rs], [r.^] and far2]. Hence

and (yl z^ yzz^) are the projections on the yz

3]
~

z as3 farj -

[
- far3 3 + A 3R3 )

= 0. . .(1)

And similarly

[r,rs] (blPl + B.R,)- far, , + B2 JR.) + farj (63/>3 + B3R3)
= 0. . .(2)

C,R2) +[r1 r,](csp3 + C&) = 0...(3)

These are the fundamental equations expressing the condition for a plane

orbit. From them one pair of the six quantities p{ , Ri can be eliminated in

fifteen ways. The result immediately required is obtained by eliminating

Pi and p3 , namely

[r2rs] IZj |
ttj ,
4 j ,

as
|

-
[n r3] p2

1
aj,a^

where the determinants are indicated by their first lines, from which the

second and third lines are to be obtained by changing the letters without

changing the suffixes, e.g.

|
a,, A l a3

We have now to notice that these determinants are proportional to the

perpendiculars to the plane
:,

x as I

=

or the plane passing through the points (a1; b1} Ci), (a3 , bs ,c3) and the origin,

from the points (A lt B1} GI), (aa ,
b2 , c2), (A 2 ,

B2 ,
G2) and (A 3 ,

Bs ,
(73); and these

are the representative points of the directions of 12,, p2 ,
R2 ,

R3 on the sphere

of unit radius. The perpendiculars to the plane are therefore the sines of the

perpendicular arcs to the great circle through (a,, blt c,), (a 3 , 6,, c3) and if these

arcs are J9/, /32', B2', B3 respectively (due regard being paid to sign) our

equation becomes

fa PS] pz sin 0* = [r2rs] Rl sin JB/
-
fa r,] 12.2 sin B2 + farB] R3 sin B3 . . .(4)

83. The points on the sphere just named are Elt E2 ,
E3 , representing

the heliocentric directions of the Earth and lying on the ecliptic, and Pl} P2 ,
Ps ,

representing the geocentric directions of the planet. The great circle men-

tioned is PiPs . Let this circle intersect the ecliptic in longitude H2 and at

the inclination
7?2 . Then we have the same relation between any one of the

perpendicular arcs and the longitude (reckoned from H2) and latitude of the

point from which it is drawn as exists between the latitude of a point and its
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right ascension and declination, the obliquity of the ecliptic being replaced

by 7?2 - That is to say,

sin fa = cos 772 sin fa sin 772 cos /32 sin (X2 H<^

sin BI = sin
rj.2 sin (L l

H2)

sin B2
= sin /2 sin (L2 H2)

sin B3
= sin 77, sin (Ls H2)

and as regards the points Pl ,
P3

= cos 772 sin& - sin 772 cos fa sin (X x H2)

= cos 772 sin fa - sin 77, cos fa sin (X3 #.,).

The latter give, by addition and subtraction,

2 tan 772 sin { (Xj + X2 )
-

N.,}
= sin (ft + fa)/cos ft cos ft cos (X3

- XJ

2 tan 77, cos { (X! + X,2)
- //2 }

= sin (fa
-

ft)/cos /S, cos /93 sin ^ (X 3
-

Xj)

and determine 773 and Hz . We now put

Cj
= ^j sin B^/sm /3.2', c.2

= R.2 sin 52'/sin ^.2 ,
c

:!

= RA sin B3'/sin fa'

and

Wi = [^a sl/C^i sl ws
=

[r, r^/lr, r3].

The equation (4) then takes the simple form

pz
= cl

n
l + cz -c3n3 .

Now this is a purely geometrical relation involving the intersections of any
plane through the Sun with three lines drawn in given directions through
the positions of the Earth. If we imagine the plane to move into coincidence

with the ecliptic, c1} C2 ,
cs remain unaltered while in the limit p l} p2 , p3 vanish

and rlt r2 ,
r3 become coincident with Rl} R2 , R3 . Hence if we put

N, = [RtR^R^] = R, sin (L t
- L2)/R l sin (L3

- LJ
N3

= [R.R^R.R,] = R2 sin (Lz
- LJ/R3 sin (L,

- A)

the equation
= -c1N1 + c2 -c3N3

must' be an identity, and this can be verified. Hence by the elimination of c2

pa
= cl (N1

-nl) + c3 (N3 -n3) (5)

which is the required equation for p2 .

84. Since fa' is the perpendicular arc from P2 to PjP3 it is geometrically

evident that if the observed arcs of the planet's orbit are of the first order of

small quantities (and we assume them to be small) fa' is a quantity of the

second order. Hence the equation (4) shows that if we are to obtain a value

of
p.2

which is a real approximation and not merely illusory we must at the

outset employ values of the ratios of the triangles which are correct to the
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second order in the time intervals. Accordingly we use (41) of 61 and

neglect the terms of higher order than the second
;
that is to say,

where

TI = J tz, T2
= t3 -tl ,

Ts
= t2 t1 .

It is necessary to neglect the mass of the planet and put i^ k-: this can

safely be done in calculating a preliminary orbit, for which the perturbations

are entirely neglected. The equation (5) for p2 therefore becomes

T2 >

where k0y 1 are completely determined quantities. But if 82 is the angle

(< 180) between p2 and R2 produced,

r2
* = Rt? + p2

2 + 2R.2p2 cos 82 (9 )

where
cos 82 = cos P2E2

= cos /32 cos (\a L2 ).

If now p2 be eliminated from (8), which corresponds to the definite form of

Lambert's theorem ( 77), and (9), an equation of the eighth degree in r2

results. The nature of the roots of this form of equation has already been

discussed in 74. But Gauss replaced the eliminant by a much simpler

equation which is easily found. We have

r2 _ R2 _ p2

...(10)
sin 82 sin z sin (82 z)

where z is the angle subtended by R2 at the planet in its intermediate

observed position. Hence by (8)

RV sin (82 z)

or

Z sin4zR2
* sin3 S2 = -R2 sin 82 -z + k sin z

and therefore if we put
m cos q

= k + R2 cos 82

mn sin q = R2 sin &>

mm = 1Q/R2
3 sin3 82

where m is given the same sign as 1
,
we have the simple form

ra sin4 z = sin (z q).............................. (11)
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and this is the equation of Gauss. This form of equation does not avoid the

possibility of an ambiguity arising from two distinct roots, which is inherent

in the problem. But when only one appropriate root exists, it is easily found

by successive approximation. In the most common case, that of a minor

planet observed near opposition, z - q is small and a first approximate value is

given by
Zi = q -f m sin4

q.

When z is found the corresponding first approximations to pz and r2 are given

by (10).

85. We have now to find the corresponding values of pl and p s . For

this purpose we return to the equations (1), (2) and (3), and eliminate

p3 and R3 . The result can be written down at once in the form

[r2r3]pi \
ai,a3> A 3

\

+ [r.2r3]Rl
\

A lt a3,A 3
\

=
[r

1} a3 ,
A 3

\

+ HiRi
\

A 1} a3 ,
A 3

\

=
pa

\

a2 ,
a3 ,
A 3

\

+ R2
\

A 2 ,
a3 ,
A 3

\

where the determinants as before are represented by their first lines, the

other rows being obtained by change of letters without change of suffixes.

Since the same form of equation must remain true, the directions of pl} p2 , ps

being preserved, when the plane of the orbit is made to coincide with' the

ecliptic, in which case p 1
=

p.2
= and Wj becomes NI ,

the equation

NiRi \A l ,aa,A s
\

= Ra
\

A 2 , a,, A 3
\

must be an identity. Hence

,, a 3 ,
A 3

\

= p2
1

a,, as,A 3
\

+ (Ni
-

n,} RI \
A^a*, A 3 \.

Now

cos ft cos \ cos ft cos Xo cos L3

cos ft sin Xj cos ft sin X3 sin L3

sin ft sin ft

= cos ft cos ft {- tan ft sin (\3 L9) + tan ft sin (\ - L3)}

the axis of z being drawn towards the pole of the ecliptic and the axis of

x towards the First Point of Aries. Similarly

|

a2) a3 , AS
|

= cos ft cos ft {
tan ft sin (\3 Z3 ) + tan ft sin (X2 Z3)}

and

|
AI, Oy ,

A s
|

= sin ft sin (Li L3).

Hence

nip! cos ft =M1 p2 cos ft + (Ni %) MI (12)
where

_ tan ft sin (X3 L3} tan ft sin (Xg
-

Z,)~
tan ft sin (X,

- Z3)
- tan ft sin (X, Z8)

,,
x .Rj tan ft, sin (Z,

- ZO
tan Pi sin (X3 L3) tan ft sin (\j L3)

'
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Similarly the result of eliminating p l and R1 from the original equations is

to give (interchanging the suffixes 1 and 3)

where
,, _ tan& sin (Xj L^) tan /r?j sin (X2 L^)

tan $3 sin (Xj L^ tan& sin (X3 L^

M , R3 tsm^l sm(L l -L3 )

tan /33 sin (^ - A) - tan& sin (X3
- A)

'

The coefficients Mlt M{, M3 ,
M3 as well as Nlt N3 are constants throughout

the process of approximation, but nlt n3 must be taken at this stage from the

approximate forms (6) and (7). Then (12) and (13) give values of p l
and p 3

corresponding to the approximate value of p2 already obtained.

86. The heliocentric distances, longitudes and latitudes of the planet are

next deduced by the formulae

ri cos bi cos (k
-

Li)
=

pi cos& cos (\i
-

Li) + Rt

Ti cos bi sin (^ Lt)
=

pi cos @i sin (X; Li) (14)

r-i sin bi
=

pi sin j3{

(i
= l, 2, 3), which are at once found by taking the axis of x successively along

R!, RZ and R3 ,
the axis of z being always directed towards the pole of the

ecliptic. But these coordinates give the position of the plane of the orbit, for

tan i sin (^ ft)
= tan 6j

tan i sin (13 ft)
= tan b3

where i is the inclination and ft the longitude of the node ; or in a form more

suitable for calculation

2 tan i sin
{ (^ + 13) ft}

= sin (6a + 63)/cos 6j cos b3 cos (/3 h)}

2 tan i cos
[ (h + 13) ft]

= sin (63 6j)/cos 6X cos b3 sin ^ (/3 ^)J

And now the three arguments of latitude Uj, giving the differences of the true

anomalies, can be calculated, for

tan Uj
= tan

(lj ft) sec i (16)

(j
= 1, 2, 3). In the case of a comet, it is the practice to take Uj < or > 180

according as the latitude is positive or negative ;
in the case of a planet, Uj is

placed in the same quadrant as
lj

ft. If we calculate n{ ,
n3 from

r2 sin (u3 u2) rz sin (w2 MX )
/I i

"
.

~~
^ y 72 o ^ -. "z r

rl sm(u3 ii
l ) r3 sm(u3 u

l )

we shall not obtain improved values of these ratios, because these equations
have a purely geometrical basis and merely serve as a useful control on the

accuracy of the calculation
;
the values already obtained should be reproduced.
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87. We have now arrived at preliminary approximations to the values of

the geocentric distances pl , p2 , p3> the heliocentric distances r1} r2 ,
r3 and the

arguments of latitude ul} u2 ,
u3 . From these quantities we might proceed to

deduce a complete set of elements. But our results are not accurate for two

reasons : (1) the effect of aberration has been ignored, and (2) the expressions

(6) and (7) employed for r^ and ns were of necessity only approximate. The

effect of aberration may be stated thus. The light observed at time t left the

source whose distance is p at the time t A, where

A< = 4988
-5 p/l day = [T76116] p

in days, 4988>5 being the light-time for unit astronomical distance. Had the

source moved in the interval A uniformly with the velocity of the observer

at time t, its position at time t would be correctly inferred from the observa-

tion, without correction, since in that case there is no relative motion between

the source and the observer. If now we correct the observation for stellar

aberration according to the ordinary rule the observer's motion attributed to

the source is eliminated and we have the direction of the observed body at

time t A from the observer's position at time t. This is the most convenient

procedure in the present case, because it enables us to retain the Earth's

coordinates (R, L) at the times of observation t throughout the calculation

and to make no subsequent change in the planet's observed coordinates (X, /3)

supposing them to be corrected for stellar aberration at the outset. This

avoids many changes which would otherwise be necessary in the calculation of

subsidiary quantities. It only remains when approximate values of p become

known to correct the time t by subtracting Atf in so far as these relate to

actual positions in the orbit. In particular, the corresponding corrections

must be applied to the time intervals rl} r2 , TZ .

88. A better approximation to the values of nly n s might now be made by

using the formulae of Gibbs or those of 62 and with these values the whole

calculation might be repeated. But we proceed at once to introduce the

accurate formulae for the ratio of the sector to the triangle, (25) and (26) of

55 in the case of an elliptic orbit. The sectors are

and are proportional to T!, r2 , TS (now corrected for aberration). Hence

n^7-\ m-fc.5 '. ...(17)'

Here

- sin 2$r2)/sin
88

"

by the formulae quoted, and in the present notation

(r, + r3)/2Vrjrj cos (u3
-

u^, m.? = &2T2
2

/{2Vr^ cos (u,
-
uj}

3
.
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The corresponding equations for y1} ya can be written down by a symmetrical

interchange of suffixes. Various methods have been devised for the convenient

solution of these equations, generally involving the use of special tables.

In the absence of such tables, and they are not necessary, we may proceed
thus. Writing the cubic equation in the form

f-f- fm2 Q (20) = 0, Q (20)
= 3 (20

- sin 20)/4 sin3

g

where Q (20) approaches the value 1 as g approaches the value 0, we compare
it with the identity *

(X
3 - X-3

)
- 3 (X

- X-1

)
-
(X
- X-1

)
3 = 0.

c/(\-X-
1

)if
c
3

_ c2

= 4m
2Q

X3 -X-3~3~ 3

that is, if c = 2mVQ = i (X
3 - X~3

).
Hence if X3 = cot , 3mVQ = cot yS and if

X = cot^y, y m\/Q tan 7. But from the other equation in ?/ we have

sin \g *Jl tan 8 \t y=m cos S/*Jl.

Accordingly we throw the equations in y into the following form :

tan3
7 = tan J

cos S = V(/Q) tan 7
1

sin \g = \/l . tan 8 j

Then, calculating the function Q with an approximate value g' of g, the result

'of solving these equations in turn is to lead to a new and closer approximation

g". With this new value the process is repeated until no change is found

between the initial and final values. The true value of g has then been

arrived at, and finally (the value of 8 being taken from the last repetition)

y = m cos S/^l.

Since 20 is the difference between the eccentric anomalies, the first approxi-

mation to its value may be taken to be the difference between the true

anomalies, that is, between the arguments of latitude. When 20 is small, as

it usually is in the practical problem, the direct calculation of the function

Q (20) is inaccurate (cf. 34). But if we write

log Q (20)
=' ^VWo

6-
log sec 10 - VoW- log sec 10

the error committed is practically negligible when 20 < 90, and the direct

calculation only presents a difficulty when 20 is much smaller than this limit.

The verification of this approximate formula may be left as an exercise.

It is unnecessary to repeat the solution of (19) until the value of is

exactly reproduced. This point may be explained in general terms as it is of

wide application. Suppose the equations to be solved are y =p (x), x = q (y),

p and q being any functions. These correspond to two curves P and Q.

Starting with the approximate value xl we find y l =p(xl ) and hence (x1 , y^)
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the point Pa on P. Next we find similarly (a?,, yj the point Ql on Q. This

gives the new value x2 of a; and with this we find successively (x.2 , y2) the

point P2 on P and (#3 , y2) the point (^ on Q. But if the successive values

a?,, #2 , #s do not differ greatly, the chords PjPa, QiQ2 lie close to the curves

P and Q and their intersection nearly coincides with the intersection of the

curves. In this way we find for the correction to the third value x3

x-x3
=

(x.,
- #3)

2

/{(>-2
-

a:,)
-

(x3
-

x.,}\.

In the above case two solutions of (19) with application of the correction just

indicated will generally suffice for the accurate determination of g and y.

89. When the values of yl} y2 , y3 have been thus obtained we have new

values of n and n2 by (17). The next step is to recalculate p2 by (5) and

Pi, PS by (12) and (13). Hence r1} r2 ,
rs and 11} 12 , 13 by (14), new values of

n and i by (15) and finally ult u2 ,
u3 by (16). This brings us back once more

to the equations (18) in y. If the result of solving them with the improved
values introduced is to leave r^ and w3 practically unaltered, our object is

attained. Otherwise it is necessary to repeat the above steps until a satis-

factory agreement is reached.

When this stage has been arrived at the problem has been solved, and it

only remains to calculate the other elements of the orbit, II and i having
been obtained in the last approximation. The three equations

p = rj {1 + e cos
(t/,.

-
)}, (j = 1, 2, 3)

are linear in p, e cos co and e sin o>. The symmetrical solution gives

p = rlr2r3 2, sin (u3
- w2)/2 r2r3 sin (u3 u2)

e cos &) = S r2r3 (sin u3 sin w2)/2 r2r3 sin (u3
- u2)

e sin a) = 2) r2r3 (cos u3 cos 2)/2 r2r3 sin (uy u2)

whence e = sin
<f>,

&> = or - H and a =p sec2

0. This, however, is not the simplest

solution. The areal velocity h = k^p (26) and hence

fcra Jp = [nr,] y2
= y2 r,r3 sin (w,

-
M,) ..................(20)

Thus, jp being known, we have

^ + ^ - 2 = 2e cos ^ (wj + M,
-

2ft>) cos ^ (w3
-

MJ)

I .........(21)

= 2e sin (wj + M3
-

2<a) sin ^ (%3 uj \

ri rs

which also give e and w. Finally, if the mass is neglected, the mean motion

is n = k"/a
3'2 and the mean longitude at the epoch t is ( 64)

e = a +n+Ej
-e"smEj -n(tj

-t ) ..................(22)
where

-o)), (j= 1,2 or 3).

The times t
}
are here corrected for aberration ( 87).



CHAPTER IX

DETERMINATION OF PARABOLIC AND CIRCULAR ORBITS

90. The method explained in principle in the last chapter requires no

assumption as to the eccentricity of the orbit. Its practical convenience is

greatest, however, when the eccentricity is comparatively small. On the

other hand the majority of comets move in orbits almost strictly parabolic.

For these it is important to have approximate elements after the first

observations have been secured, in order that an epherneris may be calculated

to guide observers as to the position of the object. For this purpose the

method of Olbers (published in 1797), which depends on the assumption of a

parabolic orbit, has continued in use to the present time. Although only
five elements have in this case to be determined we still use three complete
observations of the comet giving the longitude and latitude (Xj, /3j)

at the

three times
tj.

We again take (Rj, Lj) as the corresponding radius vector

and longitude of the Earth and PJ the geocentric distance of the comet, so

that as before

x
i
= ajP) + AJ

R
j > yj= b

i Pi + BJ
R

J >
Z
J
=

j Pi + G
iRJ-

Here (xj, yj, Zj) are the heliocentric coordinates of the comet, (a,-, &,-, Cj)
the

direction cosines of pj and (Aj, BJ, Cj) the direction cosines of Rj. In the

ecliptic system of axes adopted,

cij
= cos Xj cos

/3j , bj
= sin Xj cos

/3j , c/
= sin

/3j.

We shall express ps in terms of p1 and for this purpose it is possible to

eliminate p2 and R2 from (1), (2) and (3) in 82. The same result may,

however, be deduced from the condition that the orbit is plane in another way.

91. If 8 is the Sun, El} E2 ,
E3 the three positions of the Earth, and

Cl ,
C2 ,

C3 the three positions of the comet, 8, Cl} C2 , C3 are coplanar. Hence

forj _ tetrahedron SE&Ci
tetrahedron SE2G2C3

B2R2

b.p.+B.R,,

b^+B^R,,

C2R,

B2R2

c2p2+C2R2 ,

bsps+B3R3>
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B2 C, I- A 2 B2 C,

L> PI PI -f x>j xtj , Cipi~}-CiRi <x2 62 c2

b2 c2 a
3/
33+^L 3JR3 ,

b3ps+B3R3 , c3p3+C3R3

or, representing determinants by single rows,

[ri
r
s] {PS \

3> A 2 ,
a.2

1

+-R3
1

A 3 ,
A 2 ,

a2 \]
+ [r2rs] [p1

\

a1} A 2 ,
a2 \+ R!\ A^,A, a^\ }=0.

But if, leaving the directions of plf p2> p3 unaltered, we move the plane of the

orbit into coincidence with the ecliptic, we see that in the limit

[R,R2] R3
\

A 3 ,
A 2 , a2

\

+ [R2R3] R1
\
A,, A 2 , a2

\

=

must be an identity. Hence

[R2R3] [r2r3
]j

|

a3 ,
A 2 ,

a2 \ ([RiRj] [^1^*2]] \

as, A 2 ,
a2

\

= Mpr + m.
Now

JSySi, COS Lo, C

c2

sin L2 ,
sinX2 cosyS2

sin/3! , ,
sin 2

= sin fa cos /52 sin (X^ Z2) sin yS2 cos ^ sin (Xj L2)

and the other determinants can be written down by simple substitutions.

Thus

,, _ [r2r3] sin & cos /&> sin (Xj L2) sin y82 cos ^1 sin (Xj Z2)

[r^-J
'

sin j32 cos /83 sin (X3 L2) sin f33 cos^ sin (X2 L2)

and

3] [r.r.]]

2] [rtrjf sin /32 cos yS3 sin (X3 L2) sin y83 cos /S2 sin (Xg L2 )

'

In the practical problem the time intervals are usually small and it is

possible to substitute the ratio -of the sectors for the ratio of the triangles,

both for the comet and the Earth, so that

Thus m = and with sufficient accuracy we may write

p3
= Mp l (3)

where M has the value given by (1) and (2), unless the comet is near the

Sun and describes large arcs in comparatively short intervals. The effects of

parallax and aberration are entirely neglected.

92. The next step is to express r1} r3 and the chord c joining the

extremities of these radii in terms of pl
. We have

x
2 = 2 (a, Pl +AM- = pf + Ri* + 2/3^ cos & cos^ - LJ ......... (4)

* = 2 (Ma3pl + A 3R3)*
= M*Pl

2 + R3
2 + 2MP1R3 cos& cos (X,

- L3) . . .(5)
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and
c
2 = 2 {(Ma,- a,) Pl + (A,RS

- A&)}*
= h?Pl

- + g* + Zfrhg cos
<f>

................................................... (6)

where

h- = 2 (Ma,
-

ax)
2 = M 2 + 1 - 2Jf {sin& sin $, + cos& cos /33 cos (X3

-
Xj)}

<7
2 = 2 U 3^3

- ^i) 2 = ^3
2 + i

2 - 21^ cos (L,
- A)

hg cos
<f>
= R3 {M2 aaA a

- 2 a, 4,}
-

JR, [M% a.A, - 2 a, A,}

=M cos #, {^3 cos (X3
- Z3)

- #! cos (X,
-

Z,)}

- cos A {#3 cos (Xj
- Z3)

- R, cos (Xx
-

A)}.

If E^G is .drawn equal and parallel to E,C it is clear that CCa
= E1E3

=
ff,

CC,= hpl , 0^ = and (^(70,= 180 -f
But Euler's equation gives

6A; (,
-

t,)
=

(r, + r3 + c)
f - (^ + rs

-
c)

1

and this must be satisfied by the appropriate value of Pl in (4), (5) and (6).

This value must be found by a process of approximation and for a suitable

starting point we may consider c small in comparison with r^ + r^, r
1
= rs

and R, = 1. Then

Qk (t, -t1 )
=

(r1 + rsf . 3c/(n + r3)
= 3 V2 c Vn

^)
2

/^
2 = (P? + %Pi cos

</>
. glh + g"-IK} {?? + 2P1 cos fr cos (X,

-
) 4- 1}.

With approximate values of the numbers which occur in this equation it is

easy to find by trial a value of PI which is correct at least to one decimal

place. Then with this value of PI it is possible to calculate c in two ways :

(i) directly ,by (6), (ii) through r1} r3 given by (4) and (5) and inserted in

Euler's equation, which may be written' ( 52) in the form

3& (t,
-

*,)/V2 (T! + r3f = sin <5), c = 2 V2 (r: + r,) sin V cos g0. . .(7)

or solved by special tables. Two values of c thus correspond to a hypo-
thetical value of plf and the latter must be varied until the discrepancy

between the former is made to disappear. A rule analogous to that given in

88 leads quickly to the desired value of plt For if the values Pl', Pl
"

lead

successively to the differences AjC, A 2 c in c, it is easy to see that the value

of Pl to be inferred is given by

Pi
=

pi" + (pi"
-

pi) A 2c/(AiC
- A2 c).

In ordinary cases the correct result is quickly obtained in this way.

93. When Pl and p3
= MPl have been obtained it only remains to de-

termine the elements of the orbit. The formulae of 86 are again

appropriate, namely

TJ cos ty cos (lj
-

LJ)
=

Pj cos
/3j

cos (Xj Lj) + Rj

TJ cos bj
sin

(lj Lj)
= Pj cos /3j

sin (Xj Lj)

rj sin bj
= p ?

- sin /3,
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(j = 1, 3), for the heliocentric distances, longitudes and latitude of the comet.

Here r1} r3 should reproduce the values finally arrived at in the course of

determining p lf Also

2 tan i sin
{ (^ + 4)

-
fl}

= sin (b, + 68)/cos 6X cos 63 cos \ (13
-

IJ. . .(8)

2 tan i cos [$ (h + l) 1}
= sin (63

-
6^/cos 6j cos 63 sin (73

-
/j)- -(9 )

(0 < i < 90 if Ia >l1} 90 < i < 180 if ls < I,) give n and i. The arguments
of latitude are given by

tan Uj
= tan

(lj fl) sec i

(j I, 3), where in this case <
iij

< 180 if b
}
> 0. By the equation of the

parabola

V</
= Vn cos $ (M!

-
)
= V*s cos (MS- o>) (10)

whence

yV3 Vrt _ anJ_(M, + u3
-

2<u) sin J (w3 M t)

Vr3 + Vn
~

cos (M! + M3
-

2o>) cos J (w,
- w^

or

tan i
(n t + u,

-
2a>)

= ^8
~
^ cot | (n,

- uj (11)
V^s + vri

which gives &> = -or - fi and also q, the perihelion distance. Finally, T being
the time of perihelion passage, we have ( 29)

T = tj- (f {tan i (it,-

-
w) + i tan3

(Wj
- -

to)} ^2/k (12)

(j
=

1, 3). This completes the determination of the five elements.

94. It is to be noticed that while the first and third observations have

been completely used, the second observation has only entered partially into

the calculation. In fact the five elements have been determined from six

given coordinates in a unique way because \ 2 , #> have not been used

independently but only in the form cot y82 sin (X, _Z/2) in the equation (1)

for M. Consequently it cannot be expected that the elements will satisfy

the second place exactly and the magnitude of the discordance is an im-

mediate test of the derived orbit. The second place is therefore calculated

by finding ( 29) w2
= u2 o> from (12) (j

=
2), r2 q sec2

\wz ,
and hence the

coordinates of the comet by means of

pz cos /32 cos (X2 H) = r2 cos u2
- Rz cos (L2

-
fl)

p2 cos yS2 sin (^2 fl)
= r2 sin w2 cos i R2 sin (L2 fl)

p2 sin ftz = r2 sin u2 sin i.

If the residuals are small the elements may be considered satisfactory. If

the residuals appear large, on the other hand, there are several possible

reasons for the fact. There may be an error in the calculation, there may be

an error in the observations, or the assumption of a parabolic orbit may be

unjustified. The evidence of further observations must be the final test.

But without additional material it is possible to improve the orbit obtained

p. D. A. 7
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by reconsidering the quantities which were ignored in the course of finding

the first elements. Parallax and aberration may be allowed for. Jn the

place of (3) may now be written

p3
= pl (M+ m/pl )

where M and m are given by (1) and the following equation. At this stage

an approximate value of p 1
is known and (Var,]/^^] can be calculated with

greater accuracy than by means of (2), for example by the application of the

formulae of Gibbs or by direct calculation of the areas, since the sides of the

triangles and the included angles are now approximately known. Thus the

approximate M in (3) can now be replaced by the improved value M + ra//^

and the remainder of the work can be repeated from this point. There are,

however, shorter practical methods of removing a discrepancy in the middle

place, which serve the purpose well enough since a provisional orbit is in

general all that is required.

95. The eccentricities of planetary orbits are in general small and hence

a circular orbit may prove a useful approximation to the true path, just as a

parabolic orbit is a useful preliminary step towards the orbit of a periodic

comet. As the eccentricity vanishes and the position of perihelion ceases to

have a meaning, the number of elements to be determined is reduced to four

and two complete observations of position only are required. Thus if a

minor planet has been found on two photographs of the sky and no other

observations are immediately available, a search ephemeris based on a

circular orbit may be a useful guide in examining other plates which may
have been taken at the same or at other observatories.

To consider the problem in a general form let (X1 ,
Ylt Z^), (X2 ,

F2 ,
Z2)-

be the geocentric coordinates of the Sun at the times of observation tlt t2

and let (ll} mlt n^, (12 , m2 , n2) be the direction cosines of the observed

directions of the planet. The axes may be any fixed system with the Sun
at the origin. The planet is observed to lie. on the lines

(x + XJ/lt = (y+ YJ/m, = (z+ ^)M =
Pi

(x + X2)/12
=

(y + Y2)/m2
=

(z + ZJ/n, = p.

Pi, p 2 being the geocentric distances. Hence, if a is the radius of the orbit,

a? = (11P1
- Xrf + (m lpl

-
F,)'

2 + (nlRl
- Z^

=
Pl

2 - 2P1 (l.X, + m1 Y1 + n^Z,) + X,2 + IV + Z*

=
/>2

2 -
2p2 (12X2 + m2 Y2 + n2Z2) + X* + Y2

* + Zf

and, if n is the mean motion and t2
- t

t
=

r,

a2 cos nr = (llpl
-
X,) (I2p2

- X2) + (mlPl
-

F,) (m 2p2
- F2 ) + (n^-ZJ (n zpz -Z.2}

=
Plpa cos 6 - Pl (l,X2 + ml Y2 + H,Z8)

-
p2 (12X 1 + m:, Yl
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where is the angle between the observed directions. Since Q is a small

angle the equation
cos 6 = 1^12 + m^niz + ^ru

is unsuitable for its determination, but the proper modification depends on

the choice of coordinates. Similarly n cannot be accurately determined

from COSWT.

If we now put

A
l
= 11X 1 + , Y1 + n iZ1 ,

A 2
= 12X2 + m.2 Y2 + n.2Zz

B
1
= l^X* + m, Y, + n^Z,, B.2 = 12X 1 + mz Yl + n^

we have
a4 = pf -2A lP,+ X,- + Y* + Z*

=
p./
- 2A.2p2 + X.2

- + F2
2 + Z?

a2 cos nr = p^2 cos 0-B.p,- B2p2 + X 1X2 + Yl
Y2 + Z&.

Hence'

4a2 sin2

^wT = pf + p2
2 -

2p,p2 cos Q - 2 (A,
-

B,) p,-2 (A 9
- B2) p.2

+ (X - Xtf + ( F,
- FO2 + (Z,

- Z,Y

cos2

\e {p., -p l -^(A,-A l
- B2 + BJ sec2^

+ sin2 1 6 [p., + Pl -^(A,+ A
l
- B.2

- B,} cosec2
1- (9}

a

6 - \(A.2 + A, - B, - B } )
2 cosec2

$0.

The equations, which must be solved by trial, can therefore be reduced to

the form

sin -^i
= MJa, pl

= a cos^ + A l
\

sin
i/r2

= Msja, p.2
= a cos

-$>,, + A 2 I . . .(13)

4aa sin2

^nr = cos2

^6(p2 -p l

-
b,)

2 + sin3

0(pz + pl
- 62)

2 + c J

where (without the transformations appropriate to the coordinate system)

Mf = X* + F," + Z* - Af, M? = X.; + F2
2 + Z.? - A.*

b1
= (A.2-A 1

-B2 + BJ/2 cos2

$0

b.2
= (A, + A 1 -B2

- BJ/2 sin2 $0

c = (x2 -xlr- + (Y2 -Y1 r- + (z2 -zly

-(A a -Bs-A 1 + 5,)
2

/4 cos2 ^-(A.-B. + A,- 1 )
s

/4 sin2

\ e.

A trial value of a gives, by (13), ^TI, ty2 and hence plt p.2 : these lead to a

value of n and the process is continued until values are obtained consistent

with the relation n 2as = k2
. In the case of a minor planet log a = 0'4 is

indicated as the appropriate initial value. With the above formulae the

calculation can be performed directly in equatorial coordinates, and little

will be gained by introducing the ecliptic system. When a and n have been

72
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found, /Ou p2 are also known by (13) and hence the heliocentric coordinates of

the planet ,,

7 V V W
$2 ==

vgp2 **- %j ^/2
^ r

ffb%Pz -* 2? ^2 ^^ ^2Pa ^2

96. Gauss has given a method for finding a circular orbit, based on

ecliptic coordinates. Let (Rlt L^), (R2 ,
L2) be the heliocentric distances and

longitudes of the Earth at the times t1} t2 and (X1} ft } ), (X2 , /32) the cor-

responding observed longitudes and latitudes of the planet. If in the plane

triangle SE^ the angle at P
1

is denoted by z
l and the exterior angle

at E1 by 8lt P1SE1
= 81 -z1

and

a sin Z-L
= R sin Sj (14)

Similarly in the triangle SE2P2 ,
with similar notation,

a sin z2 = R2 sin 62 (15)

The directions of the sides of the two triangles are now represented on a

sphere of unit radius, SE^ SE2 being represented by Elt E2 on the ecliptic,

SP,, SP2 by two points Plt P2 . If Qlf G, represent E.P,, E2P2 ,
these

points lie respectively on the great circles E
l
Pl ,

E2P2 and the arcs E1G1 ,

E2G2 are Sj and S2 . Let the circles E1 G l ,
E2G2 cut the ecliptic at the

angles 7!, 72 . Then the projections of the radius through G1 on the radius

through El} the radius through the point on the ecliptic 90 in advance

of El and the radius through the pole of the ecliptic give

cos ySj cos (Xj Z/j)
= cos 8

l

cos /Si sin (Xj L^ = sin 8j cos 7j

sin fii
= sin Sj sin ^

and similarly
cos /32 cos (X2 L2)

= cos &2

cos /82 sin (X2 L2)
= sin &2 cos 72

sin y82
= sin 82 sin 72

whence 81} 82 and 7^. 72 . Let the circles ElPl ,
E2P2 meet in D at an angle rj.

If DEl
=
fa and DE2

=
fa, the analogies of Delambre applied to the triangle

DE1E2 in which the side E1
E2 is L2 L and the adjacent angles are 71, TT 7,,

give
+ $2^1 oi-^ J7T _ ^7T

7T 72 7j

2

or more explicitly

sin IT; sin | (fa + fa)
= sin (X2

-
Zj) sin (7

sin \v cos | (</>! + fa)
= cos (X2

-
L,) sin (72

-

cos | T; sin (<k
-

^>2)
= sin (Z2

-
Zj) cos ^ (73 +

cos 77 cos ^(fa-fa)^ cos (Zr8
- A) cos ^ (72

-
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whence fa, fa and
77. But since the arc E1P^ = 8 1

z 1
and DE^= fa,

DP1
= fa

- 81 + z
l and DP2

= fa- 8.2 + z2 ,
while P,P2

= n (t,
-

t,),
n being the

mean motion. Hence

or better, since n (t2 ^) is a small angle,

sin2

1 n (t2
-

1,)
= cos2

77 sin2
\ (%] + zz

-
z,} + sin2

fa sin2

\ (%2 + z2 + z,). . .(16)

where

Xl
= fa-82 -(fa-8,), %2

=
2 -S2 + (<,- SO-

The solution is conducted in the usual way. Since 8ly 82 are known an

assumed value of a gives zlt z^ by (14) and (15). Then Xl , %2 and 77 being

ki^own, the value of n is deduced from (16), and the process is continued

until values are found which satisfy the relation n?a? = kz
. When this has

been done, the values of zl} z2 have also been found, and hence the geo-
centric distances are given by

p l sin z
l
=

.Si sin (81
-

z^, p2 sin z.2
= R2 sin (82 z2)

but these distances are not actually required. Since the arc E
lP l on the

sphere is 8 l
- z

l
and makes the angle ^ with the ecliptic, we have the

heliocentric longitude and latitude of P1 (as in the case of GJ given by

cos 6j cos (/!
-

Z,) = cos (8-1 z^)

cos b
l
sin (^ L^) = sin (8r z^) cos ^

sin &!
= sin (8j ^) sin ^

with similar formulae for (12 ,
b2) the heliocentric longitude and latitude of

the planet in its second position.

97. If (h, &i), ( 2 , ^2) have been thus obtained the remaining elements

are easily found. For by (15) of 86 the node and inclination are given by

2 tan t sin || (/! + 1.2) fi}
= sin (6, + 62)/cos h cos b2 cos | (12

-
^)

2 tan i cos (^ (/ 3 + l2)-n}= sin (b.2
-

b^/cos b^ cos 62 sin ^ (/2 IJ

and then the arguments of latitude by

tan u^ = tan (h H) sec i, tan %2
= tan (12 fi) sec i

with the check u2
-

u^ = n (t.2
-

tj. As the fourth element the argument of

latitude u at a chosen epoch t may be taken, and this is simply

u =u l + n (t
-

t,)
= u 2 + n (to

-
tj

where tl} t2 may be antedated for planetary aberration.

If, on the other hand, the heliocentric coordinates (# ylt zj and (x2 , y2 , z^)

have been found as in 95, and i' is the inclination of the orbit to the
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plane z = and 1' is reckoned in this plane from the axis of x towards the

axis of y, the plane of the orbit is

x sin ft' sin i' y cos fl' sin *" + z cos i' =

and as this is satisfied by the two points on the orbit we have

sin H' sin i' _ cos O' sin i' cos i'

M -
3/2*1 <i*2

-
0a*i

~
#1 2/2

-
afeyi

'

The solution can then be completed as before, the arguments u being now

reckoned in the plane of the orbit from the node in the plane z=Q.

The meaning of the quantities 6, ,
62 and c in 95 may be seen thus. Let an

axis of z be taken perpendicular to p and p2 ,
and an axis of x midway between

the directions of pl and p2 ,
so that (llt w,, Wj) become (cos|#, sin \0, 0),

(Z2 ,
m2 ,

n2) become (cos 0, sin 0, 0), and (Z 1( F,, ,), (Z,, F2 , ,)
become

(X,
1

, F/, /), (X/, F2', /). Then

6,
= (Z2

' -
Z,') sec |(9

62
= (F/- F/)cosec|0

If the difficulties of reducing this apparently simple problem to a practical

form of calculation are carefully considered, in view of the small quantities
which occur, the merit of the method in 96 will be better understood. The

reader must realize that the general problem of determining orbits from

observations close together in time is essentially a question of arithmetical

technique, and not of any particular mathematical difficulty. This is well

illustrated in the history of the problem, especially in the eighteenth century.

It is to be remarked that the problem of finding a circular orbit to

satisfy the given observations cannot always be solved. That a solution is

not necessarily to be expected with arbitrary data can be readily seen,

though the equations, not being algebraic, are too complicated to make a

general discussion of the conditions feasible. It is enough to say that cases

have occurred in practice in which a circular approximation to the orbit has

proved impossible. The number of minor planets already discovered is

approaching a thousand, and the most frequent eccentricity is in the neigh-
bourhood of 012.



CHAPTER X

ORBITS OF DOUBLE STARS

98. There exist in the sky pairs of stars the components of which are

separated by no more than a few seconds of arc, and frequently by less than

one second. So close are they that they can only be seen distinctly in

powerful telescopes, if indeed they can be clearly resolved at all. Such pairs
are so numerous that probability forbids the idea that the contiguity of the

stars can be explained by chance distribution in space. They must be

physically connected systems for the most part and it is to be expected that

the relative motion of the stars will reveal the effect of mutual gravitation.
That this is actually true was discovered by Sir W. Herschel.

The motion is referred to the brighter component as a fixed point. The

relative motion of the fainter component takes place in an ellipse of which

the principal star occupies the focus ( 24), unless there are other bodies in

the system, or there proves to be no physical connexion between the pair.

The apparent orbit which is observed is the projection of the actual orbit on

the tangent plane to the celestial sphere, to which the line of sight to the

principal star is normal, and since the point of observation is very distant

compared with the dimensions of the orbit the projection can be considered

orthogonal. Hence the law of areas holds also in the apparent orbit, which

is equally an ellipse. But in this orbit the brighter star does not occupy the

focus: its position gives the means of determining the relative situation of

the true orbit.

The observations give the polar coordinates, p, 0, of the companion, the

principal star being at the origin. The distance p is expressed in seconds of

arc and the linear scale remains unknown unless the parallax of the system
has been determined. The position angle 6 is reckoned from the North

direction through 360 in the order N., E. or following, S., W. or preceding.

The planes of the actual and apparent orbits intersect in a line called the line

of nodes and passing through the principal star. The position angle of that

node which lies between and 180 will be designated by O. Thus if the

line of nodes is taken as the axis of

= p cos (0
-

n), 77
=
p sin (0

-
O).
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On the other hand, in the plane of the actual orbit, the longitude of periastron

X is the angle measured from this node to periastron in the direction of

orbital motion. Hence in this plane, if the line of nodes is taken as the axis

of x,

x = r cos (w + X), y = r sin (w + \)

where r is the radius vector and w the true anomaly of the companion. But

if i is the inclination of the two planes to one another, f= x and r)
= ycosi,

so that

p cos (6
-

11)
= r cos (w + X)

p sin (6 fl)
= r sin (w + X) cos i.

Here the limits contemplated for i are and 180. If < i < 90, 6 and w
increase together with the time and the motion is direct. If 9Q'<i< 180,
9 decreases with the time and the motion is retrograde. This is a departure
from the more usual convention according to which i is always less than 90.

It is then necessary to state whether the motion is direct or retrograde, and

in the latter case to reverse the sign of cos i. Ordinary visual observations

of double stars, however, must leave the position of the orbital plane in one

respect ambiguous, since there is nothing to indicate whether the node as

defined is the approaching or receding node. The two possible planes intersect

in the line of nodes and are the images of one another in the tangent plane
to the celestial sphere.

In addition to the three elements, O, X, i, now defined, four other elements

are required. These are a, the mean distance in the true orbit, expressed
like p in seconds of arc

; e, the eccentricity of the true orbit
; T, the time of

periastron passage ;
and P, the period (or n = 2?r/P, the mean motion) ex-

pressed in years.

99. The measurement of double stars is difficult and the early measures

were very rough indeed. As the accuracy of the observations is not high
refined methods of treatment are seldom justified and graphical processes

have beep largely employed. The observed coordinates may be plotted on

paper and the apparent ellipse drawn through the points as well as may be.

Let G be the centre and S the position of the principal star. The problem
consists in finding the orthogonal projection by which the actual orbit is

projected into this ellipse and the focus F into the point S.

The direction of the line of nodes can be determined by the principles of

projective geometry. Conjugate lines through the focus F form an orthogonal
involution. They project into an overlapping involution of conjugate lines

through S. Of this involution one pair is at right angles and as in this case

a right angle projects into a right angle it is clear that the line of nodes is

parallel to one of the pair. Let SA, SA'
; SB, SB' be two pairs of conjugate

lines through S. When the apparent ellipse has been drawn these can be
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found by drawing tangents at the extremities of chords through S\ or by

inscribing quadrangles in the ellipse, for each of which S is a harmonic point.

On CS as diameter describe a circle, centre K. Let A lt AJ ; B^ B^ be the

points in which the conjugate lines intersect this circle and let Aj^A-!, B1Bl

'

intersect in 0. Corresponding points of the same involution on the circle

are obtained by drawing chords through 0, and if OK meets the circle in

N, N', SN, SN' are the orthogonal pair of the involution pencil required.

Let CABNA'B' be a transversal of the pencil drawn parallel to SN' so that

A A', BB' subtend obtuse angles at S. This is an involution range of which

N, since it corresponds to the point at infinity, is the centre, so that

AN. NA'=BN. NB'. On NS take the point F such that NF* is equal to

this constant product. Then F is the intersection of circles on the diameters

AA ', BB' and A FA', BFB' are right angles. Hence if NF be rotated about

A',

CN until FS is perpendicular to the plane CNS (the plane of the apparent

orbit) right angles at F will be orthogonally projected into the involution of

conjugate lines at S. The position of the focus F of the actual orbit has

therefore been found, and the orthogonal projection by which the true and

the apparent orbits are related.

The true orbit may be plotted point by point on the plane of the paper,

with its centre C and focus F. For if P' is a point on the apparent orbit and

P the corresponding point on the true orbit PP' is perpendicular to CN and

PF, P'8 meet on CN. In particular, if X' (fig. 5) is a point where CS meets

the apparent orbit, the corresponding point X in which the perpendicular

through X' to CN meets CF is a vertex of the true orbit and CX = a. The

eccentricity is given by
CS _ CF _
CX'~ CX~
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and the inclination by

[CH. x

8N ..

=! cost
|

where < i < \TT if the motion is direct and \ir < i < IT if the motion is

retrograde. Also O (<TT) is the position angle of CN and \ is the angle
between CN and GF measured in the direction in which the motion takes

place. The five geometrical elements of the orbit have therefore been found.

100. It is to be noticed that this method does not require the ellipse

which represents the apparent orbit to be actually drawn. When the observed

positions have been plotted five points may be chosen to define the ellipse.

These points need not be actual points of observation : it is better if they are

graphically interpolated among the observed positions. Let them be denoted

180

270 90

0"

?. 5.

by 1, 2, 3, 4, 5. Draw a line through 1 parallel to 23. The sectmd point in

which this line meets the ellipse can then be found by Pascal's theorem with

the ruler only. This gives two parallel chords and hence a diameter.

Similarly a second diameter is drawn and the two intersect in the centre C
of the apparent ellipse. Again, by a similar use of Pascal's theorem, the points

in which the lines IS, 2$, 38 meet the ellipse again are determined. This

gives three pairs of lines each of which determines a quadrangle inscribed in

the ellipse. If two of these be completed the sides of the harmonic triangles

which meet in S determine two pairs of conjugate lines. From this point

the construction follows as before. The point X' in which CS meets the

apparent ellipse can be constructed by projective geometry. But it is

unnecessary. If F' is the second focus of the real orbit and P the point



99-102] Orbits of Double Stars 107

corresponding to any one of the assumed points on the apparent orbit,

FP + PF' = 2a and CF= ae. Hence a and e.

101. When the apparent ellipse has been drawn the eccentricity is

known, for if CS meets the ellipse in X', the projection of the vertex of the

true orbit, CS/GX
' = e since the ratio of segments of a line is unaltered by

orthogonal projection. Let CY' be the conjugate diameter to CX' and

therefore the projection of the minor axis of the true orbit. If the oblique

ordinates parallel to CY 1

are produced in the ratio 1 : V(l &} an auxiliary

ellipse will be constructed which is clearly the projection of the auxiliary

circle to the true orbit and has double contact with the apparent orbit, CS

being the common chord. But the orthogonal projection of a circle is an

ellipse of which the major axis is equal to the diameter and is parallel to the

line of nodes, while the minor axis is the direct projection of the diameter.

Hence the major axis of the auxiliary ellipse is 2a, the minor axis 2a cos t,

the eccentricity sin i and H is the angle which the transverse axis makes

with the N. direction. The circle on the major axis as diameter is the

auxiliary circle of the true orbit turned into the plane of the apparent orbit.

Let X be the point in which this circle is cut by a perpendicular from X' to

the major axis of the auxiliary ellipse. The point X will project into the

point X' and therefore represents the position of periastron on the auxiliary

circle. Hence the angle (taken in the right sense) which CX makes with the

major axis of the auxiliary ellipse, or line of nodes, is the angle X. This is

the graphical method of Zwiers.

It is evident that the line of nodes and the inclination will be equally
indicated by constructing the projection of any circle in the plane of the true

orbit. Now the parameter p (or semi-latus rectum) is a harmonic mean

between the segments of any focal chord. Hence the circle on the latus

rectum as diameter has radii along any focal chord which are equal to the

harmonic mean of the focal segments. The projection of this circle is an

ellipse with its centre at S, its major axis equal to 2p and lying in the

direction of the line of nodes, and its eccentricity equal to sin i. This ellipse

can be actually derived from the apparent orbit by laying off on radii through
S lengths equal to the harmonic mean of the intercepts on the same chord

between S and the curve, since the ratios are unaltered by projection. This

principle, of which another use will be made, is due to Thiele.

102. Such graphical methods are tedious and may be avoided bya slight

calculation when the apparent orbit has been drawn. Since the eccentricity

is known when this has been done, there remain four geometrical elements,

a, i, n, X, to be determined. Four independent quantities are required and

the four chosen by Sir John Herschel and others are 2a, the diameter through

S, 2/3 the conjugate diameter, and Xi, ^2 the position angles of these diameters.

The length of the chord through S parallel to /3, or the projection of the latus
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rectum of the true orbit, is therefore 2/3\/(l e2

).
Hence the relations

between the positions in the true and apparent orbits ( 98) give :

a (1 e) cos (xi ft)
= a (1 e) cos A,

a (1 e) sin (^ O) = a (1 e) sin X cos i

fi ^(1
- e

2
} cos (Xs

-
fi) = - a (1

- es
) sin X

/S V(l - e-) sin (x2
-

fl)
= a (1

- e2

) cos X cos i

since w = Q at periastron and ,90 at the extremity of the latus rectum.

Hence fl is given by

a2

(l
- e

2
) sin 2 (x,

- H) + /3
2 sin 2 (# - fl)

=
or

tan (%i + %2
- 2H) = tan (Xl

-
Xa) cos 27

where

tan7 = V(l-e2

)a//8.

This equation in O is satisfied by O + ^TT as well as H. But

cos2 i = tan (^ H) tan (^2 ^)

and this rejects H + ^TT since cos i < 1 and determines i. The first and third

of the above set of four equations give both a and X with its proper quadrant
and the second or fourth gives also the proper sign of cos i (according to the

convention of 98). The solution is then free from ambiguity, understanding
that ^! is the position angle corresponding to periastron and ^2 the position

angle when the companion has moved through one quadrant in its plane

beyond this point.

103. Another method employs the general equation

cp?
2 + 2hxy + by

2 + Igx + 2fy + c =

of the apparent orbit referred to the principal star as origin. Without loss of

generality c may be put equal to 1. The other coefficients are to be chosen

to satisfy the observations as well as may be. But an elaborate solution is

not justified because the one accurate element in the observation, the time,

is not involved in this stage. The intersections of the ellipse with the axes

and any fifth point give the result in the simplest way. The elements of the

true orbit can then be derived in a variety of forms. Let us find the pro-

jection of the circle on the latus rectum. The above equation may be written

a cos2 6 + 2h cos 6 sin 6 4- b sin2 + -
(g cos 6 +/sin 0) + 3

= 0.

For a particular value of 6, p has two values, p1 and p2> one positive and

one negative since the origin is inside the curve. Hence, if p represents the

harmonic mean,

=
{(g cos B +/sin 0)

2 - c (a cos2 6 + 2h cos sin + b sin2

0)}/c
2

= (- B cos2 6 + 2H sin cos - A sin2

0)/c
2
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where, in the usual notation,

A=bc-f*, H=fg-ch, B = ac-g\
Hence the equation

represents the projection of the circle on the latus rectum ( 101), or an

ellipse with axes 2p and *2p cos i and its transverse axis coinciding with the

line of nodes. It is therefore identical with the equation

(x cos O 4- y sin O)
2

(y cos fl x sin II)
2

_
p* . p* cos2 i

and thus

B/c*
= p~

2 cos2 O +p~* sec2
i sin2 H

Hjc
2 = (p~

z -
p~- sec2

i) sin ft cos fl

A/c
2 = p~z sin2 n + p~2 sec2

i cos2 ft

or

p-
2 tan2

i sin 2H = - 2#/c
2

p~
2 tan2

1 cos 2O = (5 -

2p-s + p- tan2
i = - (5 + J.)/c

2

which determine ft, p and t.

Again, the perpendicular from the focus on the directrix is a (e~
l

e)
= pe~

l
.

Hence the intercepts on the line of nodes and on the line perpendicular to it

between the focus and the directrix are pje cos X, p/e sin X. The projections

of these intercepts, also at right angles, are p/e cos X, p cos i/e sin X. But the

projection of the directrix is the polar of the origin, or the line gx +fy + c = 0.

Hence

(g cos li +/sin H) p/e cos X + c =

( g sin fl +/cos O) p cos i/e sin X + c =

so that e and X are given by the equations

e sin \ = p cos i (/cos II g sin Q)/c

ecosX= p(fs'mn+gcosl)/c.

Equations for the five geometrical elements in the above form were first given

by Kowalsky.

The form of the equation which represents the projection of a circle is

defined by the fact that the asymptotes of the projected ellipse are parallel

to the projection of the circular lines and therefore to the tangents from S to

the apparent orbit. It will be found that the projection of the auxiliary

circle, referred to its centre, is in the usual notation

C* (Bx"-
- ZHxy + Ay

2
) + A" =
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and that of the director circle

C 2
(Bx

2 - 2Hxy + Ay-) + A (A + Cc) =

while the eccentricity of the true orbit is given by

104. In some few cases a double star has been observed over more than

one complete revolution. The period P is then known approximately and

the date T of periastron passage, when the companion is situated on the

diameter of the apparent orbit through 8. Otherwise, when bhe geometrical

elements have been determined, two dated observations suffice to determine

these two additional elements. For two observed position angles 6l ,
#2 give

the corresponding true anomalies w1} w2 and hence the eccentric anomalies

El} Ez , since

tan (0
- H) = tan (w + X) cos i, tan \E =J t~

--)
tan \w.

Then

n(tl -T} = El -e sin Elt n (t.2 -T) = E2 -e sin Ez

determine n = 2?r/P and T. In practice a larger number of such equations
will be employed in order to reduce the effect of errors in the observations.

The law of areas can also be applied directly to the apparent orbit, for if a-i

is the area described by the radius vector between the dates tlf t2 ,
and A l is

the area of the ellipse, P =
(t2
- t^AJa^ and similarly T can be determined.

A primitive method which has been used for measuring the areas consists in

cutting out the areas in cardboard and weighing them.

When the parallax -57 of a double star is known, afur is the mean distance

in the system expressed in- terms of the astronomical unit. Hence. ( 24), if

ra, m' are the masses of the components,

while k2 = 4-rr
2 if the mass of the Sun-Earth system and the sidereal year are

taken as units. For this purpose the mass of the Earth is negligible and

thus, P being expressed in years,

m + ra' = as

/iz
sP2

is the combined mass of the system, compared with that of the Sun.

105. The apparent orbit can be reconstructed, on an arbitrary scale,

from observed ppsition angles alone. This course was advocated by Sir J.

Herschel, who considered the measured distances of his day very inferior in

accuracy. With this object the position angles are plotted as ordinates with

the time as abscissa. Owing to inaccuracies the points will not lie exactly
on a smooth curve, but such a curve must be drawn through them as well as

possible. Let
\/r be the angle which the tangent to the curve at the point
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(t, 6) makes with the axis of t, so that ddfdt
= tan ty. But since Kepler's

law of areas is preserved in the apparent orbit, p
z& = h, an undetermined

constant. Hence p = \/(h cot o/r) and the apparent orbit can thus be derived

graphically from the (t, 6) curve. The elements with the exception of a can

then be obtained and finally a is determined by the measured distances, of

\yhich no other use is made in the calculation.

The opposite case may arise, and is illustrated by the star 42 Comae

Berenices, in which the determination of the elements must be based on the

distances. Here the plane of the orbit passes through the point of observa-

tion, i = 90 (or practically so) and the position angles serve only to determine

fi. If the star has been observed over more than one revolution the period P
may be considered known. Corresponding to the point (a cos E, b sin E) on

the orbit, the observed distance is

p = a cos E cos X b sin E sin X ae cos X

= R cos (E + ft)- ae cos X
while

n(t-T) = E-e sin E.

If the observations are plotted for a single period, from maximum to

maximum, the result is to give the curve

esin E

ft)-ae cos X

which is a distorted cosine curve. Maximum and minimum correspond to

E= ft, TT ft and give

nt
t
= nT ft + e sin ft, y^

= R - ae cos X

nta
= nT + TT ft e sin ft, y,

= - R - ae cos X,

whence R and ae cos X, while in addition

n (tz
-

,)
= TT - 2e sin ft.

These equations may be supplemented by a simple device. Taking the

origin of x at the first maximum let the curve

y = R cos x ae cos X

also be drawn. Let P be a point on this curve and Q the corresponding

point on the first curve such that the ordinates at 'P and Q are equal. Then

at P, X = E + ft, so that

Hence the curve

y

can be constructed by laying off on each ordinate through P a length equal

to QP. This is a simple sine curve, the form of which will serve to show
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any irregularities in the (nt, p) curve from which it is derived. The ampli-

tude is 2e, represented on the scale by which 2-rr corresponds to the period in

x. The value of e being thus known gives ft from (t2 x) and hence a and X,

since

acos\ = R cos /3, a sin X = R sin /S/V(1
- e

2

).

T is then given by the maximum and minimum of the original curve. Bi>t

the sine curve has its maximum at x = ft + \TT and its central line is

y ft n(Tt^). These conditions must also be fairly satisfied by the

adopted solution.

106. Graphical methods, such as those sketched above, only provide a

first approximation to the solution of a problem. Here in general the obser-

vations are too rough to make a closer approximation feasible. But if it is

necessary to improve the elements thus found, each observation gives one

equation in the following way. Let da, dtl, ... be the required corrections

to the approximate elements, a, O, For the time t of an observation

6 (or p) can be calculated. Its value is

c =f(t,a, O, ...).

But the observed value is

eo =f(t, a + da, n + dQ, . .
.).

If then the elements have been found with such an accuracy that squares,

products and higher powers of da, dfl, . . . can be neglected,

a linear equation in da, dl, .... And similarly with p. The coefficients are

da
'

da a

dff

? = - sin 2(0 -n) tent,

d6 r*

ax-?
00"'

de

'^n= COS I \/( 1
no?

P*

Vv t ^ J. u(/

dn
=

n 'dT'

=
an

dp
p sin2

(6 H) tan i

~ =
Irp sin 2 (6 fl) sin i tan i

dA,

'dp t-T_ fy

n 'dT

de r2
fa 1 \ . v 3p dp (a 1

15-
= -;

-
-t- , Sin W COS I,

~ =
(

-
-\

de p*\r 1 - e2/ de 3X \r 1 -

the verification of which may be left as an exercise.

ap
sin w - cos w
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107. In some cases the position of a binary system has been measured

relatively to some neighbouring star C which is independent of the system.

Let A be the principal star, ??ij its mass, (x1} y^) its coordinates at the time t',

and similarly let B be the companion, ra2 its mass, (xz , y2) its coordinates.

A series of measures of AB gives

x2 ac
l
=
p cos 0, y.2 yl

= p sin 6

while the measures of AC give x3
-

a^/y,
-
yl} (xa , y3) being the position of C.

Let ( 17) be the c.G. of AB, so that

But the motions of C and of the c.G. of AB are uniform and independent.
Hence

| = x~ + a + &t, 77
=

y, + of + fit

where /3, $' are the proper motions of the C.G. relative to C, and (a, a') is its

position relative to C at the chosen epoch to which t refers. Thus

(m^ + m2) (x3 + a + fit)
= mlxl + m^Xz

or

o + &t -f(x* - a,) + x3
-

a?i
=

and
a' + &t -f(yz

-
y,) + ys

-
yl
=

similarly, where

From a series of such equations a, a', y8, /3' and y can be determined and

therefore the ratio of the masses of A and B. But if a is the mean distance,

P the period and CT the parallax of the system AB,

and the masses of the individual stars, expressed in terms of the Sun, become

known.

108. In certain cases the absolute coordinates of stars apparently single

have exhibited a- variable proper motion. It is then assumed that the varia-

tion is periodic and due to orbital motion in conjunction with an undetected

body. The motion to be investigated is relative to the C.G. of the system,
which itself is supposed to move uniformly. In the plane of the orbit the

coordinates are a' (cos E -
e), b' sin E, and therefore in the plane of projection,

when referred to the line of nodes and the line at right angles, they become

x = a (cos E e) cos X - b' sin E sin \

y={a' (cos E -
e) sin \ + b' sin E cos \] cos t.

Hence the orbital displacement in the direction of the position angle Q is

| = a; cos (ft
- Q)

-
y sin (fl

- Q)
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where

g = a' {cos X cos (O - Q) sin X sin (11
- Q) cos

i]

h = -b' (sin X cos (H - Q) + cos X sin (fl Q) cos i}

and Q = 90 for displacements in R.A., Q = for displacements in decimation.

The observations of one coordinate, say 8, therefore give a series of equations

of the form
8 = 8 + ps t + g cos E + h sin E -

ge
with

E-esinE=n(t-T).

From these e, n (or P), T, p,& ,
B

, g and h can be determined. Since g and A

are functions of a', fi, X and i, these four elements cannot be derived from

observations of one coordinate alone. But from observations of the other

coordinate, say a, the corresponding quantities g and h' can be found and the

elements of the motion are then completely determinate, including a', the

mean distance from the C.G. of the system.

In the two notable examples of this kind, Sirius and Procyon, the

companion was discovered afterwards. It thus became possible to find the

relati ve mean distance a and hence the ratio of the masses, since

m^ a' = m2 (a a').

Hence, the parallax being known, the individual masses of the components
have been determined. It is to be noticed that, when the companion cannot

be observed, the function of the masses which can be found is m*? (m^ + m)~2
.

For this is equal to



CHAPTER XI
I

ORBITS OF SPECTROSCOPIC BINARIES

109. Another class of orbits which are based on pure elliptic motion is

presented by those systems which are known as spectroscopic binaries. It

is now possible to determine the radial velocities of the stars in absolute

measure with high accuracy. This follows from the application of Doppler's

principle to the interpretation of stellar spectra. On the simple wave theory
of light this principle is easily explained. A light disturbance travels out-

wards from its source in a spherical wave front which expands in the free

ether of space with the uniform velocity U. Let a fixed set of rectangular
axes be taken in this space, and let (x1} yl} z^ be the position of the source

at the origin of time. Let (u l , v1} wj be the velocity components of the

source, supposed to be in uniform motion, and t the time at which a light

disturbance is emitted. Similarly let (x2 , y.z ,
z2) be the position of the

observer, also supposed to be moving uniformly, (w2 ,
#2 ,

w2) the velocity

components, and T the time at which the specified disturbance reaches him.

For simplicity the motions have been considered uniform, but obviously they
are immaterial except as regards the source at the instant t and the observer

at the instant T. Let the corresponding positions be A, B respectively and

let the distance AB =K Then

dR ~ dr \ dr

where (a, ft, 7) are the direction cosines of AB and F,, F2 are the projections

of the velocities (ul ,
v1} w^, (u2 , v$, w2) on this line. But since the wave

reaches B from A in the time (r t),

Hence

dr U- V,

82
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Now (F2
-

FI) is the component of relative velocity of A and B, measured

in the direction of separation of the two points. This is a definite quantity.

But F2 is a component of the observer's absolute motion in free ether, and

this is unknown. Presumably it is small in comparison with U, and the last

term can be rejected as a negligible effect of the second order. Or, on the

theory of relativity, F2 is not only unknown but unknowable, and the effect

is completely compensated by a transformation of the ideal coordinates of

space and time into 'another set which is the subject of observation. All

this has its counterpart in the theory of aberration, with which it is intimately

related. Whether the limitation is imposed by the imperfec^on of practical

observations or by the ultimate nature of things, it is necessary to be content

with the effect of the first order.

If the light emitted at A has the wave length X, the frequency of a

particular phase in the wave train at A is U/\. But the number of waves

emitted in a time dt is received at B in the time dr. If then the apparent
wave length of the light received at B is X' and the apparent frequency

tr/x',
U\~l dt = fix'-1 dr

and therefore

V dr V
\
=

dt
= + U

where F is the relative radial velocity of A from B. Thus the application

of Doppler's principle gives

where AX is the increase of wave length (or displacement measured positively

towards the red end of the spectrum) of a spectral line, of which the natural

wave length in the star is supposed known. Further details on the practical

methods of reduction would be out of place here, and this explanation must

suffice. It is usual to express F in km. /sec., and the velocity of light maybe
taken to be Z7= 299860 km. /sec.

110. From the measured radial velocity must be deduced the radial

velocity of the star relative to the Sun, or rather relative to the centre

of gravity of the solar system. This requires the calculation of certain

corrections, of which the most important are due to (1) the diurnal rotation

of the observer, and (2) the annual elliptic motion of the Earth relative to

the Sun. The effects of perturbations of the Earth and Sun are compara-

tively small.

An observer situated on the equator is carried by the Earth's rotation

over 40,000 km. in a sidereal day. This means a velocity of 0'46 km. /sec.

Hence the velocity of an observer in latitude
<j>

is 0'46 cos</> km. /sec. always
directed towards the E. point. If is the angular distance of the star from

this point at the time of observation, cos 6 = cos 8 cos (h + 90), where 8 is the
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declination and h the W. hour angle of the star. Hence the additive

correction corresponding to (1) is

vd = + 0-46 cos cos 6 = - 0'46 cos < cos 8 sin h.

Again, the Earth's elliptic velocity is compounded ( 26) of one constant

velocity V1 perpendicular to the radius vector and another eVl perpendicular
to the major axis, e being the eccentricity of the orbifr These vectors are

directed to points in the ecliptic of which the longitudes are 90 and

F 90, where is the longitude of the Sun and T the longitude of the

solar perigee. ^
Let (I, /3) be the star's longitude and latitude. Hence the

required correction for the Earth's orbital motion is

va = + Vi cos $ (cos (I
- B + 90) + e cos (I

- T + 90)}.

Now Vl is precisely that vector on which the constant of stellar aberration

depends, so that if k" is this constant,

V, = k"Uf 206265" = 29-76 km./sec.

when the standard value of k, 20"'47, is adopted with the value of U given
above. Hence the correction for (2) is

va = + 29-76 cos /9 {sin (@ - /) + e sin (T - 1)}.

It is evident that the process might be reversed and the value of k deter-

mined by observing the apparent radial motion of one or more stars at

different times of year. This has been done at the Cape Observatory, with

the result that the standard value of k was reproduced very exactly, an

excellent test of the theory. Indeed this is probably the best available

method of finding the constant of aberration : it will be noticed that the

adopted value of U, being a factor of both V
l and V, will scarcely affect the

resulting value of k.

When the necessary corrections have been applied to the apparent radial

velocity of a star, the star's radial velocity is obtained relative to the solar

system. This is affected by the motion of the latter relative to the stellar

system as a whole. Hence conversely when the radial velocities of a number
of stars scattered over the sky are known, it becomes possible to deduce the

motion of the solar system 'relative to the average of those stars in absolute

measure. If, further, & is the parallax of a star, and
//, its total annual

proper motion, its transverse velocity is /i/r when expressed in astronomical

units per year. Now with the solar parallax 8"'80 and the Earth's equatorial
radius 6378*249 km., the astronomical unit (or Earth's mean distance from

the Sun) is 149,500,000 km. Hence this unit of velocity is equivalent to

4'737 km./sec. and the star's transverse velocity is 4'737 /JL/V km./sec. Thus
the velocity of a star relative to the Sun can be completely determined in

absolute measure. This concerns questions of stellar kinematics which are

now entering the region of dynamics but lie outside our present scope.
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111. Repeated determinations of the radial velocity of a star yield values

which in the majority of cases are constant within the errors of observation.

The motion of the star is apparently uniform. But in other cases, perhaps
a third of all the brighter stars, changes are observed which prove to be

regular and periodic. These are attributed plausibly to the motion of one

component in a binary system. Such spectroscopic binaries differ from

visual doubles only in the scale of their orbits, which prevents them from

being resolved even in the most powerful telescopes, while their periods are

to be reckoned in days instead of years or even centuries. It may appear
that the spectrum of the second component should also be seen. When the

components are fairly equal in brightness, as in (3 Aurigae, this is so
;
the

lines of the spectrum are seen periodically doubled. But with other stars,

and this is the more common type, the companion is relatively so faint that

only one spectrum is shown : it is quite unnecessary to suppose that the

companion is then an absolutely dark body. Even when both spectra are

visible the secondary spectrum is often difficult to detect and usually difficult

to measure. As a particularly interesting example Castor (o Geminorurn)

may be quoted.. The telescope reveals this star as a visual double, and the

spectroscope shows that both components are themselves binary systems.

More complex systems can be inferred from spectroscopic measures alone.

Thus Polaris, which appears in the telescope as a single star, has been shown

to be a triple system, consisting of a close pair revolving round a more

distant third body. Here the motion will be considered in the first instance

of one component of a binary system about the common centre of gravity,

and it will be seen how far the elements of an elliptic orbit can be deduced

from the measured radial velocities, these being based on the comparison of

the star's spectrum with that from a terrestrial source (usually the spark

spectrum of iron or titanium).

112. Since the period is generally short, the observations extend over

several revolutions and the period P is determined by obvious considerations

with fair exactness. This being known, the observed velocities can be

referred to a single period with arbitrary epoch and plotted as ordinates

with the time as abscissa in a diagram called the radial velocity curve. Such

a curve is illustrated in fig. ,
while the relative orbit is shown in fig. 6,

corresponding points being indicated by the same letters. The focus of this

orbit is G, the centre of gravity of the system. The line of nodes AGE,
passing through A the receding node and B the approaching node, is the

line drawn through G in the plane of the orbit at right angles to the line of

sight. The points P1} P2 mark the position of periastron and apastron, and

the angle from GA to GPl ,
measured in the direction of motion, is the longi-

tude of periastron, to. The true anomaly at any point of the orbit being w,

the longitude of this point from A is u = a> + w. Let i (0 < i < 90) be the
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inclination of the orbit, this being the angle between its plane and the plane

which is normal to the line of sight, and let e be the eccentricity.

km.lsec..

-10

-20

-30

-40

-50

D a

50 100 200 250 300 days

Fig. 6 : (a) upper, (b) lower.

The orbital velocity of the star is compounded ( 2G) of one constant

velocity V2 transverse to the radius vector and another eVz perpendicular to

the major axis. These may be resolved along and perpendicular to the line

of nodes. The former components contribute nothing to the radial velocity.

The latter are + V2 cos u and + eF2 cos CD in the direction GE which is
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drawn at right angles to GA. This line makes the angle (90
-

i) with the

line of sight, and hence the radial velocity which is measured is

y j + (cos u + e cos <u) F2 sin i

where 7 is the radial velocity of the point G, that is, of the system relative

to the Sun. It is at once evident that V2 and i cannot be determined inde-

pendently from the radial velocities alone, and the equation may be written

V= 7 + .fiT (cos u+ ecosw), K=Vz sini

or again,
V= y' + K cos u, 7'

= 7 + Ke cos co

where K, 7 and y are to be taken as constant.

113. When the velocity curve has been drawn the maximum and mini-

mum ordinates are approximately known. These are y = 7' + K, y = 7' K,
which require u=Q, u = 180. The maximum and minimum points, A, B,

therefore correspond with the receding and approaching nodes. The line

y = y
1

can then be drawn in the diagram, intersecting the velocity curve in

E, F. These points require u = 90, 270 and the corresponding points in

the orbit are the extremities of the focal chord at right angles to the line of

nodes. The velocity curve is thus divided at A, E, B, F into four parts

corresponding to four focal quadrants, each bounded on one side by the line

of nodes. The part which contains the periastron passage will be described

in the shortest time and that which contains the apastron passage will

require the longest time. The opposite extremities of any focal chord give

equal and opposite values to (Vy). In particular, the periastron and

apastron points, Plt P2 ,
are located on the velocity curve by the further

condition that their abscissae differ by P, the half period, and the points

LI, Lz corresponding to the ends of the latus rectum by the condition that

they are equidistant in time from Pl or P2 . The four points Pl} P2 ,
L1} L2

on the velocity curve are easily found graphically by trial and error.

Again, let be the centre of the orbit and COD the diameter which is

conjugate to the diameter parallel to the line of nodes, so that the tangents
to the orbit at C and D are also parallel to this line. Hence V= 7 at

C and D on the velocity curve. Let an axis of z be taken parallel to GE in

the plane of the orbit, so that

T, dz . ,

F-y+^sin*

Now the integral represents the area of the velocity curve measured from

the line y = 7. Hence by taking the limits at A, C, B, D it follows that the

positive area of the velocity curve from A to C is equal to the negative area

from C to B, and the negative area from # to D is equal to the positive area
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from D to A. These conditions, which can be tested by a planimeter or some

equivalent method, make it possible to draw the line y 7 in the diagram.

At KI, K2 ,
the extremities of the minor axis, the radial velocities relative

to G are equal and opposite. Hence on the velocity curve Kj and Kt are at

equal and opposite distances from the line y 7 and equidistant in time

from Pj or P2 . Thus these points can also be found graphically without

difficulty.

114. It is supposed that the period P is known, and this gives the mean

daily motion, /u,
=

27r/P. The other quantities which can be derived from

the velocity curve are five in number, namely T the time of periastron

passage, K = Vz sin i, y the radial velocity of the system, the longitude of

the node, and e = sin <f> the eccentricity of the orbit. The most satisfactory

direct method of finding these elements is based on the representation of

the curve (see Chapter XXIV) by a harmonic series in the form

where t is reckoned from some arbitrary epoch. This is always possible

by Fourier's theorem. But

y = y + K cos 6> (e + cos w) K sin <o sin w

= 7 + 2K cos w cos2

</>
. e~l 2J, (je) cosjM

2K sin <u cos < . 2J/ (je) sinjM

by 41, (28) and (29). Now M= p (t
-

T) and therefore F = 7 and

Vj
sin 0>T + ft)

= 2^ . e-1

J) (je)

-
TJ

cos (jpT + ft)
= 2K, . J/ (je)

where

K^ =K cos w cos2

(f),
K.2 = Ksma)cos(j> ............ (1)

There are now only four quantities to be determined, which may be taken to

be Klt K2 ,
T and e. Thus the four equations corresponding toj= 1, 2 are

alone required : those of a higher order are useful only when there is reason

to suspect that the motion is not purely elliptic.
Now these give ( 47)

-% +if-2

-nco.or.HA) -

1- + ~'"
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showing that r^jr-i is of the order of e. Hence, by division,

24^96

___
24 96

and, by subtraction and addition,

r
.l sin(/i7

T +&-&) = .* , ^
n

'

sin2(At2
7+ /

81 ) 24 96"

the last equation containing no term in e
5

. Eccentricities as high as 075

are met with occasionally, but even so it is evident that (pT+ @2 &) is a

very small angle which can scarcely exceed 2 and is generally negligible.

If then

it is possible to neglect a2 and the last equations become

whence

From this equation e is easily found by trial and error, and then a, which

gives T, is found from (3). The equations (2) give K^ and K2 ,
whence finally

K and w are derived by (1). The process is therefore very simple, even

without special tables, when once the harmonic representation of the velocity

curve by two periodic terms has been obtained. This can be done very

easily and with all needful accuracy by taking a sufficient number of equi-

distant ordinates from the curve.

115. It is, however, more usual in practice to find approximate pre-

liminary elements by methods which are largely graphical and to improve

them, if thought necessary, by a least-squares solution giving differential

corrections. Thus 2J5f is the apparent range of the velocity curve, and when

the periastron point Px has been located on the curve, T is known, while the

areal property which fixes the position of the line y = 7 has been explained

( 113). The remaining elements to be determined are therefore e and w,

and these are connected by the relation Ke cos o> = 7' 7. A number of

interesting properties have been used for the purpose.

Among these are the properties connected with a focal chord of the

orbit. Let ^ be the time at a certain point of the orbit and w and El the
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corresponding true and eccentric anomalies. Let t.z be the time at the other

end of the focal chord through the point and 180 + w and E2 the true and

eccentric anomalies. Then

(1
-

efi tan \w = (1 + efi tan \E^ , p (^
- T) = El

- e sin E,

-
(1
-

efi cot %w = (1 + e)* tan fE8 , ^(t2 -T) = Ez -e sin #2 .

Hence
_

(1
_ 6)

= (1 + e) tan^ tan #2

or

e cos i (#2 + EJ = cos ^ (E2
-

E,)
and therefore

= (#2
-

.#,)
- sin (E2

-
Also

tan | (# -El)
= -

\ (1
- e

2
) e"1

(cot \w + tan w)

= cot
<f>

cosec w.

Hence, if2rj = E2 -Ely

fi (t2 j)
=

77 sin 2?;, tan $ sin w = cot 77.

Similarly, if 3 , 4 are the times at the ends of the perpendicular chord, where

the true anomalies are 90 + w, 270 + w,

A4 (1
~

3)
== 2?/ sin 277', tan

<f>
cos w = cot

77'.

The angles ?/, 77' are easily found, especially with the help of a suitable table

of the function (x sin x), and hence
<f>

or e and w = u - &>. But the ordinate

at the point ^ gives yy' = K cos it and therefore u, whence the value of o>

can be inferred. The equations

tan El
= tan (45

-
1</>) tan %w, fi(t1 -T) = El -e sinEl

tan !#3
= tan (45

-
0) tan (|w + 45), /j,(ts -T) =Es -e sin 3

will give two independent values of T.

Sets of four points related in this way are easily located on the velocity

curve, for they are given by y y'=Kcosu, Ksinu. Thus the four

points y 7'= + 1T/V2 are very suitable for the purpose. Here u = 45,
w = 45 w. Two special sets have been mentioned in 113, namely, AB,
EF where u = 0, w = <u, and PiP2 . AL2 where w = 0. In the latter case

yy' = K cos w, K sin &>, giving &> immediately, ^ = T
7

,
and e is given

by </>
=

77'
- 90.

116. There are also properties connected with a diameter of the orbit.

If E is the eccentric anomaly at a point, E -f- ^TT and E + f TT are the eccentric

anomalies at the ends of the diameter conjugate to that which passes through
the point. Let il} t2 be the corresponding times. Then

p (t,
- T) =E+ ITT - e cos E

+ e cosE
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so that

Now the points C, D, in which the line y = y cuts the velocity curve, satisfy

this condition and the conjugate diameter being parallel to the line of nodes

makes the angle &> with the major axis. Hence in this case

tan to = cos
<f>
tan E

and therefore

%p(tz -*! -P) = e(l -f tan2
&) sec2

<)~*

= e cos <u (1 e2 cos2
&)) cos <f>

which gives e = sin
</>
when e cos &> = (7' 7)/-^ is known. Also

- e = J> (f,
-

t,
- |P) sec^& +4- 2T

7

)

which gives a relation between e and T.

Another pair of such points is Klt K2 , corresponding to the ends of the

minor axis. Since E = in this case,

Let Wj, u2 be the longitudes at Kl} K2 . Then the radial velocities at these

points, relative to G, are

+ %K (cos MJ cos u2)
= + K sin ^ (u^ u^) sin %(uz + u

l}=K cos ^ sin &>.

This quantity is therefore given by the ordinates at K1} Kz on the velocity

curve, relative to the line y = y.

117. The velocity curve also possesses interesting integral and differential

properties which may be useful. It is necessary to have a consistent system
of units, and since those of time and velocity have already been adopted, the

unit of length is fixed and the natural system is :

Unit of time = 1 mean solar day = 86400 mean sees.,

Unit of length
= 86400 km. = 0'0005779 astronomical units,

Unit of velocity
= 1 km. per second,

Unit of mass = that of the Sun.

Now the constant of areal velocity in the orbit is

pV.2
= 2irab/P = pa? cos <

so that

a sin i = V2 fjL~
l cos < sin i = K/JL~

I cos
<f>.

The argument relative to the areas of the velocity curve in 113 can now be

made more precise. For the tangents to the orbit at C and D, referred to

the principal axes of the ellipse, are

x sin o> + y cos w = V(
2 sin2

&> + 62 cos2
a>)
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and the perpendiculars on them from the focus G are

z\> zz
= ae sin &> + a V(l & c s

2

&>).

Measured from the line y = 7 let ^j be the area of the velocity curve from A
to C,

- A, from C to B, - A* from B to D, and ^1 3 from D to A Then

- e2 cos2
&))

-
, )

= p~ cos <> . e sn &>

^4
1
-4 2
= K2

fjL~- cos
4

0.

When A-i, A z have been measured in the proper units these equations deter-

mine < (or e) and o>.

118. If the tangent to the velocity curve makes an angle -fy
with the

axis of time,
dV __ . dw

tan -dr = -=- = K sin u -r-
at at

and / being the radius vector in the orbit, the constant areal velocity is

dw
/*a

2 cos
<f>
= r* -7- .

Hence
tan ^r

=
fjiK cos sin u (a/r)

2

= fiK sec3

(f>
sin M (1 + e cos w)

2

and at special points on the curve tan
>/r

has these values :

A, B :u=0, 180 : tan -f
=

E, F :u=90, 270 : tan-f = + /^sec3

0(1 + esin w)
2

Plt P., :w = 0, 180 : tan
i/r
= + pKsec

3
</>

sin w (1 e)
2

LV ,L^ : w = 90, 270
5

: tan
-fy
= + /i/f sec

3
< cos o>

^TL Ka :w= (90 -f 0) : tan ^ = + fiK cos
<f>

cos (o> <f>).

If tan
>/r

is found graphically at any of these points, attention must be paid

to the scales in which ordinates and abscissae are represented. These

expressions can then be used in order to find &> and
</>.

Since

r oc (sin u cot $*)*, w = u &>

and u at any point on the velocity curve is given by the ordinate measured

from the axis y = 7', it is possible theoretically to plot the actual orbit to an

arbitrary scale, point by point. This is scarcely a practical method, but

deserves mention as the counterpart of Sir John Herschel's method for

double star orbits ( 105).
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119. The values of the elements found by any of these graphical methods

are approximate only. They can be improved by the addition of differential

corrections, 8K to K, Be to e, 8a> to co, 8T to T and 8p to p. Thus each

observation gives an equation of condition of the form

V - Vc =8y' + cosu.8K-Ksmu.8co - Ksiu u
\oe

and it is easily found that

-=- = sin w (2 + e cos w) sec2
<

06

- sec3
<

p =
(t
-

T) (1 + e cos w)
2 sec3

<j>.

It is more usual to give 7, the radial velocity of the system, than 7', but this

quantity can be derived finally from the relation 7 = 7' Ke cos w.

120. When the elements of an orbit specified above have been obtained,

by whatever method, some information can be gained as to the dimensions

and mass of the system. An equation already found in 117 gives

a sin i =K^1 cos
<f>

. 86400 km.

when the unit of length there adopted is explicitly introduced. Let m be

the mass of the star whose spectrum is observed, and m' the mass of the

other star. Then

fjfa? ( 1 +
,,

J
= (m + m) C

where C is a constant depending on the units employed. These being as

stated in 117, the special case when m =
1, m = 0, gives

47T2 1

It follows that

m'3
(m + m')-

2 sin3
i = [3'81443

-
10] K*pr

l cos3

<j>

= [3-01625
-

10] K3P cos3
<

and it is only this function of the masses, involving the unknown inclination

of the orbit, which can be determined when only one spectrum can be

observed.

If, however, the radial velocity V of the second component of the system
can be measured at the same time, which is possible when the two superposed

spectra are of comparable intensity,
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One such equation will give the ratio m : m when 7 is known and two will

give 7 in addition without any knowledge of the orbit. It has been supposed
that the radial velocities have been determined by referring the stellar

spectrum to a comparison spectrum from a terrestrial source, as mentioned in

111. When there is no comparison spectrum, as when an objective prism
is used, and the stellar spectrum shows double lines, it is still possible to

deduce the orbit of the system from the relative displacements of corre-

sponding lines. But the orbit is then the relative orbit, a is the mean
distance of the components from one another, and it is easily seen that

(m + m') sin3
i must be substituted for the above function of the masses.

121. The true spectroscopic binary cannot be resolved in the telescope.

But one or both components of a visual double can, when bright enough, be

observed with the spectrograph, and very interesting results can be gained
in this way. Let a, a' be the mean distances of the components relative to

the centre of mass, expressed in terms of the linear unit 86400 km. The

astronomical unit contains 1730 such units. Let a" be the visual mean
distance and or" the parallax of the system, both expressed in seconds of arc.

Then
mm' , , .

ma = ma = --
, (a + a )m + m

r m + m
and therefore

V = j + K (cos u 4- e cos w)

= y + /j,a sin i sec < (cos u + e cos &>)

J+- 1730 u sin i sec d> (cos u + e cos o>) .

w
while for the other component similarly

V = 7 1730
yu,

sin i sec
</> (cos u + e cos to) . ,

If then the elements of the visual orbit have been independently determined

and the radial velocity of the first component alone can be observed at

different dates, the two quantities 7 and (1 4- m/m')nr" can be inferred. If

the radial velocity of the second component can also be observed, the parallax,

the ratio of the masses and hence the individual masses themselves in terms

of the Sun ( 104) can also be deduced. From the relative radial velocity

alone,
VV'= 1730

yu,
sin i sec $ (cos u + e cos <u) a" JIT"

the parallax can be found, and hence the total mass of the system.

One question remains in the determination of the true orientation of a

double star orbit in space, which can only be decided by radial velocity
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observations. For the spectroscopic binary i has been defined so that

0< i< ^TT, while for the visual double 0<i< TT. This difference does not

affect sint, which is positive in either case. Hence if F,, F2 are the

radial velocities of the principal star at different times, the two expressions

Fj - Fa ,
COS (Wl + 6)) COS

(f|/a + G>)

have the same sign, where <w is the longitude of periastron of this star,

reckoned from its receding node in the direction of motion. But \ is the

longitude of periastron of the companion at its first node li (< TT). Hence if

the expressions
Fj F2 ,

cos (M! + X) cos (w2 + X)

have the same sign, X = &>. TJais means that the principal star is receding

and the companion is approaching when the latter is at its node O. If on

the other hand the expressions are of opposite signs, X = o> + TT and the

companion is receding at fl.

Otherwise it may be possible to determine the velocities F, V of the

principal star and the companion respectively at the same time. Then the

expressions
F F', cos (w + <o) + e cos to

have the same sign, and therefore if the expressions

F- F', cos (w + X) + e cos \

have the same sign, X = o>, while if they have opposite signs, X = &> + TT. The

same consequences follow as before. Thus a knowledge of either Fj F2 or

F V removes the ambiguity with regard to the true position of the orbital

plane, which remains after the elements of a double star have been deter-

mined from visual observations alone.



CHAPTER XII

DYNAMICAL PRINCIPLES

122. It will be convenient in this chapter to recall some of the salient -

features of dynamical theory and to consider as briefly as possible the form '

of those transformations which are of the greatest importance in astronomical

applications. We shall start from Lagrange's equations.

Let the system consist of a number of particles whose coordinates can be

expressed in terms of n quantities q1} q2 ,...,qn and possibly of the time t.

Let m be the mass of a typical particle situated at the point (x, y, z).

Then
_ . _ dx dx . dx

so that

dx _ dx

d r ~dqr

'

.

Hence
dd?\ _ d / . dx\

dqj dt \ dqr)

v dx . dx= JL~ h mx 5
dqr dqr

where X is the component of the force acting on m. If T is the kinetic

energy of the whole system,

Hence adding all the equations of the preceding type for the three co-

ordinates and all the particles,

d
(
dT

\ V ( Y dx
4. Y dV + 7 a*W dT

~T \ 0^~ = & A ^ f I X + /j ^ + ;r .

dt \dqr j \ dqr dqr dqrj dqr

Now the forces which occur in astronomical problems are in general con

servative, and we can write

2 (Xdas + Ydy + Zdz) = -dU
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where dll is a perfect differential. U represents the work done by the

forces in a change from the actual configuration to some standard configu-

ration and is called the potential energy. We therefore have

_

dt dqr dqr

But U does not contain qr ,
and hence, if we write T = U + L, this becomes

which is the standard form of Lagrange's equations.

The function L is often called the Kinetic Potential. In the absence of

moving constraints (or some analogous feature) within the system ^-
=

. . . = 0.

Then T is a homogeneous (positive definite) quadratic form in q1} ..., qn .

123. If L does not contain t explicitly, the equations admit an integral

called the Integral of Energy. For in this case

dL dL dL

*tf-i5*
so that

where h is a constant of integration. Replacing L by T- U, where T is a

homogeneous quadratic form in qr and U does not contain qr> we have

h = 2T-(T- U) = T+U
which shows that h is the sum of the kinetic and potential energies.

More generally, let L contain t explicitly through U and let T no longer
be a homogeneous function in qr but of the form T2 + 7\ + T

,
where Tz is a

homogeneous quadratic function, T a linear function and T of no dimensions

in qr . Then similarly
dL d /^ dL . \ dL

dT . \ dU

or since L = T% + ^ + T - U
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an equation which applies to relative motion. When U does not contain t

T2 -T +U=h.

When U does contain t the equation

is a purely formal integral because it is to be understood that any coordinates

occurring in dU/dt are expressed in terms of t before integration. This

implies a knowledge of the complete solution of the problem. But the

equation is not without its uses. Thus if 17= U + U', where U does not

contain t and the effect of U' is small in comparison with the effect of U
,

preliminary values of the coordinates in terms of t may be found. When
these are inserted indU'/dt a closer approximation to the true integral will

be obtained and the process can be repeated. The true meaning of the

equation is therefore connected with a method of approximation.

124. The above form (2) of the integral of energy is directly connected ;i

with the Hamiltonian form of the equations of motion whereby the n

Lagrangian equations of the second order are replaced by a system of

2?i equations of the first order. For we may write

~ . dL T w dL
2, qr =-.

-- L = H, ^-r = pr -

r
*

dqr dqr

The n equations for pr are linear in qr and when solved express qr in

terms of (qr , pr\ this symbol being used, where no ambiguity is to be feared,

to denote all the quantities q1} qz ,...., qn , p1} p2 ,---, pn - Hence L and // can

be expressed either in terms of (qr , qr) or of (qr , pr\ Thus

., T ^ dL ~ ^ dL ~ .

8L = 2 o . % + % ^
. 8qr

r dqr r dqr

^^. . dL -^ . f- -^ dL , .B*8-**'*- +
*S5-

8*'

and therefore

SH=2 (qr 8pr
- pr $qr)

It follows that

Ojtt . OJCl .

Vr
=

d
-, pr

=
-2q

-
r
,(r=l,2,...,n) ...............(3)

and this is the form of the equations which is called canonical.

When L has its natural form, H= T + U. If L does not contain t ex-

plicitly, neither does H, and the integral of energy (2) becomes simply H= k.

92
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125. Let us consider the differential form

-.x-r*
or

2 qr dpr + H dt.

If d9 is a perfect differential, the right-hand side of both equations must

also be perfect differentials, and this requires that

dpL = _'dH dgr^dH
dt dqr

'

dt dpr

or the canonical equations must be satisfied. Let us suppose now a trans-

formation from the variables (qr , pr) to the variables (Qr , Pr) such that

-dW ........................ (4)

where dW is a perfect differential and W is expressible either in terms of

(<lr, Pr) or of (Qr ,
Pr).

Such a transformation is called a contact transforma-

tion, or in the particular case when (qr) can be expressed in terms of (Qr)
alone [by relations not involving (pr) or (Pr)] an extended point transformation.

If W contains t in addition we may write

dW dW
r r ut ut

so that when dd is introduced

dW\ dW
*"~dt)

'

~~W'
L

Each side of this equation is a perfect differential provided d& is a perfect

differential, and in this case

where

K=H+d~w (6)

Since these equations equally with the form (3) express the conditions

required if d6 is to be a perfect differential, they must be equivalent to (3).

Thus we see that any transformation of variables satisfying the condition (4)

leaves the equations of motion in the canonical form.

126. In consequence of (4)

dW dW

Hence K will vanish in virtue of (6) provided

dW
^
oqn j

dW dW\ dW
qn , ^ ,..., ^ + ^r-

= .................. (8)
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This equation is known as the Hamilton-Jacobi equation. But when K=0,

P, = &, Qr
= *r

where ar and ./3r , by (5), are arbitrary constants. Hence if any function W
can be found which satisfies (8) and contains n arbitrary constants (ar) in

addition to (qr) and t, the solution of the problem is completely expressed by
the 2w equations (7) written in the form

where (/?,.) are rz additional arbitrary constants.

IfH does not contain t explicitly we may write

where W is a solution, containing (n 1) constants (ar) apart from an but

not , of the equation
8TT ?F'\

The solution (9) is therefore replaced by

SW 8TT

1S7"'
3" P-=

5

127. In the set of equations (7) W is an arbitrary function of (Qr , qr).
^

Instead of making W a solution of (8) let it satisfy the equation
CtAA^ *"

/ dW dW\dW
fl (?!,..., Qn,-^ ,..., ^ +^T=o

^aii
'

3gt gg^y 3^

where jET is the Hamiltoniau function of another problem also presenting

n degrees of freedom. Hence as before

where ( r , /8r) are the 2n arbitrary constants of the problem defined by H .

Hence the equations (5) and (6) become

where

-

at

Thus if the H problem has been solved and the constants of a solution of

the corresponding Hamilton-Jacobi equation are known, the same form of

solution applies to the H problem with the difference that the quantities

which remain constant in the first problem undergo variations in the second



134 Dynamical Principles . [OH. xn

problem which are defined by (12). This is the foundation of Lagrange's
method of the variation of arbitrary constants. The simple form of (12)

depends essentially on the function K being expressed in terms of the

constants which occur in a solution of a Hamilton-Jacobi equation and

which may be called a set of canonical constants.

If we suppose that the problem defined by HQ has been solved by some

other method than through the medium of a Hamilton-Jacobi equation, a

different set of constants will be obtained. Let Am be a typical member of

such a set. Then Am is some function of (ar , ftr). Hence

- _ v dAm - dA
-"-m ~ ^ ~~ ' a ' ~"~

dpr

dAm I

dftr '\

^

d/3r
'

dA s

'

where K = H H as before, and

, . (dAm dA g dAm dA g \^ A^ =
*\^'Wr~w;-^)

a form of expression which will be defined later ( 130) as a Poisson's bracket.

128. Let us consider the integral

rt, rt>

J= Ldt= (T-U)dt
J to J t

pr qr)dt (13)

by the first set of equations in 124. We have therefore

where 8 denotes a change in (qr , pr) but leaves t at each point unaltered.

Hence &J = if 8qr = at the limits and if the canonical equations are

satisfied. And this proves Hamilton's principle that in the passage from

one fixed configuration to another the integral J has a stationary value for

the actual motion as compared with any other neighbouring motion in which

the time at corresponding points is the same.
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If however 8 denotes a change in t,

Ml-
Hence when two neighbouring forms of motion, each compatible with the

canonical equations, are compared, the complete variation between two

positions and 1 is

Accordingly, if the initial time is taken as fixed and (ar , @r) are the initial

values of (qr , pr\ we have

dJ dJ

dq-r
=Pr > fcT-&

and
dJ

But this is the Hamilton-Jacobi equation. Hence the integral J is a par-

ticular solution of this equation. And further, since we have reproduced the

equations (8) and (9) of 126 except that J is written in the place of W, we
see that J is that solution which contains the initial values of the coordinates

as its n arbitrary constants.

129. Let us suppose now that H does not contain t explicitly, so that

the integral of energy H = h exists. Then if

J= I '^pr qr dt = I

'

(L + h)dt (14)
I ta J t

r 11 rt.

BJ =

But

and therefore

This is the complete variation of J and it vanishes between fixed terminal

points if Bh = in each intermediate position, i.e. if the time is assigned to

each displaced position in such a way that the equation H = h is satisfied in

the varied motion. Under these conditions the integral
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has a stationary value in the course of the actual motion as compared with

motion in any neighbouring paths.

This integral is called the action and the proposition established is known

as the principle of least action. When T is a quadratic function of the

velocities h = T+ U and the integral becomes

dt ....... ...(15)

and in problems which involve only one material particle this is simply

J= fV<fc = !\ds .. ...(16)
Jto JQ

where v is the velocity of the particle (of unit mass).

The integrals which we have found to be stationary are not necessarily

minima. The necessary conditions in order that an integral

shall be an actual minimum are :

(1) The first variation SJ vanishes between fixed terminal points.

(2) The function of (er)

is a minimum.

(3) Between the terminal positions and 1 no intermediate position P
exists such that and P can be joined by a neighbouring path which satisfies

the dynamical conditions and is other than the path considered. The nearest

point to on the path which does not satisfy this condition is called the

kinetic focus of the point 0.

130. It is necessary to study the properties of certain expressions
connected with the transformations which are frequently employed. Let

*!, Uz, ...
,
u2n be 2n distinct functions of (qr , pr). The first expression is

r \dui'du,n dum
'

duj r <KWJ> W)
which is called a Lagmnges bracket and is denoted by [u{ ,

um].
The second

expression is

LI dum _ dum dui\ _ o (HI, um)

lr

'

dpr dqr
'

dpj
~

T o (qr , pr)

This is called a Poissons bracket and will be
'

denoted here by the symbol

[HI, um}.
It is evident that we have

[HI, um]
= -

[um ,' ui], (l^m)
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There are also relations between the two types of expression, and these

we shall now investigate.

Let two linear substitutions be defined by

and

where r can have all values 1,..., n and I and m can have all values 1,

The result of eliminating yr , yn+r is to give

m r

2n

But the substitutions can be reversed by writing

..
, 2w.

(19)

The equivalence of these forms is easily verified since

When ?/r) yra+r are eliminated, these give

_ i m i

r(dqr'dPr dqr
'

dpj

..(20)

The resultant substitutions (19) and (20) must therefore be equivalent, and

accordingly their determinants, written in the forms

[U2 , ttj, [t|a , Mj,..., [U2 ,

and 1, ^J, {it,, Mj},..., {ft!,

2, It,}, {W2 , Uj,},..., (Ma ,

m, MI}, {Uzn, U2},--., {u*n,

(21)

are reciprocal. This means that any constituent of either determinant is

equal to the co-factor of the corresponding constituent in the other determinant

divided by that determinant. Any Lagrange's bracket is thus expressible in

terms of Poisson's brackets, and vice versa.
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131. Let us now consider the explicit conditions for a contact trans-

AJ
formation. We have in this case

^Pr dQr -Zprdqr
= ZP

r r r

a perfect differential. Hence

dqr

ZQm \r
r

ZQi~3Qi
always, and

unless I = m, in which case

It is at once evident that these conditions may be written

[P,,Pm]
=

0, [Qt,Qm]
=

for all values of I and m,

[Qi, PJ = o

for all unequal values of I and m, and

[Qi, Pi] = l

for all values of I. In other words, in the case of a contact transformation

all the Lagrange's brackets vanish with the exception of those which are of

the form [Q t , PI], and these are all unity.

Let us now put

Ur=Qr ,
Un+r = Pr , (r=l,2,...,w).

Then the substitution (19) becomes simply

xr = zn+r ,
xn+r = -zr .

But this shows that all the Poisson's brackets occurring in (20) vanish

except those which^re of the form {ut , ui n], and these may be written

{Qi, Pi) = 1 or {Plt Ql]
= - 1.

The conditions for a contact transformation are therefore of the same simple
form whether expressed in terms of Lagrange's or of Poisson's brackets.

Again, the substitutions of 130,

3 dqr 2, dpr

*<=?a^'
+ ?aV-

dum dum
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become identical when m = n + I, since zn+i = xi- Hence

'"s _, Cl ID TS d t>
OOy OSTi ujy>r VAT i

But when l = n + m, they are identical except for an opposite sign throughout,
since xn+m = zm ,

and thus

These relations hold for all values of I, m or r not exceeding n.

132. Let us consider the transformation

Qr = qr + eqr', Pr =pr + epr
'

where qr',pr
'

are any functions of (qr , pr) and e is an infinitesimal constant.

If the transformation is an infinitesimal contact transformation,

dW = 2 {(pr + ep/) d (qr + eqr')
- prdqr}

r

= 2 (pr'dqr + Prdqr')
T

is a perfect differential. Hence we may write

6 2 (Pr'dqr
~

qr'dpr)
= d (W - 2M/)

r r

= -e.dK

where K may be any function of (qr , pr). Accordingly

,_dK ,_ dK
qr
~dpr

> Pr =
~dqr

and the general form of an infinitesimal contact transformation is given by

where K is an arbitrary function of (qr , pr).

If for e we write St, the equations (22) become

_^ _ _
Bt dpr

'

8t dqr

and comparing this form with that of the canonical equations of motion we

see that the progressive motion of a system from point to point corresponds
to a succession of infinitesimal contact transformations.

The effect of substituting (Qr , Pr) in any function f of (qr , pr) is to

produce an increment

df ^K ^ 8/ dK
^- . e =--- 2 TT- . e ^~
dqr dpr r tyr fyr

(23)
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133. Let us consider a disturbed motion in which (qr , pr) become

(qr + Sqr , pr + Bpr) at the time t. If this motion is compatible with the

canonical equations

. = dH .

= _ dH

we must have

with similar equations for Spr . Now let us suppose that the new variables

are those given by (22). These will lead to a particular solution of the

varied motion provided

d
_

dt \dpr
~

s \dprdqs

'

dpg dpr dpg

'

d_K\
dqs J

ap,T

s \dqg 'dprdps o

. dK . dK

d*K \

*(Ps
dp^dp~g

+qi
dpJq~8)

for \~dt~ ~df)
+

dt (dpj ~di \dp~r
= ._ _
dpr dt dtdt dp dt \dpr

or

dPr dt

with a similar set of conditions arising from the equations for 8pr . But

it is evident that all these conditions will be satisfied if K is an integral
of the system, for then K 0. We thus see that if K is an integral, the

equations (22) are -a particular solution of the equations for the disturbed

motion.

134. Let u be another integral of the undisturbed system. Then u + AM
must also have a constant value in the disturbed motion. But by (23)

AM = e {u, K}

when the disturbed motion is that obtained by the infinitesimal contact

transformation derived from K. Hence {u, K} must be constant, and we

have Poisson's theorem : if u and K are two integrals of a system, the

Poisson's bracket
{u, K} is also an integral. It might be supposed that a

knowledge of two integrals would thus lead to the discovery of all the
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integrals of a problem. This is not so in general. The known integrals are

more often of a generic type, particularly in the case of those gravitational

problems with which we have to deal, and fall into closed groups. For

example, if we start from two integrals of area we obtain by Poisson's theorem

the third integral of the same type and no further progress can be made in

this way. In order to obtain fresh information it is necessary to start from

integrals which are special to the problem considered.

Let MI, u 2 ,
...

, KVH be 2n distinct integrals of the problem. Then each

Poisson's bracket of the type [ur ,
us]

is constant throughout the motion. But

we have seen in 130 that a Lagrange's bracket [ur , Ug] can be expressed in

terms of all the Poisson's brackets. Hence [ur ,
us] is also constant through-

out the motion. But this gives no means of finding additional integrals of

the problem, for in order to calculate [ur , Ug] it is first necessary to express

(qf , Pr) in terms of the 2w integrals (ur). And this presupposes that the

problem has been completely solved.



CHAPTER XIII

VARIATION OF ELEMENTS

135. The Hamilton-Jacobi equation corresponding to elliptic motion

about a fixed centre of attraction is very simply solved when the variables

are expressed in polar coordinates (r, I, X), so that (I, X having the same

relation to one another as longitude and latitude)

<?i
=

r, q2
= X, q3

= I

Then, after suppressing the factor m in the potential energy U and therefore

treating the mass factor in the momenta as unity,

U =-
/
u,r~1

, n = kz
(1 + m) = ri*a?

2T= r2 + r2X2 + r2 cos2 X . P

PI
= r, p2

= r2
X, p3 r2 cos2 X . I

H = T + U = $ (pi> + r~*p? + r-2 sec8 X . pa
2
)
-

The Hamilton-Jacobi equation ( 126) therefore takes the form, since H does

not contain t, .

/8FV i
/airy

i
/arry _ ^

U^J +
r2

l ax )
+

r2 cos2 xV dl )
~ ^ +

r

where TT=TF/

<M. Integration by separation of the variables is then

easy. For

obviously satisfy the equation. Hence

W'=r (20, +^ - ^
2N

)
rfr +

f ^(a,
2 -

3
2 sec2

X)
4 dX + a

:!
<

Jr \ ^ f"V -0
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is an integral which contains the three independent constants a
1 ,

a.2 , as .

Therefore the complete solution of the problem is given by the equations

o - dW
'

~^~^
- & =

-5
= I - I

03 Jo
3 sec

2 X
(ota

2 -
3
2 sec2

X)
* d\

where /3X , $2 , j33 are three additional constants. The lower limit r is also

arbitrary. It may be identified with the pericentric distance, and then the

integrals depending on r will vanish at the pericentre.

136. We have now to determine the meaning of the six constants of

integration. Since the integral in the first equation vanishes at perihelion,

& is clearly the time at this point. Also, by the same equation,

But at an apse, r = and r = a (1 e). These then are the values of rl5 r2 ,

and hence

/*
= - 2a a,, a/ = - 2a2

(1
- e2) ax

or

o^-^a, a, =

Also if we put ag/iZj
= cos i the second and third equations become on

integration

j82
=

fi (r) + sin"1

(sin X/sin i)

- & = I - sin-1

(tan A/tan i)

or

sin X = sin i sin {/i (r) y82}

tan X = tan i sin ( + /33).

This last equation shows that the motion takes place in a fixed plane making
the angle i with the plane X = 0, which may be taken to represent, for

example, the ecliptic, with I and X as the longitude and latitude of the

planet. Thus the meaning of as
= cr2 cos i is defined, and -

/33 is simply the

longitude of the node. The preceding equation then shows that /, (r) $2 is

the angle between the radius vector of the planet and the line of nodes,

i.e. the argument of latitude. But at perihelion the integral /i (r) vanishes.

Hence /32 is simply the angle in the orbit from the node to perihelion,

or -or fi in the ordinary notation. The canonical elements which we
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have introduced can therefore be expressed in terms of the usual elements

(T being reckoned from the epoch when the mean longitude is e) thus :

e2
)}

cos i, /33
= O. .

The homogeneity of these constants will be increased by introducing a = V/i,a

instead of a,. This makes 2 1
= -

/
u2

/a
2 and W=W' + tSt/2c?. Hence fr

will be replaced by /3, where

da a3 a3
V 9^

Since the integral vanishes at perihelion, and t = T at this point,

a3 V a3
'

The other constants are easily seen not to be affected by the change in a1}

&, which can accordingly be replaced by

where e is the mean longitude of the planet at the time t = 0.

137. The expressions for a, 2 ,
a3 , @, @2 , @s in terms of the ordinary

elliptic elements which have just been found make it very easy to calculate

the Lagrange's brackets

8a d/3 3/3

where n, v are any pair of the six elements a, e, i, fi, vr, e. Since a, a.2 ,
as are

functions of a, e, i alone and /3, /32 , /33 are functions of n, is, e alone, the

Lagrange's bracket for any pair of either set of three elements vanishes. It

is equally evident on inspection that [e, e], [i, or] and
[i, e] also .vanish, the

two constituents never occurring in a corresponding pair of canonical constants.

Hence the complete array of Lagrange's brackets may be set out thus :
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where the first constituent of each bracket taken positively is placed in the

column on the left and the second constituent in the line at the top. The

brackets in the second diagonal really contain only one term and are at once

seen to be

[a, e]
= -

[i, n] = V/ia (1
-

e*) . sin i

while the remaining three brackets contain two terms and are

[a, fl]
= V(l -e2

)/i/a (1
- cos i)

[a, -57]
-

-| V/I/a . (1
- Vl - e

2

)

- cos tVl - e
2
.

The value of the whole determinant depends simply on the constituents in

the second diagonal and is evidently

138. It is now easy to form the reciprocal determinant, the constituents

of which are the Poisson's brackets of pairs of elements. On account of the

large number of zeros in the above determinant a corresponding number of

minors vanish and the rest can be calculated without difficulty. It can in

fact be verified by simple inspection that the reciprocal determinant takes

the form :

the first constituent of each bracket (written positively) being indicated in

the column on the left and the second constituent in the top line as before.

It is also clear that the partial substitutions ( 130)

Xi = [a, O] z + [a, r] z5 + [a, e] zs

0;,= [e, ft] z4 +[e, -n^zs

10
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and

zz
=

^6
=

{a, e} #! + (e, -e)
a;2 + (t

must be equivalent, and it readily follows that

[a, ej
-

l/[a, e]
= - 2 Va//*

{e, OT}
=

l/[e, r]
= Vl &je V/ta

{i, ft}
=

1/0', H] = l/V/m(l-e
2

) sin t

{e, e]
= -

[a, w]/[a, e] [e, or]

=
(1
- \/I - e2) Vl -~>/e V/Ta,

(1
- cos i)/V/*a (1

- e
2
) sin i

{*, 6}
= -

{[a, O] [e, w] - [e, SI] [a, w]}/[a, e] [e, *] [i, SI]

=
(I cos i)l\lp.a (1 e2

) sin i.

The six Poisson's brackets are thus all known.

139. A solution of the
'

Hamilton-Jacobi equation, involving the six

arbitrary constants a, az ,
as , /3, yS2 , /r?3 ,

has been found for the case of un-

disturbed elliptic motion relative to the Sun. When the action of the other

planets is taken into account, the potential energy U becomes U R,

where R is the disturbing function and is expressed by ( 23)

Hence H becomes H R and consequently by 127 the constants of the

approximate problem are in the more complete problem subject to variations

which are defined by the equations

dar__'dJR d/3r _ dR.

dt
~

8/3r
'

dt
~ +

dor
'

Here R is supposed to be expressed in terms of the constants mentioned in

136, which refer to the motion of the planet considered undisturbed, and

the time as it occurs in the expression of the coordinates of the disturbing

planets. When instead of the canonical constants arising in the solution of

the Hamilton-Jacobi equation the ordinary elements of elliptic motion are

employed, the equations for the variations are no longer of the above simple

type, but take the more complicated form

dAr - SU A}
dR

~dt
~ ~

7 [A" A l dA s

where A r represents any one of such elements. Since we have found the

expressions for all the Poisson's brackets, the equations for the variation of
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the usual elliptic elements can at once be written down in an explicit form.

They are as follows :

da - 'dR

dt
=

A slight simplification has been made by writing sin
<j>

in place of e in the

coefficients of the partial differentials of R.

140. The above set of equations for the variations of the elements is

fundamental. An important point must be noticed in regard to them. The

variation of a entails' a corresponding variation of n which is determined by
the relation nza3 =

/u. , Now the disturbing function R is a periodic function

of the mean anomaly and is expressed in terms of circular functions of mul-

tiples of nt. Hence the derivative of R with respect to a would contain the

same circular functions multiplied by t and this introduction of terms not

purely periodic would be inconvenient. The difficulty is avoided by an

artifice which should be carefully noted.

We consider n (as distinct from a) to occur only in the arguments of these

periodic terms. Otherwise a is used explicitly or if it is more convenient to

use n outside the arguments, n is simply a function of a given by n?a?
p,.

Now e enters into R only in the form nt + e through the mean anomaly,
so that

de t \9w/ a =const.

Hence
de , r-rr dR

-j-(fdR\ dn/dR\ }a//J ' --
jw=con8t

+
da (dn J a=const J

+ ' '

dR\ dn
d_R[

dR\
-7r-

dajn=c

^^/dR\ dn da

da' dt

102
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or

de . dn , ii- idR^

If then we take e instead of e, where

de .dn _ de

dt
+t

~dt

=
dt

,,t
= e' +

fn
dt

the form of the above equations for the variations of the six elements will be

unaltered, since

9e 9e'

but their natural meaning will be so far altered that (1) n in the mean

anomaly is not to be varied in forming the derivative with respect to a, and

(2) nt in the mean anomaly is to be replaced by Indt. The secular terms

which would arise from the cause mentioned are thus avoided.

The value of n is deduced directly from the value of a, and we have

If this integral be denoted by p we have also
'

d*P i r~r* da 3

or

= _ 3 ffiw?,
JJa2 9e

which gives the finite variation of this part of the mean longitude in the

disturbed orbit.

141. When e (and therefore 0) is small, and this is commonly the case,

the coefficients in the variations of e and TS which contain cot < as a factor

become large. This gives rise to a difficulty which can be avoided by intro-

ducing the transformation

/tj
= e sin TS, k^ = e cos TS.

The result of making this change, which can be verified without difficulty, is

to substitute for the corresponding pair of equations

dhi _ cos < dR ki tan |i dR ^ cos
<j>

dR

dt \/fj,a

'

dfa cos $ V/i

'

di 2 cos2
< Vyua de

dki__cos<f> dR _ Ajtan^i dR _ kv cos (/>
dR

dt V/Lta

'

9^ cos
<f> >J~jJua

'

di 2 cos2
< V/ta de
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Similarly, when the angle between the plane of the orbit and the plane of

reference is small, a pair of coefficients in the variations of i and H become

large, and the transformation

/*2
= sin i sin fl, k2

= sin i cos fi

is useful. The result, which can be verified with equal ease, is to replace

the equations named by the pair

, cost* /9JR dR\

dt cos < V/x,a dk2 2 cos2
i cos

</> V//,a Vdsr 9e /

(dR c_R\aR

dt cos)VLta dh2 2cos2 tcos< Vyua ^ta- 9e /

142. Another form of the equations for the variations of the elements,

in which the disturbing forces appear explicitly, is of great importance. Let

8, T be the components of these forces in the plane of the orbit along the

radius vector and perpendicular to it, and W the component normal to the

plane. Let u be the argument of latitude and (X, p, v) the direction cosines

of the radius vector, so that ( 65)

X = cos u cos fl sin u sin fl cos i

p,
= cos u sin O + sin u cos U cos i

v = sin u sin i.

The direction cosines of the transversal and of the normal to the plane may
be written

a\ a/* dv 1 9X 1 da 1 dv
, , ;r- and -S- srr ,

-i-- ^fr ,
~-

^T-
du du ci* sin w 3i sin M 3i sin u di

which must satisfy the conditions

If cr be any one of the elliptic elements, we have also

dR_dR dx dR dy dR 9*

da-
~

dx
'

da-
+

dy
'

da-
+

~dz
'

d<r
'

But the component of the disturbing forces along the axis of # is

Hence

u sin u oi

rW ^ /ax ax

sin u
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by the conditions mentioned. Now

r = a(l-e cos E), tan \w = fj(T- )
tan \E

In accordance with 140 we treat n, as it occurs implicitly in u, as inde-

pendent of a, and replace nt by Indt.

Hence

^R__ s ^_rS
da

~~

da a

i smt*

a.R _ rs ax /ax _ ax\ rir s ax /ax _ ax

an~ -aw \aa~aw/
+
slnw W Van "aw.

(since X contains n both explicitly and implicitly through u)

^M i\+
rW

2 (**-**
as anj

~
I sln^

*
1% an

= rl7

(cos i 1 ) + - (- sin u cos u sin i)
sin w v

= 2rT sin2

%i rW cos u sin i.

The remaining elements enter into (X, JJL, v) only implicitly through u, so

that in their case

= C 4. T^ 4-'

do- do- du
'

do- sin u ar du da-

Hence

3^ . ^dE ndw dE
^r = S.aesmE-^ + rT^=,.~de de dE de

= S . a2 e sin E/r + aT sin w/sin E
= aS tan $ sin w + aT sec

<j> (1 + e cos w).

Since r and w are both functions of e - w,
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and finally

dR dr dw

sin

-m E +
'

,-
-_ ^1 - e cos E) \l-ecosE I -

e-cosE l+ecosw
+ rTsm

= aS cos w + rT sin w (2 + e cos w) sec2
<^>.

It only remains to carry the expressions found for the derivatives of R into

the equations of 139 for the variations of the elements. The results are as

follows :

da

-^
= 2 Va3

//* [8 tan sin w + T sec (1 + e cos
;)}

^7
=

Va//* cos
</> {$ sin w +

= rW cos w/cos ^ V/i

- = rW sin w/cos <f>
sin t V

-IT-
=

{

jt

=- ZrSI^TJM + 2 sin2

<f>^ + 2 cos sin2^^ .

From the first two equations we get for the variation of the parameter

It has been convenient to derive the above important set of equations from

those which involve the derivatives of the disturbing function. But their

form would be the same if the components of the forces were not such as can

be expressed as the differentials of a single function. Thus they hold, for

example, in the case of elliptic motion disturbed by a resisting medium.

Since n2a3 = ^ is constant, the equation for the variation of a may be

replaced by

-- = 3 {S sin
(/>

sin w + T (1 + e cos w)} /a cos <.
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Also

-j- (e w) = 2r>S
Y

/V(Ata )
~~ cos $ ~JT + r^ sm w ^an J*/V(/4C

=
{(a cos

2

^>
cos w - 2r sin <f>)8 rT sin w (2 + e cos w)}/sin

which gives the variation of the mean anomaly,

dM d ,

part of the variation of nt being included in e as explained in 140 and

mentioned above.

143. It has been seen in 139 how the canonical solution of the problem
of undisturbed elliptic motion leads to the canonical equations appropriate to

the form of motion which .follows from the introduction of disturbing forces.

With a slight change of notation,

L = a = V(/Aa)>
I = nt ft

= e - iff + nt

e g= -/ 2
= *r-

H= as
=

V{/"a (1
- e2

)} cos i, h= - & = O

and the canonical equations become

dL _ dR <M__dR
~dt ~~dl' dt~~dL

dG = dR dg =_m
dt

~
dg

' dt~ dG

dH_dR dh__dR
dt ~dh ' dt~ dH'

But there is here a change in the meaning of R due to replacing the element

ft by the mean anomaly I. If the disturbing function in the usual form

quoted in 139 be denoted by R ,
the variation of I follows from

d ., dR dR dRo

dt
(l
-

ni}
=
-ZL> ZL

=
dL-

n

and therefore

R = RO - IndL = R - lp?L-*dL = R + ^/2L".

This change in R has no effect in the other equations, and since R is a

function of e - w + nt, dR/dl is the same thing as -
dR/dfi. The above

canonical equations are precisely those on which Delaunay's theory of the

Moon is based.

Without changing L let the transformation

L-G = ply G H = p2> -g-h=a) 1 ,
-h = a><,,
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be made. Then

\dL + co.dp, + a>2dp2
-
(IdL +gdG + hdH) =

and this expression is therefore a perfect differential. Hence by 125 the

transformation from the variables

L,G,H, l,g,h
to the variables

L, p lt pt ; X, oh, w 2

is one which leaves the equations of motion in the canonical form. The

angle A, = e + nt is the mean longitude, and a) l
= -

TV, &>2
= H are the longi-

tudes of perihelion and the node, reversed in sign.

Again, consider the transformation

% (2/3)* cos &>, ij
=

(2p)
2
sin o>.

In this case

Tjdgwdp = 2/3 sin2 cadco -f sin o> cos wdp a>dp

= d [p (| sin 2w - &))}

is a perfect differential. Hence the variables L, p 1 , p.2 ; \, wl , &>2 can be

changed to

*'> ?1> ?2 j \ Vl' ^2

and the canonical form of the equations will still be preserved. These

variables have been used extensively by Poincare. Since

(sin(f)
=

e), %!, rjl are of the order of the eccentricity, and are called by him
the eccentric variables. Similarly, since

2 , r)z are of the same order as the inclination, and are therefore called the

oblique variables.

144. The account which will be given of the lunar theory in later

chapters will be based on a method which is quite different from Delaunay's.
But the latter is in reality very general and therefore Delaunay's mode of

integrating the canonical equations of the previous section will now be

indicated. The form of the disturbing function will be taken to be

R = - B - A cos (iJ + izg + i3h + i*n't + q) + Rl

where R! represents an aggregate of periodic terms similar to the one written

down and n', q are constants. The term B and the coefficients A are

functions of L, G, H only and in comparison with B these coefficients are

small quantities of definite orders. Let
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Then the variables

L, G,H; l,g,k
can be replaced by

L,G',H'; irl

0,,g,h

provided

is a perfect differential
;
and this condition is clearly satisfied if

G' = G- irl

i*L, H' = H- ir^L

for then dW = 0. If now R! = 0, a solution of the problem can be found.

For corresponding to the equation

R = - B-Acos(01 + i4 n't + q)

the Hamilton-Jacobi equation takes the form

B A cos (, -5-,- + i4 n't + q } + -= =
\ OJU J 01

and a solution involving three ctmstants C, g, h' is

W-Ct.+ \{+l0dL - irl

L(i4 n't + q)+g'G' + h'H'

provided
-B-Acos0 + C- irlL . i4ri = 0.

This equation, which is in fact one integral, may be written

C = B
l + A cos 6, Bl

= B + itn' . irlL.

The solution, by 126, takes the form (a,
= C, g, h'

; &. = c,
-

G',
-
H')

t + c
l = 1

G' = const., q = g' + ij~
l
^-7r. 0dL
oG J

H' = const., h = h' + irl

^rr, {odL
vtL J

The lower limit of the integral involved is a function of (7, G', H', but the

integral is so defined that the integrand 6 vanishes at this limit. The
solution can also be written

30
,-* =
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At this point (C, g', h'
; c, G', H'} are absolute constants, resulting from

the solution of a Hamilton-Jacobi equation when the Hamiltonian function is

R R^. Hence, by 127, the further treatment of the problem depends on

taking these constants as new variables, and solving the canonical system

dC_ dRi dG' _ aRj dH^_ aRj

dt~ ~8cT' ~~dt~ ty
r> W~ W

dc _ _ dR, dg' _ _ dRj. dh' __3Ri
di
~ ~

~dC
' ~St~~^G" ~dt~~ dH'

'

But circumstances now arise which require further examination. For R1 is

now a function of the new variables, instead of the old, and the form of the

function is important.

145. In the partial solution

C = B, + A cos 6,
= V [A* -(G- B^} = Asin0

where Bl} A are functions of (and the constants C, G', H'), and
,

are

functions of t to be determined. The forms to be expected may be seen in

this way. The above equations give

6=/(cos6>), -f'(cos8) t̂

= A

and therefore

Cos 0) d6 = 0/0 + ^tr sin r0

when vanishes with t + c. Hence -
(t + c) is an odd periodic function

of and therefore of X = (t + c). Thus, Q being some constant,

= \ + 20f sin r\,. \ = (t + c)

and
6 =/(cos 0)

= + 2 r cos r\.

These forms, which without a critical examination of the conditions have

only been made plausible, are actually found in practice. It follows that

L = i, eo + ^2e,.cos r\, G= G'+i2 +i22 rcosr\, H= H'+i3

W Asin0 - .= 9 +9 (< + c> + %.-sm r\

= h'+ hQ (t + c} + Hhr sin r\&,
JoH

, .

oH

and the original variable I is given by

i-L I
= i4 n't q i%g i3h

= \ i4 n't -q-i2 {ff'+g (t+ c)} i, \h'+h (t+c)} + 2 (0r-i2gr
- i3 h,.) sin r\.
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Now, since 6 and contain G, G', H', these constants also enter into <7 ,
h

and therefore into the coefficients of t in the arguments of the terms in R
T .

Henee t will appear outside the circular functions in the derivatives of R
:

with respect to C, G', H'. This inconvenient circumstance must be avoided

by a change of variables. Now

d 0d = ed-(t + c)dC+(g-g')dG' + (h-h')dH'

by the form of the partial solution, and therefore

d (Ct -!d0}=-dd- cdC + (g- g') dG' + (h
-

h') dH' + Cdt.

This is a perfect differential and when each side is expanded in the form of

a secular and a periodic part, the same must clearly hold true for each part

separately, at least when the number of periodic terms is finite
;
and in

practice the remainder after a certain number of terms must be treated as

negligible. But

d6@
-j-

= (B + ^ r cos rX) (1 + ^r6r cos rX)

= Ao + 2A, cos r\, A =
o

Hence, when the periodic terms are omitted,

Cdt - A d\ - cdC + g (t + c) dG' + hQ (t + c) dH'

is a perfect differential, to which d (A X) may be added
;
and therefore the

variables

C,G',H'\ c,g',h'

can be replaced by
A , G', H' ; X, K, T)

where
K = 9' + 9o (t + c), T)

= h' + hQ (t + c).

This follows from 125, which shows that at the same time R
}
must be

replaced by .Rj. C. All is now expressed in terms of the last set of variables,

and secular terms are thus removed from the arguments of the terms in Rlf

It is convenient to make a final simple transformation. Since

(ijV X) dA + i2 KdA. + i3rjdA = d {A (i4nt + q)} + i^n'A dt

if

ijX' = X IZ K - i.r) i4 n't q
the variables

A
, G', H'; X, K, rj

can be replaced by

A'^Ao, G" = G' + izA ,
H" = H' + i,A

; \',tc,>n

but at the same time it is necessary to add t4w'A to Jj - C. Thus finally, if
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the system of canonical equations

ctA oR dG oR dH oR
dt 9X'

'

dt die
'

dt dr)

d\' _ dR' die _ dR' dtj _ dR'

~dt~~dK" ~dt

=
~dG 7"

di
=
~dIT"

is obtained.

146. If the value of X' be compared with the expression for I in terms of

X it will now be seen that

,
izg t

. 4h,} sin ?-X

and thus X' and I differ only by periodic terms. The same is true of K, g and

t], h. The periodic terms would disappear with A, as also those in and 0,

and A would coincide with and . Hence the final variables are the

same as the original variables when A = 0. The form of R' differs from that

t)f R mainly in the complete removal of the term A cos 6, and naturally the

most important term will be first selected for elimination. Periodic terms

will be introduced into the arguments of R', but it is easily seen that on

expansion they give rise to periodic terms of a higher order than A cos 6.

The same process can be repeated indefinitely, until all sensible terms are

one by one removed, together with those of a higher order introduced at an

earlier stage. It has been assumed that ^ is not zero. If ^ = 0, izg or ish

can take the place of i\ 1. There are also terms for which ^ = iz = iz = 0. In

the lunar problem these depend on the mean longitude of the Sun and are

removed by a single preliminary operation analogous to the above.

Delaunay's expression for the disturbing function contains over 300

periodic terms, and their removal involves practically 500 operations of the

above kind, reduced to the application of a set of formal rules. This

immensely laborious task was carried out unaided. But the result is the

most perfect analytical solution which has yet been found for the satellite

type of motion in the problem of three bodies. The solution is not limited

to the actual case of the Moon, since it is expressed in general algebraic

terms. The satellite type of motion may indeed be defined as that type for

which the Delaunay expansions are valid. It seems an interesting problem
of the future whether such satellites as Jupiter VIII and IX will be found

to satisfy this definition. Their conditions differ widely from those of the

lunar problem, in particular in the fact that the motions are retrograde.



CHAPTEE XIV

THE DISTURBING FUNCTION

147. The development of the disturbing function R in a suitable form

gives rise to many difficulties, partly of analysis, partly of practical computa-

tion, and is the subject of an extensive literature*. It is possible to deal

here only with a few of the more important points.

The principal part of the disturbing function for two planets involves the

expansion of A"1

,
the reciprocal of their mutual distance. It is therefore

important to consider the nature of this expansion, or rather of A~M in

general, where s is half an odd integer. For this more general form will

give the derivatives of A" 1

,
A 2

being a rational quantity, and these will

naturally occur when A~ ]
is expanded in terms of any contained parameter.

It is convenient to consider first the case of two circular, coplanar orbits.

Then, ifH is the difference of longitude in the plane,

A2 =
ttj

2 + 2
2 -

2a, a2 cosH
ax ,

a2 being the radii of the orbits. Let

a1 < 2 ,
'= a1 /a2 ,

iH log z, t
2 = 1

and therefore

a,-
8A 2 = 1 + a2 ^- 2a cosH =

(1
-

out) (1
- aer 1

).

Hence the function to be examined is

F~s =
(1
-

az)- (1
- a*- 1

)-*
= \ i bjz*

- 00

= (1 + a2 - 2a cos H)~s = %bs + 2 6,* cos iH.
i

Since the function is unaltered when z and z~^ are interchanged, bs

~ i = bg
i

,

and i may be treated as positive. The coefficients bg
{ are called Laplace's

coefficients. By Fourier's theorem,

(1)

Cf. H. v. Zeipel, Encykl. der Math. Wiss., vi, 2, pp. 560-665.

-
j (1 + a2 - 2o cos t)~* cos itdt

7T Jo
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The first (complex) integral is due to Cauchy ;
the path of integration is

taken round a circle of unit radius. By introducing the Weierstrassian

elliptic function

<$ (u)
= z - i

( + a-1

)

Cauchy's integral clearly becomes an elliptic function, and Poincare has

shown how this function can be reduced to a calculable form. But another

method will be followed here.

The coefficients &/' are easily developed as power series in a". For, with

the use of gamma functions,

and therefore, when p = q + i,

But this can be recognized as a hypergeometric series, and when it is

expressed in the ordinary notation,

By the known properties of the hypergeometric series, this expansion is

convergent when a < 1. There are many equivalent forms, but (2) is enough
for the present purpose.

148. Laplace's coefficients are subject to several formulae of recurrence,

which facilitate their calculation. That such exist follows from the known

relations between sets of three contiguous hypergeometric functions. Instead

of finding them directly, a more general function

may be considered, for this reduces to 6/ when j
= Q. In the integral (])

write z = of, and then

irr*6.*=
f(i

- o-o- (i
- rv r'-^r.

It follows that

TO-W =
^tL> I

(i
_ a^)-^' (l

_
f-i)-

The equivalent forms
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show at once that |

***B i

t

- l ' J+1 -#B i

;
s+1

(3)

Again,

afK
1 -*

When these expressions are integrated along a path lying between the limits

1 <
j |

< or2
,
where the functions are regular, the first integrand returns to

its original value. Therefore

t
l
~ l > j =

. . .(4)

The identity

a -a-o-"--^ --')- (r'-"-
1

= (1
-

a^)'"--'-
1

(1
- r 1

)"-
1

{(1

gives similarly* on integration

and after eliminating the last term by means of (4) with s + 1 in the place of s,

When j = 0, (4) and (5) give formulae which apply to Laplace's coefficients.

Derivatives of the latter with respect to a can then be expressed as linear

functions of Bj>i.

149. Newcomb's method of calculating the coefficients b,\ together with

their derivatives in the form subsequently required, can now be explained.

Let

. 2s = n, B = 4~, D = a^ = 2tf.&
d-y? da.

and let

This is not Newcomb's definition of cn*-J, but it is the equivalent. Thus

D cn '.>'= {J(- 1) +i + 2j} cji + cn
^+1

and therefore

D*+V.' ={*(-!) + + 2/}D*cB
*-^ + -D*cB^+1 ............ (6)

so that these derivatives of a higher order are easily deduced from those of

the next lower order. Let
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and then, by (4),

where

P i,j_

The development is to be carried to a definite order fixed by i = fc, say 11.

In the first place pn
k>i is calculated for the required values of n,j by a direct

method. Next pn
k~l

>i, ..., pn
l 'J are deduced in succession by (7). For i = 1,

s =
-|,

the formula (3) becomes

The first coefficient d ' is calculated directly. Then (8) gives Ci
0> ?'

(j
= 1, 2, . . . )

in succession. The formula (5), when i = 0, gives

9)
iwO + (j + Jn)

2

]
- \n (j + n)o^g

whence cn0> ^
(
= 3, 5, ...) are found in succession. It only remains to form

cni>; = pn'*Cn~
1 '*'

(*'
= 1> 2, ...) and the calculation is then complete. The

successive derivatives are finally derived by the use of (6).

The employment of a chain of recurrence formulae in practical computa-
tions requires care, because they are apt to involve an accumulation of

numerical error. It is the merit of Newcomb's method here described that

it is not only simple but very accurate.

150. The quantities which must be calculated directly are Ci
>0 andpn

k
>J,

where n=l, 3, ...,^'
= 0, 1, 2, ..., and k is the highest-value of i to which the

expansion is carried. Now

c,.
o = 6i = - ! "(1 + a2 - 2a cos t)-*dt

7T .' o

a complete elliptic integral which can be found in a great variety of ways.

Newcomb commends for the purpose the arithmetic-geometric mean, which

follows from the identity

I (an
2 cos2

(j>
+ bn

* sin2

<j>)

~
$ dd> = I (a\+1 cos

2^ + b2n+1 sin2

Jo Jo

where

2an+1 = an + bn , b\+l
= an bn .

P.D. A. 11
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This is obtained immediately by the transformation of Gauss

. 2an sin
\|r

n * = ST:r6n)cos
2^ + 2an sm2t

and can be extended indefinitely by successive steps. It is obvious that the

sequences an ,
bn have a common limit A and hence that the value of the

integral is irj^A: In the present case

ch = 1 - a, &!
= 1 + a, c,

- = 2J.- 1

and this indicates one way in which Cj
- is easily obtained.

The calculation of pn
k'J is based on the hypergeometric series (2). It is

clear that

BF(s, s+i, i + 1, a2
)
= 8

^

8

^F(8 + 1, s + i+ I, i + 2, a2

)

and therefore generally

r (s)

'

r (s + i}

'

r (i +j + 1)

Hence, by (2),

and therefore, since n = 2s,

, i+j + I, a2
)

'

F(|n+j, in + t + j -1, t' + Ta2
)

'

The quotient of the two hypergeometric series can be converted into a

continued fraction by a known theorem* of Gauss, and as it converges

rapidly a few terms suffice to give its value. By this method Newcomb
determined the required values ofpn

k
>i.

151. In order to obtain the desired form of the continued fraction it

is not necessary to introduce the hypergeometric series. By (3) and the

following equation,

Pn-t i-l,j

and by (4),

*
Chrystal's Algebra, n, p. 495.
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These are three linear equations in Bs
i+l>i+l

, B^1

, Bj- l

>>+\ which can be

eliminated. The result may be expressed in the form :

After expansion and division by (1
- a2

) this gives

{( -+ 1)K
+1'' -

f K - s + !)ri-2
2 -

(' + j + 1)1

Therefore (7) gives (2s
=

n)

(t+.; + g-l)a (a +j) (I
-

s) a?

i+j (i
~

1- l-

+ s-l)a (s+j)(l- *)o? (i-g +1 ) (t +j + g) a
2

'
~

1- 1- 1-

and this is the required form. The relation between the alternate constituents

is obvious enough, for the substitution of j + 2 forj and n 2 for n (or s 1

for *) clearly has the effect of increasing each factor by 1 in the numerators

and by 2 in the denominators. As i = k is a fairly large number in the direct

calculation of pj'i, the even constituents are small and the calculation is

based on an odd number of terms (generally five). With the use of subtraction

logarithms the process is rapid.

152. The next step is to consider two circular orbits in planes inclined at

an angle J". Let L lt L2 be the longitudes in the two planes, reckoned from

the common node, and let

x = L! L2 , y= Ll + Lz .

Then the angular distance between the planets is given by

cosH = cos L
l cos Ly + sin L 1 sin L2 cos J

=
/A cos x + v cos y

112
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and

a2A-1 =
(1 + a2 - 2a cos H)

~
*

= &> + 2 2 6*- cos ix + 2 S &0> j
cosjy + 42 2 6W cos ias cosjy

i=l .7
= 1 i=lj=l

where
1 f"' f*'

bij I I (a2A"1

) cos t# cosj?/ da; dy.
7T Jo J

When *> is small A"1 can be expanded in powers of v. Thus

OBA"1 =
{1 + a2 2a cos x - 2av (cos y cos #)}

"
*

~ cos *)n (1 + a2~ 2a cos^
" n "

*
-

where
ta; = log , ty

=
log ?;, t

2 = 1.

It is only necessary to compare the coefficients of V. in these expressions in

order to have &*'>' as a power series in v, the coefficients being functions of a.

Thus, for example; as far as v",

26^ 2 = faV 6
f
*-....

It is easy to continue these developments further, and this is the method

used by Le Verrier and Newcomb. But its validity is limited. The binomial

expansion (10) of a2A-1
is convergent only when

1 + a2 2a cos as

v <
2a (cos y cos x)

and since the most unfavourable case, cos x = - cosy = 1, must be included

sin2

1.7" =i/<(l -a)
2

/4a.

It has been proved by H. v. Zeipel that the same limit applies to the

expansion of Jacobi's coefficients fr-i. This condition is satisfied in all cases

by the small inclinations of the orbital planes of the major planets.

153. Among the orbits of the minor planets, however, are some whose

inclinations to the plane of Jupiter exceed the above limit. It is therefore

desirable to find a more general form of development. Let

F~* = (1 + a2 -
2ao-)- = %Cs

n
a.
n

.
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The coefficients G8
n are polynomials in a-, which are in fact Legendre's poly-

nomials when s = . Differentiation with respect to or and log a gives

-= 2 nCg
n

o.
n =

(a- a) (1 + a2
2our)

- 2 n*Cs
n an = (a-

-
2o) (1 + a2 -

2ao-) + 2 (s + 1) a (a
-

o-)
2

=
(o- + 2sa) (1 + a2 -

2a<r)
- 2 (s + 1) a (1

- a 2
)

= F*+n-

~
2sa

Hence C,
H
satisfies the differential equation

^72/7 ^/r'

(11)

Now in the present case

a = cos -fiT =
/u.
cos a? + i/ cos y

and the problem is to develop Cs
n in the form

C(o) = 2 ^ n
i_,-costa;cosJ2/ ..................... (12)

where the coefficients A\j, considered generally as functions of
/A, v, are

Appell's hypergeometric series in two variables
yu,

2
,

i/
2
. But the solutions

required can be deduced from the well known equation (11) by a certain

treatment. It will be seen that this treatment is very special, but it is

adequate for the purpose in view.

Let /x, v, which are not in fact independent, for /A + v = 1, be .considered as

functions of a variable t. Their derivatives with respect to t will be denoted

by /*', //', v, v". Then

32 dC
,

d*C
_ = a cos a? -5- + u? sm2 x -j;

dx- do- da-2

&C dC d2C

8(7

d2C , dC ^ d*C

-^
=

(ji" cosx + v' cos y)
-j-

+ (/A cos x + i/ cos y)
2

^-i
.

It will now be seen that if with the help of these equations a partial

differential equation can be deduced from (11), such that <r, cos a; and cosy
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do not appear in it, a differential equation satisfied by A n
ij will be deducible

on comparing the coefficients of cos ix cosjy. Now

n (n + 2s) G = (p? cos2 x + v2 cos2

y 1 + 2p,v cos # cos y) -^^

+ (2s + 1) (p. cos x + v cos y} -j-
a<7

ttv 92
<7 d2<7 IM;=

-7-^ ;
+ -T~^ [/u,

2 cos2 a1 + f2 cos2

y 1 ^-7-7 (p,
2 cos2 ^ + v 2 cos2

^/)]

+ -j (2s + 1) (/A cos x + v cos y) ^7-7 (pf' cos x + v" cos v)
dcf

\_ p,v

=
7-5 H MU,

2 + I/
2 1 ^7-7 (p!~ + I/'

2

)

92
(7 1 82

(7\

O
y , )

f u.
, ) 1

2su, 7. (/x/i At
2
)h cos a? -f ! 2sv r

-
; (z/^ ^ 2

) > cos y
p,v^ '} ( p, v

'}

and therefore if

//i/

the equation takes the required form

154. At present /j,
and v are any functions of t. Let

/*
= (1-^X1 -ft), ^=^p2 .

Then it will easily be found that the first condition becomes

4>fjifi'vv'M
=

(p 1
-

p.2y fr'pt
= 0.

Hence either pl
=
p2 or

/?2
is independent of t. The first case has the more

obvious importance since it gives directly

V = p!
= sin2

^J, /J,
= 1 -

p!
= COS2

| J.

The second condition may be written

(14)
yU Z/ /AI/ fJLV

and the right-hand vanishes because /A -f p = 1. Hence the method can only
be pursued further when s = ,

but this happens to be the most important

special case. If now t = v, v = // = 1, p,"
= v" = 0, and the partial differential

equation (13) in C becomes
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On inserting the series (12) and comparing the coefficients of cosix cosjy this

gives

But the direct expansion of F~s shows that since cos ix cosjy arises from

terms of the form (i^cosa; + vcosy), A n
it j

must contain /*
1V as a factor. It

is therefore proper to write

4\,-(l-OMB\j
and this gives, with a little reduction,

Now JS\ j
is a polynomial in v with a constant term, and this equation gives

the law of its coefficients. But the equation is clearly of the form satisfied

by a hypergeometric series. Hence

A\ j
= c f

jL
i

vJF(i+j-n, i+j + l+n, 2J + 1, v) .........(15)

where c is a constant depending on i,j, n. This gives the form of Hansen's

development in powers of a, namely

dzA"1 = 2 an . An
i, j

cos ix cosjy, (n > i + j).
n, i, j

The determination of the constant c may be deferred.

155. This is the simplest, most obvious application of the method. But

its possibilities, though limited, are not exhausted. The first condition for

its use is also satisfied by making p2 a constant. This may be expressed by

P!
= sin2

^J, p2
= sin2

-|
J

, fi
= cos \J cos \J ,

v = sin J sin %J

where Jo is to be treated initially as constant, though finally it will be

identified with J. The relation p + v = 1 no longer holds formally, but is

replaced by
. /i

2

/cos
2

|J + z^/sin
2 J = 1

and the result of differentiating this twice with respect to t and eliminating

tan^J shows that the right-hand side of the second condition (14) is 1.

Therefore s = 1. At first sight this case has no present interest, since is

not half an odd integer, but the reason for considering it further will be

seen later.

The development will be in powers of sin2

^J as before, but it will be

convenient first to make t = ^J, so that

p! = sin |J cos ^J , v = cos ^J sin |J , //'= yu,,
v"= v.
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Then the partial differential equation (13) for C becomes

dy*

The form of the solution resembles the previous case, suggesting

(7=2 p,
i vjTn

it j
cos ix cosjy

i,J

and the comparison of coefficients of cos ix cosjy after the substitution gives

dTn --

Now let the independent variable be changed to r = sin2 = sin2

^./, so that

and the previous equation becomes

Now T\j is a polynomial in r with a constant term, and this equation
determines the formation of its coefficients. But again it is an equation
of the type satisfied by a hypergeometric series. Hence

vfi+j-n i+j+2+n= Cl
V 2

'

~
2 >J+ ' T

where Ci is independent of T. But
/u.
and y, and therefore T\j, involve J9

symmetrically with J, and therefore it is evident that cx contains as a factor

the same polynomial with T replaced by T = sin2

|J
r

. Hence

where c2 is a constant independent of r and TO . This is clearly general,

whatever the values of J and J . A return to the actual problem can now

be made by putting J = J, and then r = v and

which gives the form of expansion

a2
2A~2 = S an . Tn

iii7

-

",t,J

(i +j< 11).
The form of proof is essentially that of Stieltjes. The squared

(terminating) hypergeometric series is a polynomial of Tisserand.

The more general utility of this result will now be easily seen. For

a,,
2A~2 = (1 + a2 - 2a cosH)-

1 =
(1
-

a?)"
1

(1
- O2~1

)-
1

= {2(1- az)-
1 - z~ l

(1
- a*-1

)-
1

} (z
- z~^

= 2a.n (Z
n+l - Z~n

~
l

) (Z
- Z~ l

)~
l

n

= ^an
. sin (n + 1) H/sin. H.
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Hence, by comparing the coefficients of an
,

sin (n + 1) H/smH = 2 T\J(J?V* cos ix cosjy.

But

r 1

A)-* = &, + bs
n cosw#

i

= $bs + 2 1 6," {sin (w + 1) # - sin (n
-

1) #}/sinH
and therefore

(o^-
]

A)-* = 1&/ + 1 1 fc, 2 (T? ,

- 2
1

?:
2

) i* v
j cos tar cosjy . . .(16)

=i *,y

which is Tisserand's development in a series of Laplace's coefficients.

156. To complete the result it is necessary to find the numerical factor c2 .

Now the final term of F( a, & 7, as), a, ft, 7 being positive integers, is

l)!(/3-l)!
V

Hence the term containing the highest power of v in T^fifv* is

/

.

But
tto

2A~2 =
[1 + a2 2a cos # 2av (cos y cos x)}~

1

= 2 (2oi/)
m
(cos y

- cos a;)
m

(1 + a2 - 2* cos a)-- 1

and the highest power of v associated with ow is given by the terms

(cos y - costf)" (2z/)
n=

(r, +^ -
%
-
f-

1

)" vn

(_ t\n-m (_ t~\-k
'

when
m = (j-i + n), k = \(n-

The same terms appear in the form

2 2'
n

j ,/V cos ia? cosjy = K S Tn
{ ,-

<,y <,y

where ;
= 1 when t and j

= 0, * = | when i or j
= 0, and K = otherwise. The

highest power of v has already been found in this form, and comparison of the

coefficients of v^Qrf gives finally

The development (16) is now completely defined.
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The numerical factor c in Hansen's development (15) can be found

similarly. For the term containing the highest power of v in A\j is

On the other hand the terms associated with an and the highest power of v
"1 are by (10) contained in

and these are now known. As before, the coefficients of i/
nfV i tne two

forms of a2A"1 can be compared, and thus

(-iy(nl) T (n + J)

where II denotes the product of four factorial factors. Now (/?
i j) is

an integer, ?i - i j is even, and the sign is the same on both sides. Also

r (n + 1)
= n !, 2 s* r (w + ) . n !

= T () . (2w) !.

Hence finally

~1__ (it + 1 +j) ! (n - i +j) !__
! [i (n + i +j)J Ift (n

- i + j)] ! ft (n + -
j)] ! [i (n

- i - j)] !

which completes the determination of Hansen's development.

The results obtained for inclined circular orbits may now be summarized.

Since

cos ix cosjy = cos i (L^ L2) cosj (L-i + L2}

= \ cos [(i +j) L,
-

(i -j) L2] + i cos [(i -j) L, - (i +j) ZJ

it is possible to write

^ = ^A(p1 ,p2)\^\^, 2i=\pl+ p2 \, 2j=\ pl -p2
\

where \og\ l
= iL1 , logX2 =iZ2 ;

and it has been shown how the coefficient

A(pl ,p2) can be developed (1) in powers of v = siri*^J, (2) in powers of

a = aj/aa, (3) as a series in Laplace's coefficients.

157. The preceding developments of A"1 or A"2*
apply to circular orbits,

but they are not on that account to be regarded as mere approximations to

the forms actually appropriate to the orbits of the solar system. On the

contrary they constitute the essential source from which the latter forms

must be generated by the most convenient means. Now quite generally

A2 = r^ + r2
2 - 2rjr2 cosH

and Llt L2 must be replaced by w 1 + wl ,
w 2 + w2 ,

where w
l ,

a>z are the

longitudes of perihelion reckoned from the common node, and wl ,
w2 are the

true anomalies. When the eccentricities e^, e.2 vanish the radii rl} r2 become
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the mean distances a^, a2 >
and wlt w2 can be identified with the mean

anomalies M1} M.2 . The corresponding value of A may be written A .

Taylor's theorem can be expressed in the familiar symbolical form

f(x + y)
=

exp. (y ^)/()
- exp

which means simply that if the exponential function be expanded as though yD
were an algebraic quantity, the result otherwise known to be true is formally

reproduced. Thus generally,

where Dr operates on xr alone. Now when e l
= e2 = 0,

A -1

=/(a,, a,, A, Z2)

is an expansion of which the form has been completely determined. The

more convenient developments refer not to r a but r/a, and the change
from the argument a to the argument r is made additive by taking log a as

the variable instead of a. Thus in the present case

x^ = log al ,
#2
= lg 2, #s = L1

= ool +M1 ,
#4
= Z2

= &>2 + Jf2

n 3 8 r. 8 3
J-r\
= o 1

= ai 5 > *' =
=Ti

= ^2 ^r~
8 log ttj 8aj 8 log 2 9s

8 8D*
= zT = tXl aT'

(7A/J OAj

Then generally

A-1 J>

(rlf rl,wlf *Dt)

Fl ^1 ^ J= exp. log . A + 1R A*L i 2

But in the notation of Hansen's coefficients ( 45)

where log ^= tw, log
= tJlf. Hence in a corresponding symbolic notation,

since log x\z = i(w M),

A"1 = 2 JT^J^'
3

^j* . 2
-3T/J[jD4

*^2
J

'

./

Simplifications are now possible owing to the form of f. In the first

place A,,"
1
is homogeneous, and of degree 1, in al} a2 . Hence
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But further/has been expanded in the form

and

A* (V-

so that Z)3 , A can be replaced by tplt ip,2 ,
and A> A do not operate on \1} \2 -

Hence the symbolic form of the complete expansion becomes

A- = 2 \^X/^X^Xf^A(pl,p2)z1^
Pi Pa * J

where log Xj = i (o>i + JWi), log X; = * (&>2 + M2), log^ = t,M1} \ogz2
= iM2 ,

and

the symbols X are respectively functions of e,, A and &>, A-

158. This leads immediately to Newcomb's operators as denned by
Poincare. For the functions X can be expanded in positive powers of e,

so that

zf = $ 11,-. (A , jo o, z ft = 2 n/". (A, ^2)

where TO!
-

]

i
j,
w2

-
| j \

= 0, 2, ..., since Xin>m is of the order e ll'-ml at least.

The operators H are combined by Newcomb in the notation

n^ (A, PI) n/". (A, P,)
=
n^/

M2 = n-- n ;f

but the combined symbols, though tabulated by him over a wide range, seem

to present no practical advantage over the constituent operators.

The final form of the development of A"1 can therefore be written

A-1 = 2 V 1Vs 2 e^ej** 2 z1

izjnp> (A, fr) n/ (- 1 - A, p) A (p,, p2)

plt p.2 m
t ,m2 i,j

and the completion of this part of the problem depends on the practical

treatment of Newcomb's operators IT, which are polynomials in D, p of

degree m, with numerical coefficients.

The definition of the symbols is given by

Hence in particular

2 Hi (A 0) emzi =
(-}*, 2 H^ (0, p) emzi = f-Y

m, i \fl>/ m,i \Z J ^.

and therefore

2 H f
m
(D, p) e

mzi = 2 H/ (D, 0) e
mzi

. 2 H/ (0, p) e
n^.

m, i m, i n, j

Comparison of the coefficients of em zi on both sides then gives

n^ (A p) = 2 n/ (A o) nf -.* (o, _)
n,j

where n = 0, 1, ..., m, and ^ has all the values which make n \j\ and

m n \ij\ positive integers (including 0). This formula, due in another
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notation to Cowell, makes the calculation of IT/*
1

(D, p) depend on the

expansion of r/a and aP.

But these are known forms. The first is given by (22) in Chapter IV.

Means of deriving the latter have been given in 45. In fact

Z* == 2 nr(

and therefore it is necessary to expand X^+ in powers of e and the resulting

coefficients will represent II 4
m

(0, p). They are purely numerical and can be

tabulated for all moderate values of m, i and p. Other methods have been

suggested to facilitate the calculation of Newcomb's operators. But the

above will suffice to make clear the principles involved.

159. The disturbing function due to the complete action of a single

planet can now be considered. By (3) of 23 this is

R = Qm'
j

_ -
(xx + yy' + zz')

where (x, y, z}, (x', y', /) are the heliocentric coordinates of the disturbed and

disturbing planets ;
r' is the radius vector of the latter. The constant G

may be reduced to unity by the choice of appropriate units, and the dis-

turbing mass mf may be understood as a common factor to be restored

ultimately. Thus

R =
(r

2 + r'
2 2?V cos H)

~
* - rr'-2 cosH

where H has its previous meaning, the mutual elongation of the two planets

as seen from the Sun. The principal part, already discussed, is symmetrical
in r, r', but the indirect part is not so. Hence a distinction must be drawn,

according as the disturbing planet is superior, when r = rl} r'=r2 ,
or the

disturbing planet is inferior, when r = rz ,
r = ?v Now when the eccen-

tricities vanish, by 152,

a2A-1 = 6' + 261
' cos x + 26 - 1 cos y + ...

cosH= IM cos a; + v cos y
and

R A"1 = BR = aa'~2
(/i cos x + v cos y)

is the correction required to change A"1 into R. This can be effected by

giving corrections to 61
' and b9- 1

,
thus

= - a (a' > a) ;

- or2
(a > a')

where a < 1 always and of is the mean distance of the disturbing planet. If

these corrections are carried into the expansion in terms of v ( 152), as used in
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the chief planetary theories, it will affect the Laplace's coefficients only to

this extent :

Sb = -
a, Bb, = -2 (a > a)

86 i = - o~2
, 36 3

= - 2a-3
(a > a')

2 2

for it is easily verified that these changes will give the required corrections

to 61)0
,

b> 1
. In the exponential form they apply equally to 6~1;0

^ b'~l
,

and bi~
l
. Thus the indirect term is very simply incorporated in R

,
in

which 61
= e2

= 0, and the full expansion of R in terms of the eccentricities

can then be deduced in the manner explained for the development of A

from A .

It is most important to remark that while the indirect part modifies the

coefficients of certain elementary periodic terms, it affects in no way the

constant term which is independent of the time.

160. Another order of development is possible by expanding A"
1

initially

in terms of r^rz . If this ratio is small, as in the case of the solar perturba-

tions of the lunar orbit, this method has great advantages. By 153 this

expansion takes the form

A" 1 = 2 r1
nrs

~n~lA\ j
cos ix cosjy

, i,j

where A\j is given by (15) and a, y have their true meanings,

fPj + W2
=

&), + Wj + (&>2 + w2).

It is more convenient to use the exponential form, and with a slight change
of notation for the coefficients,

n,

where log ^ = *(<! + wj, log /j,2
= i (o>2 + w2 ),

j pl
- p2

\

= 2i, \ pl +p2
\

and n \PI\, n \p2 \

are even positive integers. Hence

. A-1 = 2 r^r.-^An ( Pl , p2)VV2 (^r1

)^ fazr
1

)*'

where logX^ 1(0)!+ M^, log7^2=i(a)2+M2), \ogzl=iM1 , \ogz2=iM2 ,

log x2
= iw2 . But this form can clearly be expressed in terms of Hansen's

coefficients. Thus

A-1 - 2 2 a1

nar1^A n (p1 ,p2)\ lP^^X 1^ l X- n
.

l

n.p^Pz 3,, 2

where q1} q2 have all integral values, positive and negative, and the symbols X
are respectively functions of elt e2 ,

while A n (p1} p2) is a function of v = sin2 %J
which has been determined.

The indirect part of the disturbing function, when i\ (< r2) refers to the

disturbed body, is clearly allowed for by simply excluding the terms cor-

responding to n = 1, for these are equal to r
j r2

~2 cos
r
.
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By either method the fundamental importance of Hansen's coefficients

and their relation to Newcomb's symbolic operators is clearly seen. Numerical

developments of their coefficients according to powers of e have been calculated

by several authors, including Gayley, Newcomb and, for the purposes of the

lunar theory, Delaunay.

161. It has been seen that the generating expansion is of the form

R = S 2A/j.p vq cos px cos qy

= S ApPifl cos [(p + q)L-(p-q) L']

where L = u> + M, L' = &>' + M '. The subsequent process introduces e, e into

the coefficient A, which already contains powers of i/=sin2
|7, and adds

multiples of M, M' to the argument. In the ordinary notation for the

elements,
eo = -57 ft: %, a*' = tff' ft' ^'

where x> x are the distances of the intersection of the orbits from their

ecliptic nodes. Hence R takes the form

R = 2 AV? VI cos \hM + h'M' + (p + q) (or -ft)

-(p-q) (v' -W)-P(X- x) - v (x + *')]

Now the two orbits with the ecliptic form a spherical triangle ABC in which

ft = X> 1> =x, c = ft 2
-

fti

A=i, B = 7r-i', C=J
where i, i' are the inclinations of the orbits to the ecliptic. Hence, as in 67,

if the intersection be taken as the ascending node of the disturbing orbit on

the disturbed orbit,

sin (% + %') sin /= sin (ft'
- H) sin (i' + i)

cos (x + %') sin | /= cos | (fl'
- H) sin (i'

-
i)

sin $(x~ %') cos I J = sm i (^'
~ ^) cos i (*' + *')

cos i (X
-

%') cos i ^= cos i (n/ ~ n) cos i (*'
~

and therefore

p* exp. i< (% + %')=sin |i
x

cos \i exp. ^ t (ft' II) sin |i cos Jt
v

exp. ^t (ft' ft)

/u^exp. -|t(% %')=cos^i'cos^iexp. |t(ft' ft)+sin^isin^t'exp. ^t(ft' ft).

It follows that

i/9 cos g (%+%') = 2 6g cos s (ft' ft), vq sin q (% + %')
= S 6g sin 5 (ft' ft)

yu,^
cos p (%-%') = 2 a cos s (ft' ft), pf sin j) (^ ^')

= S a8 sin s (ft' ft)

where as ,
bs represent simple coefficients involving i, i'. Thus ^ + x' can be

eliminated from R, which now takes the form

R = 2 ^ cos [Mf + h'M'+ (p + q)(vr- ft)
-
(p
-

ry) (OT
' -

ft')
-

(s + s') (ft'
_

ft)]
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where A now contains a, a, e, e', i, i' and also powers of v. But from the

above analogies of Delambre,

v = sin2
$ (fl

7 -
fl) sin2

(%' + i) + cos2 1 (H' - H) sin2
(i'
-

1)

=
^ (1 cos i cos t") ^ sin i sin i' cos (II' H).

Hence these powers of v can be removed from the coefficient without altering

the form of the arguments, which are only changed by the addition of some

multiples of t' H. Thus finally

R = 2 A cos [hM + h'M' +gin+ </V +/Q +/'fl']

= 2 A cos [A (w* + e) + A' (w' + e') + gw + g'-n' +/Q +/
/

n']

where the coefficient JL is now a function of a, a, e, e', i, i' only, and the

argument contains the six 'elements fl, fl', 37, zn-', e, e' and the time. And
^

this is the final form of the disturbing function, involving the twelve

elements of the two orbits explicitly, and expressed in the desired way.



CHAPTER XV

ABSOLUTE PERTURBATIONS

162. The disturbance of a purely elliptic motion may be illustrated in

a quite elementary way by supposing the motion to take place in a resisting

medium. Let the tangential resistance per unit mass be av/r
2
,
where v is the

velocity and r the radius vector, so that the radial and tangential components
are

av 1 dr a. dr OLV r d6 _ a dd

When other powers of v and r are assumed in the expression for the resistance

the general results are very much the same, and this simple form is sufficiently

typical to represent fairly an interesting problem.

Let u be the reciprocal of r and SW the work done by external forces in

a small radial or transversal displacement. Then

JW du dW dO
U

du
= -^ +a

-dt'
UW=~ aU

di

where
/u,

is the constant of attraction ; and the kinetic energy is T, where

2T= r2 + r2
<9

2= u^u? + U->0 2
.

Hence the equations of motion are

d du
(u~4

u) + 2u~5u2
-f u~3 6 2 = u, au~* -

dt dt

d _2
- d6

Now let

and the first equation of motion becomes

du\ _
,
/dii\ a

rTn TT duTT . d / TT du
Hu

de (
Hu

dB d0
or

P. D. A. 12
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But by the second equation of motion

H=h-a0
where h is constant. Hence

d*u
fj.

m^-w^st -

It is enough to retain the first power of a, so that

d zu

and the integral is

} (1)

where e and 7 are constants.

163. The osculating ellipse at the point 6 = 6l is obtained by supposing
the resisting medium to disappear at this point and the subsequent motion

under the central attraction to be undisturbed. The path is then

u = prl

{1 + el cos (0 - 7,)}.

The motion at the instant is the same in the actual trajectory (1) and in this

ellipse, and thus =
1) i( = ul ,

u and 6, and therefore H^H^ and dujdO are

the same for both curves. Let phr2 = p~
l
. Now H is the constant of areal

velocity in the ellipse, and hence

^r1 = /*#r2

=p~
l

(i
- oih-i0^.

To the first order in a then

pr1

^pi = -^ah-l
1 .

Again, by equating the values of u and dujdO,

pr1

{1 + el cos (#!
-
70} = p~

l

[l + e cos (^ - 7) + Zah~ l

0,}

^r1

{

- el sin (01
-

y,)}
=p'

1

{
~e sin (01

-
7) + 2a&-1

}

and to the first order in a

el cos (0j
- yO = e cos (6^

-
7)
- ^ah~ l e&l cos (0!

-
7)

<?! sin (0j 7j)
= e sin (0!

-
7)
- 2aA-1 2ah-1 ed1 sin (0j

-
7).

Hence

B! cos (7j 7) = e - 2aA~ 1 e01 2ah~l sin (0j
-
7)

el sin (7!
-

7) = Sa^- 1 e cos (0X
-
7)

and, still to the first order,

Aea
= - 2aA-' [e0l + sin (0!

-
7)}

Ay, = 2a&~1 cos (0,
-

7).

Between these terms an important practical distinction is at once apparent.
That in Aet depending on 1 will diminish the eccentricity indefinitely until

the orbit becomes circular. It is a secular term. The other terms are
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periodic, and when a is small their effect, not being cumulative, is small also.

In practical applications, to Encke's comet for example, they can be neglected.
Then^ = and the direction of the apsidal line is unaffected by the resist-

ing medium.

In a complete revolution the secular effects are given by

Agj _ Api _ _ 4-Tra

el pl h

and the corresponding changes in the mean motion and the mean distance are

given by
Ar^ ? ^i _ _ 3 A/>i _ SfrAg! = 1 + ex

2
Q-rra

!

*
2 ~o7

~ ~
2

~jt>7

~
l~<?i

2
~~

l-?i2
'

IT

since ttj
=

jt>x (1 e^)"
1
. Thus the most important effects of a resisting medium

are a steady increase in the mean motion and a steady decrease in the mean

distance, which must ultimately bring the disturbed body into contact with

the centre of attraction.

164. This simple example has been chosen, apart from its intrinsic

interest, because it illustrates certain important points. There is, in the first

place, the osculating or instantaneous ellipse, which is

plu = l+e1 cos (6 7j)
and not

pu = 1 + e cos (0 7).

The latter is a definite curve which may be called an intermediate orbit and

may serve usefully as a curve of reference. Indeed it has been so used in

what precedes. But it is not the osculating orbit at any time. There is also

the distinction drawn between periodic and secular disturbances in the motion,

of which the former may be relatively unimportant compared with the latter

because these, however slow, are cumulative in effect.

The general nature of disturbed planetary motion can now be considered.

For two planets only, the disturbing function has the form, found in the last

chapter,
R = 2F(a, a, e, e, i, i

r

) cos T,

T= [h (nt + e) + h' (n't + e') + g<n + g<*' +/ft + /'ft']

where (a, n, e, i, ft, or, e) are the elements of the disturbed orbit, (a, n', e, i',

ft', CT', e') the elements of the disturbing orbit. The equations of 139 are

now available for finding the variations of the elements. In accordance with

the artifice explained in 140 the mean longitude e is taken in a special

sense there defined, and a in the coefficient and n in the argument of any term

are treated as independent in forming the partial differential coefficients of R.

Therefore
'

dR dR dR
da

'

de
'

di

122



180 Absolute Perturbations [CH. xv

are all of the form 2(7 cos T, and

dR dR dR
3fT 3-sr' 8e

are all of the form SO* sin T, where T is the argument of the term. Hence
the equations for the variations are themselves of the form

In the first approximation the right-hand members (which contain the dis-

turbing mass as a factor) are calculated with the osculating elements of both

orbits for a certain epoch, and these elements are treated as constant. The

equations can then be integrated, and in fact

8,a = - 2 C, cos T/(hn + h'ri), . . .

^n= 2,C2 smT/(hn + h'n"),....

These are the absolute perturbations of the first order. Similarly the pertur-

bations of the first order in the masses can be calculated for all the disturbing

planets concerned and the results can be combined by addition.

165. Each term in the perturbations represents a distinct inequality in

the motion of the disturbed planet. It will now be seen that the inequalities

are of two kinds. The multipliers h, h' have all integral values, positive and

negative, including 0. When h = h' = the disturbing function R is reduced

to that part which does not contain the time. Thus

da_ dtl_
dt~ l '"

dt
-^"~

and the inequalities are secular. From the present limited point of view they
will increase indefinitely and in the course of time will modify 'the conditions

of the planetary system profoundly, uncompensated by any check.

But one remark can be made immediately. The most important element

as regards the stability of the system is clearly the mean distance a. Now
when h = h' = 0, not only does t disappear from R but also e. Hence

and in the previous set of equations Gl
= 0. There is therefore no secular

inequality in a of the first order in the masses. How far this important
theorem can be extended to the higher orders must be seen later. It follows

that the mean motion n is also free from any secular inequality of the first

order.
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The other inequalities, when h and h' are not both zero, are evidently

purely periodic, unless hn + h'ri = 0. The meaning of this qualification is that

the mean motions must not be commensurable. Now mean motions are never

commensurable, except perhaps instantaneously, since in fact they are not

constant. But there are, as it were, degrees of incommensurability. In any
case integers can be found to make hn + h'ri smaller than any assignable

quantity. If the incommensurability of n, ri is high, the corresponding

integers h, h' will be large. In general the coefficients in R which correspond
to arguments of a high order diminish rapidly with the order. Then the

occurrence of a small divisor hn + h'ri on integration will have no very serious

effect. But if the incommensurability of the mean motions is low, this

divisor may become very small for quite moderate values of h, h', and a fairly

small term in the disturbing function may be greatly magnified by integration.

Thus in the case of Jupiter and Saturn

5n - 2ri = ft/30
=

'/74

nearly, and this fact causes a considerable inequality in the motion of both

planets, with a period of nearly 900 years. The period of such an inequality

is 27r/(hn + h'ri) and therefore inequalities of the class just considered are

always connected with long periods. They hold an intermediate place between

ordinary periodic inequalities and secular inequalities.

The mean longitude is affected in a double degree. For ( 140) this is

n

where

dt2 a2 9e

and therefore

8tp = - S C sin T/(hn + AV)
2

.

The long-period inequalities in the other elements have the divisor hn + h'ri

in the first degree only. Hence the principal effect is to be observed in the

mean longitude.

166. It is in the next place necessary to consider the perturbations of

the second order in the masses, for the first approximation does not in general

suffice, and in the theories of Jupiter and Saturn it is even necessary to go

beyond the third order. It is convenient to write

where a
,

. . .
, e ,

o ', . . .
,
e

'

are the osculating elements for a chosen epoch, and S
t

indicates the perturbations of the first order, the derivation of which has been
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explained, S2 those of the second order, and so on. The equations for the

variations of the elements can be written, for example, in the form

dO (/*a)~
4 dR

TT = -
. -*-

=
fn'f(a, a', . . , , p + e, p + e')

dt cos<f>smi di

and after substituting the above expressions for a, . . .
,

and expanding by

Taylor's theorem,

The reduction of the right-hand side to a suitable form will be readily

understood in general terms, apart from the complexities which will naturally

arise in the practical calculation, and a simple integration, requiring the

introduction of no arbitrary constant, will give the expression of 82 fi. Similarly

the perturbations of higher orders, so far as they are of sensible magnitude,
can be found successively, when those of the lower orders have been deter-

mined, for all the elements.

167. The general form of the results will now be apparent. In the

first order the inequalities are of the forms

A cos (vt + h), At

only. In the higher orders the terms obtained by the algebraic composition
and subsequent integration of these two forms will clearly belong to one of

the three types
A cos (vt + h), A t

m
,
A t

m cos (vt + h)

which may be called respectively periodic, purely secular and mixed terms.

The term order may be retained to denote the degree a of A in the masses.

As A is also a function of the eccentricities and inclinations, which are also

in general small parameters, it may be limited to a homogeneous function in

these parameters. Then the degree of the term is the degree of this function

and represents its order in respect to the eccentricities and inclinations.

A further classification is used by Poincare. The order of a term being a,

the rank of a term is represented by a - m, or by the order less the exponent
of t. A term of high order is initially small, but if m is large it will grow

rapidly in importance, so that ultimately the terms of the lowest rank will

have the greatest significance.

The occurrence of long-period terms with small divisors has been noticed.

In the higher orders these divisors will be combined and raised to higher

powers by the subsequent integrations. Let m! be the sum of the exponents
of such divisors in any term. Then the class of that term is defined by the

number a ^ (m + m'). It will now be clear that the value of these different

categories depends on the length of time contemplated. For relatively short
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intervals the most important terms are those of low order. In longer intervals

the terms of low class rise into prominence. And finally it is the terms of low

rank which have the greatest influence in the ultimate destiny of the system.

But here a question naturally arises. How far is the form in which the

terms present themselves natural to the problem, and how far are they the

artificial product of the particular method by which they are obtained ? It is

evident that the physical importance of this question is not quite the same

in all cases. Thus a mean motion in the position of the node or perihelion

may be admitted without any serious direct consequences to the nature of the

system. On the other hand, a purely secular term in the mean distance or

the eccentricity, taken by itself without compensating circumstances, must

ultimately prove fatal to the stability. The general problem suggested is

very difficult and the reader is referred to the first volume of Poincare's

Lemons de Mecanique Celeste for a thorough discussion.

It must, however, be pointed out that the form of the results may be

perfectly legitimate, so far as it goes, and at the same time not in any way
inconsistent with the stability of the system, though a decision is beyond the

range of the above elementary methods. It is impossible to be satisfied with

the solution here described as a final representation, and this feeling is ob-

viously suggested by considering the mixed terms. Since the corresponding
oscillations increase in amplitude indefinitely with the time the departure
from the original configuration will become so great that the fundamental

assumption of small displacements in forming the equations for the variations

will be contravened. Then one of two things will happen. Either the mutual

forces will tend to restore the original configuration, and there will be stability,

or the forces will tend to magnify the disturbance, and there will be instability.

But in either case equally the method adopted breaks down and the funda-

mental question remains unanswered.

How then are the statements to be reconciled, that the method which

is the method on which the existing theories of the major planets are actually

based may be perfectly, legitimate, and that, while the form of the terms to

which it leads obviously suggests instability, complete stability is never-

theless entirely possible ? The simple answer is that it is only necessary to

imagine that v in the argument of any term is itself a function of the

disturbing masses. Now the above method involves a development in powers
of the masses, and when the parameters which represent the masses are thus

forced out of the circular functions they carry the time t explicitly with them,

and the appearance of secular and mixed terms is a natural consequence.

Yet the development in terms of the masses may be convergent and entirely

legitimate. In this way it will be seen that the occurrence of secular and

mixed terms is compatible with stability, though a profound discussion is

necessary for a positive conclusion on this point.
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The case of a planet moving in a resisting medium is quite different.

There is then a definite loss of energy and the effect of the secular changes is

not doubtful.

168. In the theories of the planets on which the existing tables have

been based the coordinates of the planets relative to the Sun have been used

and this fact governs the form of the disturbing function, which is distinct

for each pair of planets. For practical purposes this choice of coordinates is

an obvious one. But for theoretical purposes it is unsuitable, chiefly because,

like the common system of elliptic elements, it is ill adapted to the transfor-

mations which are an essential feature of the dynamical methods initiated by
Hamilton. Another system of coordinates, due to Jacobi, will therefore now

be introduced.

Let (i, rji, i) be the coordinates of the mass m in a system of n masses

ml,m2 , ...,mn ,
the origin being any fixed point. The masses are taken in

any fixed order, represented by the suffixes, which is quite independent of

any arrangement which may be visible in the system. Let

Let (Xi, Yi, Zi) be the coordinates of the point Gi, which is the centre of mass

of the partial system ml ,
ra2 ,

. . .
, ra$, so that

. . . + (pi
- p^) &

fii_ l X{_ lt
= X1 .

Let (xi, yi, z^ be the coordinates of m relative to G^, so that

Xi = & - Zi_! , (pi
-

/*(_,) Xi =m (Xi - Xi_i).

Thus (#2 , 2/2.
z

-i)
are the coordinates ofm2 relative to m1( or ( 2 1} tj2 r)l} 2 ^);

(x3 , 2/3 ,
z3) are the coordinates of m3 relative to Gz ,

the centre of mass of mlymz ;

and so on. There are no coordinates (xlt ylt Zj). By the above

fa - ^-O2
tt = fax* - n-iXi^

Hence on eliminating the product term XiX{^

(in
-

Pi-,) (& -
pi-^e/pi) = piX

and on addition of all the equations of this type

2 m,&
2 = 2, mipi^xf/pi + pnX

i=\ i=2

The relations between the coordinates have been written down for one

only. But they are linear and the same for all three coordinates separately.
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Therefore they also apply to the velocities. Hence if T is the kinetic energy
of the system,

But (-3T,,, Fn ,
Zn) are the coordinates of the centre of mass of the system.

They are absent from the potential function and are in fact ignorable coordi-

nates. The known integrals for the centre of mass follow immediately and

these coordinates can be suppressed. The problem of n bodies is thus reduced

to a problem of n 1 fictitious bodies and the total order of the differential

equations of motion is reduced by 6.

169. The new form of the areal integrals is easily found. For

(fit
- m-J (yti{

-
Ziy^

= tf ( Yi
- F^) (Zi

-
<_,)

- tf (Z<
-

and hence

The sum of all equations of this type gives

But it is possible to write Xn = Yn = Zn = ;
that is equivalent to taking the

centre of mass of the system as the origin of the coordinates (&, i)i} ). Thus

the areal integrals now take the form

n
2 mi ti i_ 1

where (cl} c2 , cs) are the angular momenta of the system about fixed axes

through the centre of mass. The direction of the axes has remained the

same throughout.

Let (c1( c2 , cs) be considered as the components of a constant vector C,

(Ai, i/i, Zi) as the components of a vector Mi, and (xiy yi} Zi) as the
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components of a vector r;. Then in quaternion notation the above three

integrals may be represented by the single equation

Hence in the problem of three bodies

These three vectors are therefore coplanar. But V(r2M%) is normal to the

plane of r2 ,
M2 ,

that is, to the instantaneous orbit of the fictitious planet 2.

Similarly V(r3M3) is normal to the instantaneous orbit of the fictitious planet 3,

and clearly C is normal to the invariable plane. Hence the nodes of the instan-

taneous orbits of the two fictitious planets on the invariable plane coincide.

This important property explains the so-called elimination of the nodes,

which in an explicit form is due to Jacobi. In th'e more common system of

astronomical coordinates it disappears from view. The reader who is un-

acquainted with the elements of quaternions will have no difficulty in finding

an alternative form of proof, as in 22.

170. The body denoted by 1 will now be identified with the Sun, and

i or j will have the values 2, . . .
,
n. The potential energy of the system, when

the units are chosen so that the constant of gravitation is unity, is

TT 2
mimi _~ A

lti

where

Also the kinetic energy, when the coordinates (Xn ,
Yn , Zn) are ignored, is T,

where

2T = 2 mtpi^ pr* (x* + y? + z*}.

Let

Then the equations of motion of the system may be written ( 124)

dxi dH dxl dH
-dt=W' ~^"av (x> y ' z} '

Now

(f*i
-

/ii-j) %i
= HiXi - /4i_! JTi_!

=

and therefore

li+i
~ & = xi+i

Hence by the addition of such equations
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which expresses the relative coordinates & &,... in terms of the coordinates

#;,..., and shows that the latter differ from the former only by quantities of

the first order in the small masses. In particular, for the body 2, which may
be identified with any one of the planets, there is no difference.

Let U be reduced to its terms f/a of the lowest order in the small masses,

which is the first. Then

Ul
=-ml ^ nii/ri , rf = x? + y? + z?

for Ti differs from A^ by a quantity which involves the masses. The equations
of motion reduce to

dxi 3#! dxj 3#! T
,

j- = ; 7 , -j~
= ~

S j "! == * ~r l/i
dt Ox' dt dxi

or in more explicit form

fii_jpr 1 xi
= -ml Xijrl, (x, y, z).

These are the equations of undisturbed elliptic motion, and in particular

x2
= - (X + m.,) #2/r2

s
, (x, y, z}

which agree naturally with the usual equations of a planet relative to the

Sun in undisturbed motion, and give a mean distance a.2 with the usual

meaning. For the other bodies the equations are of the same form and have

precisely similar solutions, but the elements at will differ from the ordinary
elements slightly because (xit yt , Zi) are not coordinates relative to the Sun
unless i = 2. This is not material to the purpose in view because the body 2

represents any planet and any proposition which is proved for it must be true

generally.

171. These equations for the undisturbed motion can now be solved in

terms of canonical constants. When the latter are treated as variables, they

satisfy canonical equations formed with R = U1 U. As in 143 this value

of R may be modified by adding Zm^/ZL'*, where m = mi /j,i_l//ni and

fi
=m1fj^/m^1 in view of the explicit form of the undisturbed equations. Then

any of the different sets of variables explained in that section can be used,

and the last set, now denoted by (L
f

, /, /; X, T//, 7/2'), will be chosen. The

equations for the perturbations can now be written

dL- = d_V miHi-i d\j = dV
dt d\i' ^ dt dLt

d& = 9F mjfij^ drj- = dV

Pi dt diji

'

fr dt dgi

where
V= - U + U, + m* 2 w i^/2/*i_1Z<

/2
.

There are n 1 pairs of equations in (Z//, \i) and 2(w 1) pairs in (/, ?;/),

but there is no need here to distinguish between the eccentric and oblique
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variables. From this point the former use of (&, r)iy ft-)
as the rectangular

coordinates of m^ disappears.

A little explanation may be necessary to account for the appearance of

the mass factors of the momenta x{ in the equations. In 135 giving the

Hamilton-Jacobi solution for undisturbed elliptic motion the single factor m,

representing the mass of the moving body, was removed consistently from U,

T and H. Similarly in 139 UR was written in the place of U, R being
the disturbing function in its common form, whereas the true increment in

the potential energy is mR. But here it is not possible to divide the more

general function U Ul
as a whole by any particular mass, though it is

possible to do so as regards the set of equations corresponding to a particular

value of i. Hence it was necessary to restore the mass factors in the manner

shown. But now they can be removed by the change of variables,

and the equations then become

dLi =W d\
i== _dY

dt
~

8V dt
~

dL {

d& = 8F 'dn=_W
dt ~dr)i' dt

~
a&

where
F= - U + U, + mf 2 mfn^fiinL*,

The terms added to /i U depend on the Li only, and affect one type of

equation, namely

so that \i = n i t-
Jt-h and n t is the mean motion in the preliminary solution.

The first-order perturbations of \t
- will require the first-order perturbation of

Li to be included in the term from which wf originates.

172. It is not at present very necessary to consider in detail the form of

expansion of U-U^ It can in the first place be expanded in powers and

products of the small masses m^ and of the coordinates (#f , ?/;, zj). The latter

can be expanded in powers of Li, %i, rji with purely periodic functions of Xj.

Hence UU1 can be expanded in the same form, and arranged in orders of

the masses, beginning with the second since the first has been removed by Ur
Thus if the fourth order in V be neglected, V- V2 +V3 ,

where F2 is of the

second order and F3 of the third, and F2 contains at most two, F3 at most

three, mean longitudes \t in its arguments, the coefficients of the periodic

terms being rational and integral functions of Lt , &, 17*.
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The perturbations of the first order can now be obtained in the usual way

by neglecting Fs and substituting initial values of Li, ,:, 17^ in F2 , including

n^ -I- Xj for Xt-. This process gives

where L^,... are constants and SlL i ,... are the perturbations of the first order.

Owing to the form of F2> 3F2/aX; is purely periodic and free from any term

independent of X;. Hence 8, Lf is also periodic and free from a secular term.

But the other elements will contain a term multiplied by t, arising from the

terms independent of X t
- in the partial derivatives of F2 , together with

periodic terms. To the second order let

Li = Li + S1 L + SzLi .

In F3 ,
which must now be retained, it suffices to substitute the constant

values Li ,... for Li,..., and nit + \ for Xij but in F2 it is necessary to

substitute Lf + 8
l
Li ,... for Li,..., though only the first powers of these

perturbations are required. Hence the equation

, ,
=

.(F2 + F3)

gives, when account is taken of the solution for the first order,

.

By the same argument as applied to F2 in the first approximation the last

term gives rise to periodic terms only. Hence a search for secular terms can

be confined in the first place to the expression

Here the multipliers of the integrals are all purely periodic, owing to

differentiation with respect to X^. The integrals themselves contain secular

terms in t. Hence on integration the products will give rise to periodic and

mixed terms, but not to purely secular terms on this account. The latter must

arise, if at all, from a constant term in the products. The only way in which

tnis could happen would be connected with terms in the development of F2 of

the form

F, = E sin (kt \i + 'kfa) + C cos (k{\i + kfo) = Bsm^r + C cos ^.

But for these
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In a similar way those terms which might produce constant terms neutralize

one another between the other pairs of products and therefore no purely

secular part of B2Li can arise in this way.

But the above expression is not complete, because ^X/ depends on 8,Z,/

a well as on F2 . For, by the last equation of 171,

dBi\j _ 9F2 _ Sm^w//^-! ~ ,

so that there is an additional part of 82Li not yet considered. It is given by

where A is a constant. But terms in F2 of the above type, taken in the form

D sin
(\fr + h), lead to

A Jr I?"*
' j - D2 sin

Therefore this part of S2 Z/i is purely periodic.

Hence there are no purely secular terms in 2L, a proposition which

Poincare has proved in the more general form : there are no purely secular

perturbations of Li in any order of rank lower than 2.

This applies in particular to L.2 . But a2
= ML/, where M is a constant

mass factor. Hence

c/o + 8
1
a2 + 8302 = M (L, +

the affix being now omitted. But ^L2 is purely periodic, and 82 L<, has no

purely secular term. Hence to the second order in the masses there is no

secular inequality in the mean distance, for it has been remarked that a2

represents the mean distance of any of the planets. This is Poisson's theorem,

an extension of Laplace's corresponding theorem for the first order, and it is

the most important elementary result bearing on the stability of the solar

system.

173. On the other hand there are evidently mixed terms of order 2 and

rank 1 in Li. Hence the existence of purely secular terms of order 3 and

rank 2 in a.2 can be anticipated. For even without pushing the approximation
further and examining &3L2 it is obvious that 2M8,X2 . B2L2 constitutes a part
of &3 a.2 . Therefore the combination of a term A cosmt in 8^L2 with a term

Bt cos mi> in 8ZL2 will give a term MA Bt in B3 a2 . Such terms were first shown

to exist by Spiru-Haretu in 1876.
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On one condition true secular inequalities of the first order occur in the

mean distances. Since

to its lowest order,

3 V/d\i = 2 Aki sin (kt\i + kj\} + h).

For perturbations of the first order the coefficients are constants and \ -
ntf,

\j
-

tijt
are also constant. Hence

dLi/dt = 2 Aki sin (mt + h').

A constant term results, producing a secular inequality, if m = ktn{ + kjiij
=

0,

which is possible only if nt ,
n
}

are commensurable. This possibility was

considered in the previous form of discussion and excluded. But it is in effect

ruled out by its own consequences. For if a body were artificially or fortui-

tously projected in such a way as to have a mean motion commensurable

(e.g. , f,...) with the mean motion of a disturbing body, its mean distance

would be subject to a secular disturbance from the beginning, and therefore

the commensurability of its motion would be definitely destroyed. Hence if

the minor planets be arranged in order of distance from the Sun, it is to be

expected that gaps will be found in the frequency at distances corresponding

to mean motions commensurable with that of Jupiter, and it is so. And

similarly divisions in the rings of Saturn can be attributed to the secular

perturbations of the constituent meteoric bodies, produced by the commen-

surable motions of any satellite which may be effective. This also has been

verified for the action of Mimas by Lowell and Slipher.

Nevertheless among the many minor planets a few are naturally found

whose motions are nearly commensurable with Jupiter's mean motion. For

these the long-period terms with small divisors are highly important, and the

terms of low class play a far larger part than in the theories of the major

planets. The special difficulties thus presented require special methods of

treatment, and such have been suggested by Hansen, Gylden and others.

Poincare has used an application of the principle of Delaunay's method. The

proper treatment of this class of minor planets presents perhaps the most

interesting problems to be found in dynamical Astronomy at the present

time.



CHAPTER XVI

SECULAR PERTURBATIONS

174. In the preceding chapter it has been shown that the mean distances

in the planetary system are free from purely secular inequalities when

developed to the second order in the masses. The general nature of the

secular perturbations in the other elements will now be examined. It may
be convenient to modify slightly the equations obtained in 170, 171. By

reducing U to its terms of the lowest order the equations of motion there

took the explicit form

fjL^^Xi = - m^rf, (x, y, z)

which are satisfied by the osculating motion of a planet, according to its

ordinary definition, when i = 2, but not otherwise. But if // be substituted

for Ult where

Ui = - S

a form which will be found to differ from U
l by terms of the third order

only, the explicit equations of motion become

Xi = - (w, + mi) Xi/ri
s

, (x, y, z}

which are the ordinary equations in the undisturbed problem of two bodies,

and are satisfied by the osculating elements taken in their usual sense. The

mass factors of the momenta are as before mmi^//^, but the constants of

attraction are p = ml + mi. Hence the equations for the variations will now
be based on

V = - U+ US + 2 (m,

The relation between Li and L- is the 'same as before, but the meaning of

both is changed (except when i = 2) in such a way that Li bears generally
the same form of relation to at-, the osculating mean distance in its ordinary

sense, as L2 to a2 .
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Thus the transformations of 143 give, with those of 171,

Li = (m^ +m^aA G,;
= Lj cos fa ,

Ht
= Gi cos i

,-,
2

pit 2
= 2Li cos fa sin2

(0{
t
2
= fit

= 2Zi sin <; cos cr;, r)it 1
= 2L sin

</>;
sin or;

^ cos* fa sin tf cos ftt-, 77^ 2
= 2Lt

^ cos' fa sin t; sin ft;.

Here sin fa
=

ei and no confusion is possible between the inclination i and

the subscript i, which is merely a distinguishing mark for the several planets.

175. It is obvious that U U can be expanded in powers of a?f a^,

yi hi, Zi Ci where (a t-, 6t-, GI) are what (a?f , yt-, ^) become when %i
=

in = 0.

Now ( 65) the heliocentric coofdinates are generally

x = r cos fl cos (w + *ts fl) r cos i sin O sin (w + CT ft)

= r cos2

^i cos (w + tff) + r sin2

%i cos (w + -or 2ft)

y = r sin ft cos (w + r ft) + r cos t cos ft sin (w + OT ft)

= 7- cos2

\i siri (w + r) r sin2

\i sin (w + w 2ft)

^ = r sin i sin (w + w ft)

w being the true anomaly. Let

X = r cos (w M), Y= r sin (w M), M = X -a-

Af being the mean anomaly. Then

a; = X {cos
2

^t cos X + sin2

$i cos (X 2ft)}

- F {cos
2

$i sin X + sin2

$i sin (X
-

2ft)}

y = X {cos
2

^i sin X sin- \i sin (X 2ft)}

+ Y (cos
2

$i cos X - sin2

$i cos (X
-

2ft)}

z = X sin i sin (X
-

ft) + Fsin t cos (X ft).

The coefficients of X and F here involve, besides periodic functions of X, the

quantities

cos2

^*, sin2
%i cos 2ft, sin2

\i sin 2ft, sin i cos ft, sin i sin ft

and since
2 +V = 4L sin2

\ fa & + 7/2
2 = L cos sin2

|t

tan w = ^i/^ , tan ft = - 7;2/|2

it is easily verified that the five quantities can all be expanded in powers of

&, *h, &, ? Also

r cos w = a (cos E e), r sin w = a cos < sin E
p. D. A. 13
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E being the eccentric anomaly, and therefore .^j ;; [7

X/a = -ecosM+ cos2

^</>
cos (# - M}

+ I sec2 i< {e
s cos 23f cos (E-M)- e* sin 2M^sin (#- Jlf

)}

Yfa =esinM+ cos2
| sin (E - M)

-
i sec2

1</> {e
2 cos 23f sin (E M) + e* sin 2M cos (

- M)}

which are forms easily verified. Since cos2

|<, secH< can be expanded in

terms of e2 = sin2
<, these forms show that X, Y can be expanded in powers

of e sin M, e cosM if this is true of sin (E M), cos (E M). But Kepler's

equation may be written, .

6 x cos y cos 6 = 0, & = E M, x = e sin M, y = e cosM

and 9 can be expanded in powers of x, y. Hence sin (E M), cos (E M)
can be expanded in powers of e sin M, e cos M, and therefore also X and F.

But this shows that X, T can be expanded in powers of e sin ta, e cos or with

coefficients involving periodic functions of X, since M= A, ts. And e sin ta,

e cosur can be expanded in powers of ,, 771, as can easily be seen, with

coefficients involving L. Hence (x, y, z) can be developed in powers of

i> ^i. 2, ^2 with coefficients involving L and periodic functions of X. There-

fore finally U /"/ can be expanded in powers of
,-tl , 77^, f)2 , 77^ 2 with

coefficients involving Lt and periodic functions of Xt-, and the supplementary

part of V involves Li only.

It is assumed that the inclinations of the orbits are very small. Now
there are two ways of regarding retrograde motion in an orbit whose plane

differs little from the orbits of planets moving in the opposite sense. It is

possible to take the mean motion nf as positive. Then the inclination is

near TT and is not small. Or it is possible to take the inclination as small,

and to regard n t as negative. Then since n^Lf is a positive mass function,

Li is negative and therefore f^, 77; are imaginary. All the orbits will therefore

be supposed to be described in the same (direct) sense, which is true of the

planetary system but not always of the satellite systems.

This remark has an obvious bearing on theories of cosmogony. For if

high inclinations and in particular retrograde motions were unstable, such

forms of motion would not be permanently maintained. Now the nebular

hypothesis of Laplace is very largely based on the observed fact that the

planetary motions are nearly coplanar. If, however, such a type of motion,
is alone stable, the observed fact loses its significance in this connexion and
no deduction of the kind is to be drawn from it. The question of stability
in general, beyond the range of inclinations to be found in the actual planetary

system, is therefore important, though beyond the range of this work.
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176. When the secular part

which is free from X; is considered, certain properties of the development are

easily seen. For this being independent of the direction of the chosen axes,

the substitutions

&, \> ^i, i.
, 2> m,-2

'

(c) f,i, r)i, i, 1<>2 , i?i, 2

(<0 &i, -* & 7fu
are all possible without affecting the result. Thus (a) follows when ft;, ar f

are altered by TT, or when the axes of xy are rotated through TT in their own

plane. Similarly (b) follows when this rotation is made through \ir. Again

(c) is produced when O t
-

(but not orf) is altered by TT, and this is equivalent

to reversing the axis of z. Finally (d) is obtained by changing the signs of

all the angles X f , fl,-, ar
l-, which is equivalent to reversing the axis of y. The

change in X; is of no further importance here since \; is absent from the

terms now considered.

Certain properties of the exponents in the expansion are now obvious.

For 2 (pl + <?j + p2 + q?) must be an even number to satisfy (a), and 2 (p2+ qz)

to satisfy (c). Hence 2(/>1 + g
i

1) is also an even number. Similarly (d)

requires 2 (^ + <?2) to be even, and therefore 2 ( pl +p2) must be even. Hence

in the second degree there can be no terms of the form 77 or ^a , %i/2 -

But if terms of the fourth degree be neglected, only terms of the second

degree involving , 77 remain. These terms can therefore be written down in

the form

where the coefficients of t-|y, t\ii)j
are taken to be the same, both for the

eccentric and the oblique variables, in accordance with the substitution (6),

and terms &, 77^- are reckoned twice when i, j are different, but A itj
= A

jt i}

177. It will be of interest to obtain the explicit values of A
ijj}

B
it j

for

the lowest order in the masses. The principal part of the disturbing function

is 2rafm;A7* and it has been seen in 159 that the complementary part

contains periodic terms only. The distances &ij involve coordinates (xi, yit z$
which themselves contain the masses. But to the lowest order these coordi-

nates are identical with the relative coordinates commonly in use, and the

methods of Chap. XIV can therefore be employed. Two planets, 1, 2, will be

first considered. Then in the notation of 152, when the orbits are circular,

OaA-1 = 60> = 61* ^oivbs
1 + . . .

132
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with the exclusion of all periodic terms. The triangle formed by the two

orbits and the ecliptic gives

cos J= cos ix cos iz + sin i\ sin iz cos (Dj I12)

or to the second order in ilt i2 ,

v = sin2 J= I [if + if - 2i,i2 cos (Qj
- H2)}.

Since z> is of the second order the Laplace's coefficient 6s
1 is derived imme-

diately from the circular motion. But bg must be modified to include the

eccentricities, the orbits being now treated as coplanar. Let

A 2 = c^
2 + a./

- 2a1 a2 cos 6, = vr1
isr.

l +M1
Mz .

Then in the notation of 157,

A-> = exp. {(Wl
- MJA + (w2

- M2) A} Ac-
1

\lll/ \U2 /

and, by (22) of 40 and (30) of 41,

r/a = 1 + |e
2 - e cosM-& cos 2M + ...

.w - M= 2e sin M + f e
2 sin 2Jlf + . . . .

Hence

(a
-i r

)-
= 1 -ecosM.D + e*(l -cos2M)Z> + |e

2
(l + cos 2M).D(D - 1)

exp. (w
- JT) D = 1 + 2e sin M . D + f e

2 sin 2Jf . D + e
z

(1
- cos 2M) . D8

.

All operating terms which do not combine M^ ,
Mz in the form Ml M2 will

clearly produce periodic terms only. And terms already of the second degree
are combined with no others. Therefore, when ineffective terms are omitted,

since A +A = -
1,

A-1 = (l-e1 cos Ml . A -K2 AA) (1
-

*2 cos M2 ..A -K2
. AA)

(1 + 2^ sin Mx . A + 0!
2 A2

) (1 + 2ea sin J/2 . A + e2
2

. A2
) A,"

1

= {1+ \e^ cos (Ml
- M.2} . AA + 2^62 cos (Jlf,

- Jlfa) . AA
- e^ sin (Af2

- 3/0 . AA - e^a sin (^ - J/2) . AA
-

i (i
2 + e2

2

)AA + e!
2

-A2 + e2
2

. A2
] Ao-

1

where again terms involving Mlf M2 or Ml + M2 are omitted. Now
A = A =

9/d# and, since a = a,/a2 ,

AA^o"
1 = aia2 cos . A -s + 3 (a,

8 - a,a2 cos ^) (a2
2 - c^a, cos 6) A -5

= a,-
1

{a cos 6 . a2
3A -3 + 3a [f a

-
(1 + a2

) cos + |a cos 20] a2
5A -5

}

A'Ar1 =A8
Ac"

1 = - AAA,"
1 = - a,a2 cos . A -3 + Sa^a,

2 sin2
. A ~5

= a,-
1

{- a cos . a,
3A ~3 + fa

2
(1
- cos 20) . a2

sA -5

}

AA Ao"
1 = ia2 sin . A ~3 - 3a,a2 sin (^ -

a^a, cos 0) A
-s

=
a-j-

1

(a sin . a2
3A -3 - 3a2

(a sin -
\ sin 20) ajA

~5

}

AAAo-
1 = - aj 02 sin . A - 3 + 3aja2 sin (a2

2 - a^ cos 0) A
~5

-
a,-' {- a sin . ag

3A ~3 + 3a (sin -
^a sin 20) a2

5A -5

}.
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For the secular terms it is possible to write

cos (M1 M2)
= cos (6 a

1 + r
2)
= cos cos (CTJ r2)

sin (M1 M2)
= sin (6

- ^ + w2)
= sin cos (^ w2)

since sine terms and cosine terms must combine separately.

178. The secular terms of the second degree in the eccentricities can

now be written down in terms of Laplace's coefficients ( 147) thus :

A"1 = + ^2 COS
(tSTj

1!r2) . Osf
1

ft (V + V> + 3a K*V -
i (i + *2

) (V + V) + ? a (V + V>]
+ 2a (6f + 6

f
2
)
- 3a2

(b
-
bf)

+ a
(bf

-
bf)

- 3* [a (bf
-

b^)
-

| (bf
- 6,

3

)]

+ (V - V>
~ 3aW -

>
-

^ a <V
~ 6

i')5

-
i ( ei

8 + e2
2

) . c^-
1

{ab + 3a [fai^
-

( 1 + a2
) 6.

1 + ia6
f
2

]}

+ 1 (*i
2 + ^2

) a,-
1

{- ab + fa
2
(65

- 6
f
2

)}.

To simplify this expression the recurrence formulae (4) and (5) of 148 with

j = are available :

=

Thus

= t (- l aV + f aV) " $ aV =
*a ^V ~

V)
and the last line of the expression disappears. Again

= f {(1 + a2
) b + tabf}

-
(1 4- a2

) 6.
1

= -|(l + a2

)6^ + iai
|
2 = -|63

1
.

Hence the penultimate line of the expression reduces to

which represents all the terms in ef, e2
2
.

The coefficient of -\-\e^ez cos (tjj -oT2) a2

~1 a is

H- |6f + 6
f
2 -|(1+ a2

)V + ^-aV + | (1 + 2
) 64'

+ f abf

= iV - aV + f(i +
2

)V + IV
= -

if [2 (1 + 2

)V

V
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and the whole of this term is therefore

\e^ cos (CTJ
- <sr2) . arl

<*bs
z
.

Hence the terms of the second degree in the eccentricities and inclinations

for two planets give finally

[A-
1

]
= tt-rX U (e? + eS) 6s

1 - \e& cos (^ - v2) bf]

- ia2

-2
a, {*? + *2

2 - 2M2 cos (Hj
- n2)} 6s

1
.

But to this order (that is, neglecting the third order in e, i)

j
= eli cos -nr, rj 1

= ei5 sin zr

2
= * cos O, % = iL* sin Q.

By translating from one system of variables to the other and taking the sum

for each pair of planets, it follows that

-
(a,, a,)

Lj

where

#<*,, a,)
=

2̂
6.1 (^ . ? f __atajcoBg.

a/
*
Vay TTJ o (a? + a/

- 2^-
2 '' aiai cos7? / \ * A 2o2 (<lfi a,-)

=
;
6s

2 =
of

* V

The coefficients of Laplace are positive. Therefore the quadratic terms in

the oblique variables are a negative definite form. Further, by the recurrence

formulae,

=
faZy

- 2 (1 + a2

) 6f
2 + f aV

*V= i(i + 2)V- V-
Therefore

!V = a -Ki + 2

)V-
But

|6^=Hi + 2

)V- a

and therefore

3
(bf + ^

2
)
= (! + ) (6^1 _fc.)

which shows that

63
J > 6

f
2

, B, > B2 .

Hence the quadratic terms in the eccentric variables are a positive definite

form.

*
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179. The problem of the small eccentricities and inclinations of the

planetary system is now brought within the range of the general theory of

small oscillations about a steady state of motion. Indeed a knowledge of the

principles of this theory shows at once that the variations in the eccentricities

and inclinations are periodic and stable, for this follows from the definite

(positive or negative) forms of the quadratic terms.

Since ( 176)

[- U+ filr-^!"^
the corresponding canonical equations are

forming two distinct sets of linear equations with constant coefficients. The
results will clearly be of the same general kind for both, and it is only

necessary to consider the eccentric variables.

,
Let the linear transformations ,, _..,

& = 'ai>jpi ; in
=

2ai,jqj

be orthogonal, so that

Thus
.

_

2 l-idrii
= 2 2 2 04, ,-Oi, tpjd^ = 2 j>i(Z?,-

which shows that such a trarisformation is also canonical. Now let

*A t,Mi^ipf.

Then

is an expression which is independent of pk . Therefore, product terms being
reckoned twice,

(
.

- ', '>.-:-

= 2& (2 A it j
a
jt k)-

This is an identity, satisfied by all values of ;. Hence

-. , 2^4i tt i -.atOi t
=
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and this system of equations, for the values i = 2, 3, ..., n, gives a consistent

solution for o^ t , provided ak is a root of the equation

2, 2
~ a -"2,3 -^2, 4 =0.

^3,2 ^3,3
-

^3,4

A 2 ^4,3 ^4,4 -2

This is a symmetrical determinant of familiar type, and it is well known that

all its roots are real. For the -system of the eight major planets it is of the

eighth order. It is most unlikely that the equation would have exactly equal

roots in a case like this, nor does it in fact happen. But it is to be observed

that the occurrence of repeated roots would alter in no way the essential

circumstances. The main point is that the definite quadratic form can always

be reduced to the form ^ctipj* by a linear transformation to normal coordinates.

The effect of repeated roots can be seen when there are three planets. Then

Sflf^i
2

corresponds to an ellipsoid, which is one of revolution when two roots

crf are equal. An arbitrary element enters into the direction cosines of the

principal axes, which are the coefficients of the transformation. But this does

not affect the form of the result or the stability of the motion. It is not

necessary to examine the algebra of the subject further, but so much should

be mentioned because from the time of Lagrange to Weierstrass in 1858 it

was supposed that the occurrence of repeated roots would result in the

appearance of the time outside the periodic functions and would be fatal to

stability. It is not so.

180. It has been seen that the orthogonal transformation to normal

coordinates is also canonical and that the principal function, as far as the

eccentric variables are concerned, takes the form

where crt
- is positive, since V is a positive definite form. The canonical

equations therefore become

and the solution is

Pi = d cos fat + hi), q{
= -Ci sin ( f

where (7;, h{ are arbitrary constants. This gives the quadratic integrals

pf+qf^Cf.
These results are immediately expressed in terms of the previous variables

&, i/i. Thus

& = 2
a,-, j PJ

= 2 a
it j Cj cos

(ctjt
+

hj)

t)i
= 2a

it j qj
=

ZciijCj sin (a^ + hj)
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where a
itj

are definite constants. When the transformation is reversed,

and the quadratic integrals become

The general solution may also be written, with the degree of approxima-
tion adopted,

6iLf cos rt
- =

"ZciijCj cos
(ctjt + hj)

iLf sin CTJ
= SdijCj sin

(a.jt + hj)
3

which determine the eccentricities and the motions of the perihelia. The

question then arises in every case : has the perihelion a mean motion ? In

other words, is the motion of perihelion, to use the analogy of the simple

pendulum, of the circulating or the oscillating type ?

The problem, stated in general terms, is not a simple one. But there is

one simple case which will serve to explain what is meant and the necessary
condition of which is satisfied more often than not. The preceding equations

may be regarded as applying to certain coplanar vectors whose tensors are

eiL$, ciijCj. From this point of view the one vector is represented as the

sum of a set of vectors each rotating uniformly. Let the tensor of one vector

of the set exceed in length the sum of the* tensors of the rest, and let this

vector terminate at the origin, the others forming a chain from the other

end. It is then geometrically obvious that the representative point at the

end of the chain must share in the circulation round the origin of the pre-

dominant vector. The perihelion in this case has a mean motion therefore,

and it coincides with that, on, associated with the large coefficient. The

sense of this mean motion is always direct, since c^ is positive. In the same

circumstances et
- cannot vanish, but has a lower positive limit.

The condition is clearly satisfied when there are only two planets, unless

the two tensors are equal. In this exceptional case it is evident that the

mean motion of a perihelion is the same as that of the resultant of the two

vectors and is the arithmetic mean, (cr2 + 3), between their angular motions.

The eight roots of the fundamental determinant range between the values

0"*616 and 22'H6 (Stockwell). These are annual motions, so that the corre-

sponding periods lie between 58,000 and 2,100,000 years. Since they are of

this order it is evident that ei} wt
- can be developed in powers of the time and

that the lowest terms of such expressions will suffice to represent the changes
for several centuries. These are the secular inequalities as commonly under-

stood, and it will be seen that they exhibit the initial changes, apart from

those of short period, rather than truly secular effects.
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181. These results for the eccentricities and- perihelia apply almost

without change equally to the inclinations and .nodes. But there are two

differences to be noted. In the first place the principal function is a negative

definite form, which may be written after the transformation to normal

coordinates,

V$Sfr(fl+gfl'
where /3t

- is positive. In the second place, one & is zero, or, in 'other words,

the discriminant or Hessian of V (a quadratic form) vanishes. For the part

which involves the oblique variable
t

- may be written ( 178)

and therefore

If then i is the characteristic of a row and j of a column in the Hessian, and

each column is multiplied by the corresponding Lf, the sum of each row will

vanish. Hence the discriminant is identically zero and ft= is a root of the

fundamental equation.

The physical reason for this is easily seen. For the canonical equations
become

Corresponding to the root /3;
= 0,

Pi
=

S6jj j
= const., qi

= 26t
-

j T/J
= const.

which are two linear1

integrals. The constants need not be zero, and the

inclinations may be finite, while their variations vanish. This in fact is the

case when the orbits are all coplanar and inclined to the plane of reference.

This explains why the fundamental determinant has a zero root. The other

seven negative roots when calculated for the solar system are quite similar in

magnitude to the positive roots of the determinant in a.

The general solution of the equations when a finite root is in question is

Pi
= Di cos (fat + k{ ), qt

giving the quadratic integrals

From the general solution it follows that

ii L* cos n = & = 2bi>jPj
= ZbuDj cos (fyt + hj)

- iiL? sin Cli=*r}i= 26u27
-
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where
6,-j

are the definite constants of the transformation to normal coordi-

nates. Owing to the zero root in /3, t disappears from one term on the right-

hand side of each equation, leaving seven periodic terms and one constant,

but the form is undisturbed by this fact.

These equations determine the inclinations and. the motions of the nodes.

The plane of reference is fixed and arbitrary, except in so far as it lies near

the average plane of the orbits. Considered as applying to a set of rotating

coplanar vectors, the equations show immediately that if one coefficient on

the right exceeds the sum of all the rest (taken positively), the node has a

mean motion equal and opposite to that of the corresponding vector, and this

mean motion -is therefore retrograde. When this simple criterion is satisfied,

as it is more often than not, it is also evident that the tensor of the vector

iiLi cannot vanish and that t has a lower limit.

182. The sum of the quadratic integrals gives

2 (p? + qfi
= 2 (

2 + V) = const.

and this applies separately to the eccentric and to the oblique variables. It

follows immediately from the canonical equations of 179 without any trans-

formation. Now f , 77,-
contain the factor Li, which is mi (m-i + mif /Zf-j/Ai'^a;

or to the lowest order in the masses m^rai a/. Hence

const.

= const.

or, as the latter is more usually written,

^WtO/ tan2
t;
= const.

for the degree of approximation adopted allows of no discrimination between

these forms. The constants being small initially it follows that the orbit

of no considerable mass in the system can acquire an indefinitely large

eccentricity or inclination at the expense of the others as a result of mutual

perturbations. These propositions, due to Laplace, clearly have an importance

analogous to that of Poisson on the invariability of the mean distances.

The areal velocity in any orbit is

(ftp)
=

(TOJ + mifdi cos fa
= Gi.

The mass factors being ?ni/4 t-_ 1^{

~
1 as in 170, the components of angular

momentum are

6rt-Wi //.;_! //.i"
1
(sin ii sin fl,-, sin i't

- cos Q^, cos t't-)

= Li cos fa (sin ^ sin O,-,
- sin tjcos-H^ cos i

t-)

when the direction cosines of the normal to the orbit are introduced. These

components may be written ( 174)

7/,-)2A cos*< t
- cos \ii, Zit2 Li cos^,- cos %iit Li cos <^ cos ^
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or since

Z\ i + V\ i
= ZLi (1

- cos fa), %\ 2 + 77
2

f>2
= 2Lt cos fa (1

- cos i{)

they can also be expressed in terms of these quantities. The areal integrals

then become

- 2%2 {^ - $(V +A i)
-

i ('<, + ^fti)}*
= const -

- 2, 2 {A-
-
i(V + ift i)

-
i (ft, + ift,))*

= const.

$ \Li
-

| (V + ift,)
-

^ (\-, 2 4- ift,)}
= const.

If the plane 01 reference is the invariable plane the first two of these con-

stants are zero. In that case, when there are only two planets, r)2 /j~2 is the

same for both and the nodes coincide, which is the property already noticed

in 169 and referred to as the elimination of the nodes.

These integrals, being satisfied identically, remain true when developed

according to order and rank. Thus the third equation gives

^ 2 (f *,i
+ ift i + *'*.. + ift,)

=
1 2Li =

2 (fi,i + ift i + B, 2 + r,\ 2)
= const.

which is the sum of the quadratic integrals both for the eccentric and the

oblique variables. For L{ has no terms of zero rank, and the purely periodic

terms of the first order are excluded from consideration.

Thus Li is for the present purpose to be regarded as constant. The

neglect of terms of the fourth degree in the disturbing function implies the

neglect of the third degree in the variables
, 77 themselves. Hence to the

same approximation the first two areal integrals give

?7M
= const., Z

i2
= const.

These then are the two linear integrals found above for the oblique variables,

and their physical meaning is thus explained. The constants are now

interpreted (to a factor) as the angular momenta of the system about two

rectangular axes in the arbitrary plane of reference. In particular, if the

invariable plane of the system is taken as the plane of reference, both the

constants will become zero.

183. The interpretation of the equations

r i cos ^ .~ cos ,

eiLf . m i
= ^aij Cj .

(ctjt + hj)sm j
3 sin

v

in a vectorial sense has been seen to give a lower limit of Ci when one of the

tensors
\

a
itjCj \

exceeds the sum of the rest. In all cases similar reasoning
shows that
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gives an upper limit of the eccentricity. Similarly the inequality

gives an upper limit of the inclination. The actual limits found in this way
by Stockwell are of interest and are therefore reproduced.

Eccentricity Inclination

Max. Min.

9-2 4-7

3-3

3-1

5-9

0-5 0-2

1-0 0-8

1-1 0-9

0-8 0-6

The effect of periodic inequalities is ignored, and the inclinations are referred

to the invariable plane. Minimum figures are given only when a pre-

ponderating term exists.

Since Lf contains m^ as a factor these limits have no value when the

mass m,i is very small. To consider this case let an infinitesimal mass ra,, be

added to the system. Then for the eccentric variables,

Inspection of the explicit form in 178 shows that AJJ is of the order of m<,

any of the masses, assumed comparable, of the finite planets; that A j is of

the order of m^nii ;
and that A

0>0
is again of the order m^.

The canonical equations give for the infinitesimal planet

-^
= A

0>0 rj + 24 ,jife

~fa

= ~~
^o,oo ^Aojf-j.

As the new mass is regarded as infinitesimal, the motion of the finite planets

will not be influenced, and the former solution

= 2oj,
id cos (ait + hi)

t]j
=

2.djti Ci sin (ait + hi)

holds good. Hence

sin (orf + ht)

+ ^0,0^0
= - 2 Aoja^d cos fat + hi).
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These are the equations for a natural oscillation, together with a set of forced

oscillations, and the solution is

= a cos (A 0>0
t + ^o)

- 2A OJajti Ci (A 0t9
-

c^)"
1 cos

?7o
= - a sin (A^t + h ) + 2,A

jOj_ tiCt (A 0t0 a,:)"
1 sin

where a
,
h are arbitrary constants. In general this solution shows that the

eccentricity (and a similar form applies to the inclination) of the orbit of the

infinitesimal mass will remain small. For f>, 77,, contain m} as a factor, and

A j(A 0j0
a

t-)~
l
is of the order of m^mi'^. An exception occurs when A

0>0

is nearly equal to o,: that is, when the period of the free oscillation nearly

agrees with one of the forced periods imposed by the main planetary system.

The corresponding amplitude then tends to become infinite. This condition

is fulfilled at the mean distance from the Sun 1'95, or near the inner limit of

the minor planets (Eros excepted), but for the inclinations only (A 0t0
=

/3f).

But before any positive conclusion can be drawn for this case, the extremely
limited development of the disturbing function must be remembered*.

*
Cf. Charlier's Mechanik des Himmels, i.



CHAPTER XVII

SECULAR INEQUALITIES. METHOD OF GAUSS

184. A beautiful method of calculating the secular perturbations of the

first order, due to the action of one planet on another, was proposed by Gauss

in 1818. It was this method which was applied by Adams to the path of the

Leonid meteors. Further developments have been given by several writers,

and references will be found in an article* by H. v. Zeipel.

The principle of the method is extremely simple. Equations for the

variations of the elements have been found in a suitable form in 142. As

an example \ve may take (p = r&
2a8

)

di _ 1 rW cos u

dt na2
'

cos<f>

Here the right-hand side can be developed in terms of M, M', the mean

anomalies of the disturbed and disturbing planets, in the form

^
=

A.,. + 2 Aiif
cos (JM +j'M' + q)

and hence, the coefficients being constant in the first approximation,

. i - i = A
0t o

t + 2 AJJ sin (jM +j'M' + q)/(jn +j'n).

If therefore the mean motions n, n' are incommensurable, so that (jn +j'n)
can never vanish, A Qi0

1 constitutes the secular inequality in t. Now

[di] 1 (** f^diA
-*-[*L-*+}. L dt

The component W contains as a factor kPm' = nsasm' / (I -f m). We therefore

write

with similar reduced mean values S
,
T corresponding to S, T. If then a

series of values of S
,
T

, W can be calculated for a number of points

*
Encyklopddie d. math. Wits:, vi. 2, p. 632.
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regularly distributed round the disturbed orbit, they can be introduced into

the equations for the variations and a simple quadrature will give the

secular perturbations of the several elements, that of a being zero.

185. In calculating 8
,
T

,
W0> the disturbed planet occupies a given

fixed point P in its orbit. It is clear that S0i T ,
W are components of the

mean attraction, with respect to the time, exercised at P by a unit mass

describing the disturbing orbit, with unit constant of gravitation. They are

the same as would result if the disturbing orbit were permanently loaded so

as to constitute a material ring of the same total mass, when the density is

proportional to dM' Ids'. Thus it is necessary to calculate the attraction of

an elliptic ring of this kind.

Let any system of rectangular axes xyz be taken, with origin at P. Let

(#, y , z ) be the coordinates of the Sun, (x, y ', z') those of a point P' on the

disturbing orbit, and let da' be the area of an elementary focal sector, dV
the volume of the tetrahedron on the base da-' with its apex at P. Then

2p . dcr' QdV' = x (y'dz' z'dy') + y (z'dx x'dz) + z (xdy -
y'dx)

where p is the perpendicular from P on the plane of da. Hence one

component of the required attraction at P is

1 F" x
'

j*f >
! fa' j / 3 K JTT/Pa;

= - dM' = 7r,l-r-,dff
= rrr 1-^dV

2-TrJo A 3 irab JA3

irabpJA?

where a', b' are the semi-axes of the disturbing orbit and A2 = x'2 f y'
2 + z'

z
.

This takes account of the first (principal) part of the disturbing function

only: the second (indirect) part has been left out of consideration because

( 159) it gives rise to no secular terms in the perturbations of the first order.

It is now to be observed that x'&~3dV is a homogeneous function of degree
in x, y', z', and can therefore be expressed, since z'dy' y'dz'

= z"*d (y'/z'), ...,

in terms of x'/z, y'/z', which are connected by some relation

f(x'lz', y'/z')
=

which is the equation of the cone having its apex at P and the attracting

ring as its section. Thus the integral factor ofPx (and similarly of Py ,
Pz)

depends only on the form of the cone and not on the particular section.

This is true whatever the shape of the ring may be. But in the present case

the cone is of the second degree, and the axes may now be identified with

its principal axes, P (X, Y, Z). Let PZ be the internal axis and a, /9 the

semi-axes of the section Z\. The coordinates of P' can be written

X' = acosr, Y' = /3sinr, Z' = l

where r is the eccentric angle in the section, and

A2 = 1 + a2 cos2 T + 2 sin2
T, QdV = (- /3Z cos T - aF sin T + a/3Z ) dr.
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Hence

p _
I f

27r a cos T (- 0X cos T - aF sin r + a/3Z ) dr~
ZirafVp J

=
- 2affZ /*" cos2 T

Tra'b'p Jo A3

and similarly

p -
~ 2otffF

f**
sin'TdT p = 2c^, f*- dr

7ra'6p Jo A3 ^
Tra'b'p J A3

'

These components can now be expressed in terms of the complete elliptic

integrals

F= (*"

dT
. # =

[** V(l - &2 sin2
T) dr.

Jo V(l -&2 sm2

T) J

For, since

d sin T cos T cos2 T sin2 T + k2 sin4 T

-jfc2 sin2 Tf k*
'

Hence

=
-
'''

ira'b'p' (a?
-

p =z _ /

7ra'6>
'

(a
2 -

yg
2
) V(l + a2

)

p 2^__gff

7ra'6>
'

(! + ^2

) V(l + aa
)

where the modulus & of # and F is given by

1 + a2

186. It is now necessary to consider the geometry of the problem. Let

the angular elements of the disturbed orbit be fl, i, a>, and of the disturbing

orbit ft', i', ta'. These are referred to the ecliptic, which it is convenient to

eliminate by referring the latter orbit directly to the former. With some

change in the notation of 67 the equations there found give

sin (O" + &)' - w") sin \i"
= sin (fl'

-
ft) sn ( + )

cos J (IT + &>' - w") sin Jt" = cos (IT
- Q) sin i (i'

-
i)

sin (H" - w' + to") cos i'" = sin & (V -
ft) cos (i

7 + t)

cos ^ (ft"
- <w' + &)") cos |i" = cos | (ft'

-
ft) cos | (i'

-
i).
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Here ft" is the distance of the intersection of the two orbits from the ecliptic

node of the disturbed orbit, i" is the mutual inclination of the two planes,

and to" is the distance of the perihelion of the disturbing orbit from the

intersection.

Two sets of rectangular axes, with an arbitrary origin 0, are now to be

denned. For ( 17, f) the directions are those of 8, T, W, so that is

parallel to the radius vector at P, Oy is parallel to the plane of the disturbed

orbit and 90 in advance of 0, and is in the direction of the N. pole of

this orbit. For the second set, (x, y, z}, Ox is directed towards the peri-

helion of the disturbing planet, Oy is parallel to the plane of the disturbing

orbit and 90 in advance of Ox, and Oz is directed towards, the N. pole of this

orbit. Let v be the true anomaly at P, and

at + v ft" = Vj

the distance of P from the intersection of the orbits. Then the relations

between the two systems of coordinates are given by the scheme :

cos&)sn v1 +sncDcosv1 cosi snosn

y sin ft/'cos^+cosa/'sinvj cost" sin (o"sinv1 +coso)'
/

cosv1 cosi" cos co" ami''

z sin?J1 sint" cos^sint" cost"

Thus if r is the radius vector at P, and the origin be taken at the centre

of the disturbing orbit, the coordinates of P are (xl , y1} z^), where

x-i
= cue' + r (cos &>" cos v1 + sin &>" sin Vi cos i")

y\
= r( sin &>" cos ^ + cos <u" sin v

t cos i"), zl
= r sin v1 sin i" = p

and a, e are the mean distance and eccentricity of the disturbing orbit.

187. Consider now the confocal system of quadrics of which the

disturbing orbit is the focal ellipse

The parameters \, X2 , X3 of the three quadrics passing through the point

(#i> y\ >
z\) are given by

,i T

a' 2 + X b'* + \

or as the roots of the cubic

X3 - X2 (^ + y* + z? - a'
2 - 6/2

)

+ X (a
/2
6'

2 - a'2^2 - b'
2^ - a'V - 6'

2^2
)
- a/2

6'
2^2 =0 ...... (2)

Now the axes of any tangent cone to a quadric are the normals to the three

confocals which can be drawn through the vertex of the cone, and this

remains true in the particular case where the focal ellipse is a section of
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the cone. Hence the relations between the sets of coordinates (X, Y, Z) and

(SB, y, z} are given by the scheme :

x y z

X
Y

where PI, p2 , ps are such that

# {*, (a'
2 + X,)-

2 + y,
2

(6'
2 + X,)-

2 + ^Xr2

}

= 1, ....

When combined with the scheme given above for (x, y, z), (, 17, ), this gives
the relations between (X, Y, Z) and ( 17, ).

The equation of the cone is

_

for this is clearly homogeneous and of the second degree in x a;l ,y yl ,

z zlt and its section by the plane z = is the disturbing orbit. Transposed
to parallel axes through its vertex (x1} yl} Zj) it becomes

_&___*_ (a? yl_\2yz y, 2zx x,
'2 '

2 2 /a /:!
'

/a
'

= Z'/X, + F2
/X2 + ^ 2

/

The justification for identifying these two forms is seen on comparing the

three functions of the coefficients which remain invariant under a rotation

of the axes. It will then be found that the results are equivalent to the

relations between the coefficients and roots of (2).

It is convenient to write down the equation of the reciprocal cone. The

coefficients are th%, minors of the discriminant of the previous equation

F_j = 0. Hence with due care in choosing the right multiplier the desired

equation may be written

a? (x?
- a'2) + f (yf

- 6'
2

) +

the invariant relations being identical with those between the coefficients

and roots of (2).

Also
a? + y

2 + & = X2 +Y 2 + Z- = f2 + ri* + ? = F

and it is evident that F-l} Fl can also be readily expressed, by means of the

transformation scheme of 186, in terms of , rj, ".

142
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188. Two of the roots of the cubic (2) are negative and one positive,

since two of the corresponding quadrics are hyperboloids and one an ellipsoid.

Let

Xj < X2 < < X 3 .

The axis of Z is then the internal axis of the cone F_^ and it follows that

The elliptic integrals F, E can therefore be found. The coordinates of the

Sun relative to the point P are XQ
= a'e' xlt y = ylt z = zl in the system

(x, y, z) and (Z ,
Y

,
Z ) can be deduced by the transformation scheme of

187. Hence Px , Py, PZ become known, and the components Pf = S ,

P, = T
, Pf WQ may be derived by applying the two transformations of

186 and 187.

It is unnecessary here to consider the equations for all the inequalities.

As a type, (1) now becomes

rT r cos u . W dM.

Suppose that j values tys of ^ = r cos u . W have been found, corresponding
to j points around the disturbed orbit at which M has equidistant values,

0, 2-TT/j, ...
,
2 (j

-
!)TT/J. Then (Chapter XXIV)

^r
= a + 2i cos iM + S6j sin iM

where
1 ^ . 2 v 2OT7T , 2 . 2S17T

a = -2-^rs , ai=-2ys cos s , 6j
= - 2

i/rg
sin r .

J * J s J J s J

Hence

.(3)
(1 + m) cos

(j)

and it is only necessary to calculate the average valufc of tyg to have the

secular inequality. For the major planets j
= 12 practically suffices. The

summation formula for a really gives a + dj + ... . It is therefore necessary
to take j large enough to make

a,- negligible. The number of points to be

taken on the disturbed orbit thus depends on the practical convergency of

the series a
,
a ls a2 ,

... .

It is, however, preferred to take points equidistant in E, the eccentric

anomaly, instead of M, since this secures a more even distribution in arc.

The advantage of this course seems scarcely obvious, because it appears to

weight unduly the part of the orbit which is passed over rapidly. But the

modification is easily made. In this case

^r
= a + 2at

- cos iE + ^6 sin iE
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where again
1 v . 2 ZSITT 2 _, . 2wr

o
= - ^Y> i

= - 2Y COS r- , t
- = - S Sin

but the meaning of ^ will be changed. For

dM = (l-e cos E)dE= arlr . dE
and (1) may be written

(di\ nam 1 l'
2n

Trr 7r,

IS*)
= 7T~

~
I-o^ a-'r^cosM.^^.

Vcw/0,0 (l+m)cos< 27T./0

Hence (3) will still hold good if a is the simple mean value of y, where Y
is now a~ !r2 cos w . TF .

189. The cubic (2) has three real roots and can be easily solved. It is

now to be seen that the solution can be avoided. Let the equation be

written

X3 + 3^X2 + 3&2X + ks
=

the roots being \ lt A,, X3 ,
and let the result of removing the second term be

of which the roots are el} e2 ,
es . Then

gz
= - 4 (e,e3 + e.e,

gs
= 4>ei e2 es =

and
O.,, t O-\ -\ "\ O - )"v -v \ O/> __ O\ A ~\

Oc/i ^i/vi /v> ~
A-gj Oc/2 ^A2 Ag A^^ *J^3 ^^*-3 ^l ^2

Thus

A 2 = 1 + a2 cos2 r + /3
2 sin2 r = X3

-1
{(X3

-
Xj) cos2 T + (X3

-
Xs) sin2

r}

= X-r
1

{(e3
-
eO cos2 r + (e3

- e2) sin
2

T}
= X^1 A'2

and the components to be calculated are

- 2Z (X,X^)4
f*- cos2 rdr v

- 2F (XJX2X3)* f** sin 2 rdrr^cos2 rdT p _-2F (X 1X2X3)
s f*

Jo A' 3 ' r ~
7ra'6> J

where X
1X2X3

= A;3 . It is clearly possible to write consistently

whence
- dr (3 6^(62 62)
2 sin T cos T -7-

= >^-a (e2 tfi ) (s ^s)

and
drV I
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But this can be written

A'-1 dr = dv, p(u)
= s

where $(u) is the Weierstrassian elliptic function formed with the roots

el} e2 ,
e3 . When r = 0, @(u)

= e2 ,
u = co2 : when T=|TT, %>(u)

= ei, u = o)
l .

Hence

fiff dr _ /""' p (u)
- e3 , _ (u) + e3u

"|" _ g + e3 &>

Jo A7
"

3
~

J U2 (e,
- eO (e

- e3)
i ~

L(es
-
*) (e*

~ e*U .

~
(e
~ eO (e2

~ es)

I .1,
=

I ,

^
r du = =

-;

\(* \

/"*"' cos2 rdr _ T* '

jp(u) e1 ,
_ ^(u)+ 0|tt

~|

W! _ ^ + 6ift>

where

The quantities w and ?; will now be found.

190. The reader who is unacquainted with the theory of elliptic functions

will notice that nothing beyond the definitions of the functions ^ (u), (M) is

here involved, and that these can be easily inferred. In fact, if the variable s

be retained, it is easily seen that

pa
ds i"

e* sds=
J ei V {* (-*)(-*)(-*)}''

r}
=
~L

t ^{4>(s-el)(s-e2)(s-e3)}

where
4 (s

-
00 (s

- e2) (s
- e3 )

= 4s3 - g2s
-
g3 ,

el <ez < e3 .

The range of integration is the finite interval between the roots in which the

integrals are real. Let

s = ( igr,,)*
cos 0, cos 87 = (27^3

2

^.2
-3

)
i = 9

~
*

The values of 6 corresponding to elt *, ea in order are clearly

^1 r= 7r + 7' ^2^7T-% ^3 = 7 < 5'r

since

4s3 - #2s
- #3

= (Ij^t (cos 3(9 - cos 87).
Hence

,2 V (cos 30 -cos 37)

'

;

a

, 2 V (cos 30 - cos 87)
'

Now the Mehler-Dirichlet integral* gives

1 [vPn (cos 37) * -
j _

where Pw denotes Legendre's function of the first kind and order n. Let

<f>
= 30 - 2?r, and then

^
= 1 ^2 7T6 f2^ 1 ) - Pn (COS 87)

<>2 V (cos 30 - cos 87)
*

Cf. Whittaker's Modern Analysis, p. 219; Whittaker and Watson, p. 308.
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whence

Now put n = % and + in succession. Thus

-T = 6
smVdV _-!

./
sn< *

-r: s~r = 6 2
TT P. (cos 87).

J 9, V (COS 80 - COS 87) *
V

But the Legendre's functions can be expressed in the form of hypergeometric
series* F(n,n-+l, 1, sin2 7). Hence finally

1, sin2

f7)

, $, 1, sin2

f7)

where sin2

f7 = | (1 # ). Thus &> and rj are expressed in a form not

requiring the solution of the cubic equation.

These hypergeometric series are not the same as those originally found

by H. Bruns as the solution of the problem. But the latter are easily

deduced. For Pn (z) satisfies the differential equation

The result of changing the independent variable to x = 1 z* is

which is satisfied by the hypergeometric series F( ^n, %n + , 1, x). When
z = cos 87, x = sin2

87 = g~
l

(g
-

1) and since there can be only one convergent
series for y in powers of x, this is it. The above series may therefore be

replaced by
F(h, A, 1, sin2 37), F(-&, & 1, sin2

87)

which .are the series obtained by Bruns.

191. Let the origin of coordinates now be taken at the Sun, the point P
being at (X, Y, Z) or (- X ,

- Y
,

-
Z,). Then the components Px , PY , PZ

(4) can be derived by partial differentiation from the potential

V
~

*
*' -3T

2 cos2 T + F2 sin2 r - Z* dr= (~ **)*
f

ira'b'p ja'b'p o A'3

'

(e3 e2) (es
-

Of. Whittaker's Modern Analysis, p. 214
; Whittaker and Watson, p. 305.
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where

Secular Inequalities

\ = (e3 -e,}X*

[CH. xvn

+ e3 (e2
-

e,) Z\

Now by ordinary multiplication of determinants

and

where

and elf e2 ,
es are the roots in X' corresponding to X,, X2 , Xg. The first

determinant is clearly
- Ot and the determinant below it is

2Z2

(X,-
1 - X,-

1

)
= - &3-

1 2X (X:t

- X2) Z2 = - krl

(G2
-

k, GJ.

The multiplying determinant in both identities is

- (x^Xa)-
1

(x,
- xx ) (x,

-
x.) (x2

-
x,) = fa-1

(gf
- 27^)*

and the determinants on the right-hand side are easily expressed in terms of

ki, k2 ,
ks . They are respectively 9k3

~
lH

1 and 9k3

~2H2 ,
where

H, = F, (k,k2
- ks) 4- F (3ki>k2

- 2&2
2 -

bk,) + '2F_, (k*
- k2) k3

and

H2
= 2F, (k2

* - k,k3) + F (Zk^ - 2k^ks
-
k,k3) + F_, (k,k2

- k3) k3 .

Hence

144 (- &,)
.(5)

But Flt F ,
F_r have been expressed ( 187) in terms of (x, y, z). Hence the

system of coordinates (X, Y, Z) has been completely eliminated from the

problem.

192. Now F is a homogeneous quadratic function in (x, y, z) and can be

reduced to the same form in (, rj, f). But its complete expression is not

required, because $
,
T

,
W are its partial differential coefficients at the

point P (r, 0, 0). It is therefore

...(6)
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and the terms which do not contain can be neglected. Thus F is
2

simply. Let the transformation scheme of 186 be written

/

z =l + m3r} + n3 ,
zl
= I3r

with the usual relations of an orthogonal substitution. Then

F, = (xx, + yy, + zztf
-
(aV + b'Y)

with neglect of terms not containing f. Similarly

The last term does not contain and hence
'
2r^F^ = a'2 (Z,f + m3 r; + w3 )

2 -
{a'e' + r77 (l.m,

-
l.m,) + r (I, n3

-
l.

,?)
8 - 2aVr Z,f (-

Thus FI, F , F-t are now expressed, as far as necessary, in terms of 17,

It remains to calculate Hl and ^T2 >
and then the simple comparison of the

coefficients of f, 7, ff in (5) and (6) gives S ,
T

, W .

It must be understood that it is not the object here to obtain the most

practical form of calculation in its final shape, but rather to explain the

mathematical principles involved and to be content with showing how the

computation might be carried out. The method was not developed by
Gauss in the complete form which is necessary for practical computations.

This was done by Hill. The introduction of elliptic functions in the modern

form is due to Halphen.



CHAPTER XVIII

SPECIAL PERTURBATIONS

193. In Chapter XV some explanation has been given of the various

classes into which planetary perturbations naturally fall when regarded from

a practical point of view. There is, however, another kind of distinction

which can be drawn among perturbations, depending on the mode of calculation

and expression. When they are expressed in an analytical form, from which

their values can be deduced for any time simply by giving t its appropriate

value, they are called absolute perturbations. For all the major planets

a theory has been developed in this form. But such a theory, if it is to be

complete and accurate, demands immense labour, which is justified if positions

of a planet are constantly required. Moreover questions of general theory

must nearly always be based on analytical forms. On the other hand there

are bodies which are observed during one short period only, like the majority
of comets, or at relatively long intervals, like the periodic comets. In such

cases, which include also the orbits of the minor planets, the method of

quadratures is resorted to, partly in order to save labour and partly to avoid

difficulties which have not hitherto been surmounted by analysis. Perturba-

tions calculated in this way are called special perturbations. The advantage
of the method is that it is generally applicable, though against this must be

set the frequent necessity of continuing the calculation without a break

through long intervals when no observations have been made, and the im-

possibility of making any general inference as to the motion outside the actual

period covered by the computations. There are exceptions to this statement,

because important researches have been made with success into the origin of

comets by the method of special perturbations, and the periodic solutions of

the problem of three bodies have also been largely investigated by the method

of quadratures. But generally the services of this method have been of a

practical rather than a theoretical kind.

The method of quadratures involves an arithmetical technique with which

the reader may not be familiar. It therefore lies strictly outside the intended

scope of this work, which is not concerned with the actual details of practical

calculation. But the computation of special perturbations fills so large a place
in the practice of astronomy at the present time that it cannot be dismissed
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without some description. Accordingly, in order to interrupt the treatment

of dynamical questions as little as possible, a brief account of the algebra of

difference tables is given in the final chapter of the book, and the results will

be quoted here without proof.

194. Let yn be a tabulated function of the argument t = a + nw, where n

represents a series of consecutive integers and w is a constant tabular interval.

As the practical formulae of quadrature depend on central differences, it will

be convenient to represent the difference table thus :

Here yn is tabulated in a vertical column and the successive differences on

the right are formed directly in the usual way. Thus A?/n = yn+l yn ,
and

the commutative operator K, which is clearly appropriate to central (or hori-

zontal) differences, represents a move two places to the right on a horizontal

line of the table. Similarly K~ l

represents a horizontal move two places to

the left. Two columns are shown on the left of the tabulated function, and

these are known as the first and second summation columns. The relation of

each to the adjacent columns on the right is precisely the same as that

holding between any two consecutive difference columns. Thus the first

summation column contains the differences of the second, and the differences

of the first are the successive values of the function itself. The first column

can therefore be based on an arbitrary constant and formed in the downward

direction by adding the numerical values of the function successively. The

second summation column is based on a second arbitrary constant and formed

from the first in the same way.

The table thus constructed has alternate blank spaces. These are now

filled by the insertion of the arithmetic means of the entries standing im-

mediately above and below each space. In its completed form the table may
be represented thus :

[kKyn]

[k'Kyn\

where the mean differences are distinguished by k to the right of a simple

difference or by k' below a simple difference. As a matter of fact,

but for the immediate purpose in view these operators serve merely to define

the position of entries in the difference table. They are all algebraic.
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195. The formulae available for executing the necessary quadratures can

now be given. Numbered as in the last chapter of the book, to which

reference can be made for proofs, they are these :

->h ......(28)

.........<30)

where m is written in the upper limit in the place of n + ^. The commutative

operator k must of course be carefully distinguished from the Gaussian

constant k.

The lower limits, 6 and c, are arbitrary and correspond with the arbitrary

constants involved in forming the first and second summation columns. If

the lower limit is to be c = a,

which fixes one constituent of the first column, and the rest follow. If the

lower limit is to be c = a + %w,

'+- ......... <27 >

Similarly, if the lower limit b of the second integration is a,

and the value of this particular constituent makes the whole of the second

summation column determinate. If the lower limit is 6 = a + \w,

In general, b = c and (29) and (32) are used together, or (27) and (33). In

the latter case (33) may also be written

In whatever way the lower limits are determined, (28) and (30) will give the

integrals to the upper limit a + nw, and (26) and (31) to the upper limit

a + (n + %) w.
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196. The application of quadratures to the solution of differential equa-
tions such as arise in dynamical problems can be explained by a simple but

fairly general form. Consider the equation

or, as it may be written,

Hence, by (30),

Now suppose that we have a solution in progress, giving at a certain stage,

Xn KXn

Y V Y { V 2 Y \
^n+i -"--^71+1 V*1 ^n+i)

tn !

Xn Kxn

xn+l xn

#n-H Kxn+1

-..- . #n+a

Here Xn is a known function of xn and tn . It is required to find xn+3 and Xn+s

which depend on tn+s and on one another, so that they cannot be calculated

directly. For simplicity the time interval w may be imagined to be so small

that
^j-

K'*Xn+l is negligible. The general run of the differences KX will

suggest a close guess to the value of KXn+z , though the true value requires
a knowledge of Xn+3 and therefore of xn+3 itself. This leads to a correspond-

ing provisional value of Kxn+z by (1) and hence to xn+3 xn+2 or xn+3 . Then
Xn+3 can be calculated, in general, with the accuracy which is finally necessary.
If this be so, KXn+2 is now accurately known, and hence xn+3 by a simple

repetition of the same process, in which if need be an allowance for K 2X can

be made. After every few steps in the calculation the whole can be rigorously
checked by the difference formula (1) and either verified or corrected if

necessary. In general small corrections of xn do not entail a re-adjustment
of Xn .

197. This is the principle of the method employed by Cowell and

Crommelin in calculating the path of Halley's Comet during the two revolu-

tions 1759-1835-1910. It is the crudest possible method in the sense that

it ignores completely what is known of the approximate orbit and is based on

the equations of motion in their primitive form, but it is none the less ex-

tremely effective for its practical purpose. The origin of coordinates is taken
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at the centre of gravity of the solar system, with the axis of x towards the

equinox, the axis of y towards longitude 90 and the axis of z towards the

N. pole of the ecliptic for a stated fixed epoch. The equations of motion are

then ( 20)
du du du

mx = ^r , my = -=
, mz = -j-

dx dy dz
where

U= - tern 2 n,j {(a:
-
xtf + (y

-
yrf + (z

-
ztf}

~
*

and 2 includes the Sun and all the disturbing planets. Thus the typical

equation may be written

where
X = - 2 (k*w*mj) (x

-

and k2

w*mj is a constant for each attracting body. The problem, being in

three dimensions, involves the parallel solution of the three similar equations
for x, y and z. It is convenient to change the time interval from time to time

according to circumstances, in order to economise labour in computing the

forces by making the interval as long as experience may show to be practicable.

In the example referred to, w = 2p days, where p has integral values ranging
from 1 in the neighbourhood of the Sun to 8 in the most distant part of the

orbit. As the comet recedes from the Sun it becomes feasible to treat first

Venus and later the Earth and Mars as forming a centrobaric system with

the Sun, so that the separate computation of their attractions is avoided.

The solution is started by deriving the rectangular coordinates of the comet

on two consecutive dates from the osculating elements at the intermediate

epoch 1835.

A similar treatment has been applied to the path of Jupiter's eighth

satellite, which is so distant from its primary that the solar perturbations are

relatively very considerable.

198. The above process is closely related to the more usual method of

calculating special perturbations in rectangular coordinates, which dates from

Encke. Here the origin is taken at the centre of the Sun and a fixed ecliptic

system of axes is generally chosen. Let (x, y, z) be the position of the

disturbed body P, (xj, ?/j, Zj) of the typical disturbing planet Pj, and let

SP = r, SPj = pj and PPj = A,-.
Then the equations of motion of P relative

to the Sun are of the form ( 23)

= -fr(I + m)-+l?2-

But the undisturbed motion is given by
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where (a; , y9 ,
z

~)
and r can be calculated at regular intervals of time from the

osculating elements. Hence if (f, 77, ) are the perturbations, where

The right-hand side contains (, 77, ) implicitly, and therefore extrapolation

is necessary as in 197. But in the first member
,
which is of the first

order in
rrij,

is multiplied by rtij
and hence if the second order in m

;
- be

neglected (ar , y ,
z ) can be directly substituted for (x, y, z\ This is conse-

quently known as the direct member, but it is quite possible to include

approximate values of the perturbations as they become known in the course

of the work, and thus to make allowance for the higher orders of the disturb-

ing masses. The second member, which has been called the indirect member,
has no small multiplier and besides is expressed as the difference of two

nearly equal quantities. To avoid this inconvenience the transformation

is made, where

.and/ is tabulated as a function of q, which is a small quantity. The equation
for now becomes

= ZX + hfqx-h1~ .......................................... (3)

with parallel equations for 77 and This treatment is not applied to the

planets with sensible masses, but only to bodies whose masses are negligible

and generally unknown. Hence A = Ar
2 r

~3
.

Suppose that n 1 steps in the quadrature have been carried out, so that

|n-i> fn-i are known and %n is required. As in 197 w* can be omitted by

substituting w*k2 for If. Then, by (30),

(5)
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Here Sx>n comprises the terms which can be directly calculated, for ^Xn

represents the direct terms, K~ J

n follows from the previous stage of the

quadrature, and K%n can be extrapolated easily owing to its small multiplier.

Also #n=#o+n is known well enough since it is multiplied by q.
But q itself

is not accurately known. By combining the three parallel equations of the

same type as the last with the above equation for q, it follows that

xn

where S refers to the three coordinates. Thus, / being easily extrapolated,

q can be calculated. The combination of (3) and (5) now gives

whence fn can be calculated, and therefore n by (4). Thus the quadrature,
once started, proceeds step by step.

In order to start the quadrature the four dates are taken such that the

epoch of osculation coincides with the centre of the middle interval. With
= the direct terms in | are calculated and the difference table is formed.

By applying (27) and (34) approximate values of are obtained whereby the

indirect terms can be brought in. The process is then repeated until the

final approximation is reached. The rest of the calculation, giving the results

by means of (30), has already been explained.

199. Special perturbations may also be directly calculated for polar

coordinates. Let the cylindrical coordinates of the disturbed mass m be

(p, 0, 2), the fundamental plane being the plane of the osculating orbit itself

at the epoch t ,
and the initial line passing through the ecliptic node. The

rectangular coordinates of the typical disturbing planet, of mass mj, relative

to the Si\n are

Xj
=

TJ cos Bj cos Lj , yj
=

TJ cos Bj sin Lj , Zj
=

TJ sin Bj.

The kinetic energy of m is ^m (p
2 + p

z6z + ^2
), and therefore the equations of

motion are, since r2 =
p

2 + z2
,

dR

d

m
where ( 23)

R = k2
2m,- {A,-

1 -
r,-

3

(awj + y# + zzj)}

= Jc
2

'S.nij {A;"
1

rf* [prj cos Bt
cos (Lj -B) + zr$ sin Bj]}

A/ = p
z + zz + rf

- 2 [prj cos Bj cos (Lj 0) + zrj sin Bj].
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Hence

p
-

pfr
= _ fr (1 4- m) pr~

3 - k* 2m,- {P&j~
3 -

(A^3 - rf
3

) rj cos Bj cos (,-
-

0)}

d (p
2

0)/dt
=

k*p 2m,- (A/-
3 -

r,-~
3
) r^ cos B}

sin
(Z,-

-
0)

z = -fr(l+m) zr~* - kz
2m,- {*/-

-
(A,--

3 -
r/-) rj sin 5;}.

Let

where /is the same function of q as in (2) and can usually be replaced by 3

simply, because z is merely the perturbation in latitude reckoned from the

osculating plane. The equations of motion can now be written :

p pfc + k* (1 + m) p~
2 = pH

d(p*0)/dt = U, z + Wsz = W1

where

H~
i^

2

(1 + m)fp~5z
'2 + &2

2m,- {/o"
1

(Aj~
3

rj~
a
) TJ

cos Bj cos (Lj 0) A/~
3

}

U = k2

p 2m,- (Aj"
3 - r^) TJ

cos Bj sin (Lj
-

0)

Wl
= k2

2m,- (A^-
3 -

rj~*) TJ sin Bj + fc
2

(1 + m)fp~
5z3

W2
= k" 2m,-Aj~

3 + fc
2
(1 + m) p-

3
.

The third equation is now in the required form to determine z. The first

two must be transformed in order to obtain p and 0.

200. The second equation gives

p*0
= h+ I Udt

J t9

where h is the undisturbed constant of areas, so that

h = {k
2

(1 + m)p f = n a - cos
<f>

po, n ,
a

,
sin< being the osculating parameter, mean motion, mean distance

and eccentricity. Hence

= + h: I

'

p~*dt + I'

1

|V 2

f

'

Udt\ dt

Jtt J L J o J

where ^ is the initial value of and a> is the distance of the undisturbed

perihelion from the node. The angle Ao>, which represents and is defined by
the double integral, would vanish in the absence of disturbing forces. In the

same circumstances V would be the undisturbed true anomaly. Thus V may
be regarded as the disturbed true anomaly and Ao> as a rotation of the apse.

In the rotating orbit thus defined, in which the elements p ,
a

,
e , <f> keep

their osculating values, let p (1 + v)~
l be the radius vector corresponding to

the true anomaly F, so that, since F= hp~
2

,

1 + e cos F = p (1 + v) p~
l

e sin V= h~l

p*p { (1 + v) p~
2

p + vp~
1

}

e cos F= h-~p
2

p { (1 -f v) p + pit}.

P. D. A. 15
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Hence

1 = h~2
(1 + v) p p

2

(h
2

p~
s -

p) + h-2

pp*v
or

p = h?p-
3 + (I + v)^pv

- k2
(1 + m) (1 + v)~

l

p~*.

But

1

'

)

Therefore, by the first equation of motion in the form last found,

pH=(l + v)-
1

pV + k2
(1 + m) (1 + v^vp-* - p-

3 P Udt\
^Udt +

2h

which can be written in the form

where

From this equation, which is of the same form as that in z, v can be found

by mechanical integration.

Again, instead of finding V by a direct quadrature, the necessary correction

N is found to the mean anomaly calculated with the undisturbed mean motion

n
,
so as to reproduce the true anomaly V or the eccentric anomaly E in the

rotating orbit. Thus

a (1 e cos E) = p (1 + v)~\

Hence, by (7) of 27,

N + n = (l-e cosE)E = pa ->(l + v)-iV.dE/dV

p h 1 e cosE _ n

a (1 + v)

'

p
2

'

cos
<f> (1 + v)

2

and

201. The whole problem is therefore reduced to the mechanical solution

of the equations
d'v - dN_ 2 + y

lf ~dt~ **v
'(l + 9Y

When v, N, A&>, z are known, the coordinates r, 6 and the latitude X are

given by
E - e sin $=M H- n (t

-
) +N

p sin V= (1 + v) a cos $ sin E, p cos V= (1+ v) a (cos E - e )

= V+c0 + Aw, r2 =
p

2 + 22
, p tan A, = z.
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Perturbations to the first order will be obtained by calculating the quanti-

ties occurring in the differential equations according to the osculating elements,

but as they become known in the course of the work their approximate effect

on the coordinates of the disturbed planet can be introduced before integra-

tion. The integral of U, and also N and Ao>, can thus be found by direct

quadrature by applying (27) and (28). For v and z, which require exactly

similar treatment, the case is slightly different. As before, the time interval

w is removed by writing w
2k? for If, which is equivalent to making this interval

the unit of time. Then at any stage n, when zn^ and K~lzn are known,

^ '
'

and this last equation will determine zn with the needful accuracy, and

hence zn and K~l zn+l for the next stage.

This method is due in principle to Hansen. The perturbations start from

zero values and remain small for a considerable length of time. This conduces

to accuracy and is an advantage. The method is less simple than that of

rectangular coordinates, and for the easier construction of an ephemeris

requires the determination of new osculating elements by a process which is

itself complicated and is omitted here. Perturbations of the coordinates are

recommended by the fact that there are three coordinates as against six

elements to be determined by quadratures, and their computation is suitable

for practical needs in the case of a body, such as a periodic comet, which can

only be observed at relatively long intervals. Otherwise it is preferred to

perform the calculation on the elements directly.

202. With slight changes which will be readily understood the equations

found in 142 for the perturbations of the elements may be written:

difdt
= rW cos u/k^p

dl/dt = rW sin u/k^/p sin i

d(f>/dt
= {S sin v + T (cos v + cos E)} ^/p/k cos <f>

d-sfldt =
{ pS cos v + (p + r) T sin v + rW sin

<j>
tan i i sin u}jk*Jp sin

<j>

dn/dt = - 3 (rS sin
<f>

sin v + pT) cos (f>/pr

dM/dt = {(p cos v cos
</>

r sin 2</>) S (p + r) Tsin v cos (f>]/k\/p sin </>
+ I j-dt

152
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where v represents the true anomaly and m is neglected, so that
/u,
= k'

2
. Let

Then the equations are of the form

wd^dt = [$, 1] F, + [<, 2] F2 , wdn/dt = [71, 1] F, + [n, 2] F2

wdv/dt =K 1]# + O, 2] 2̂ + [or, 3] f,

where

[ 3]
= r cos it, [fl, 3]

= r sin w/sin

[0, 1]
= p sin v sec <, [<, 2]

=
_p (cos t> + cos E) sec <

[BT, 1]
= p cos a/sin 0, [-or, 2]

= (p + r) sin w/sin </>, [-or, 3]
= r sin M tan |i

[M, 1]
= - {0, 1] + 2r} cos <, [Jf, 2] = -

[OT, 2] cos <

[w> 1]
= - 3k sin

</>
cos

<f>
sin v/Vp, K 2]

= 3& cos
</> V_p/r.

For a minor planet disturbed by Jupiter, 40 days is generally found a suitable

value for the interval w.

The disturbing function R may be taken in the form found in 199

except that the argument of latitude is now u = v + cr H instead of 0.

Thus
R = k2

2mj {Aj-
1 -

rf* [prj cos B, cos (^ - w) +^ sin
,-]}

and if the directions of the components /S, T, W be recalled,

9.R 1 9.R , 9.R
w = TF- ,

J- = -
-^- ,

rr = TT

9p p 9w 9^

where after differentiation 2 0, because the plane of reference is the plane

of the instantaneous orbit. For the same reason p
= r. Hence

F1
= p

~
2 (kwmj) {(bf>

-
rj-

3
) rj cos Bj

cos (Lj -u)-

F,=p~
1 ^ (kwmj) (A,-

3 -
r,-

3

) rj
cos 5, sin (Lj

-
u)

F3
= p-*2 (kwmj) (V3 -

r,-*) ;>
sin Bj

and

A/ = r2 + r/
-

2rrj cos
jB,-

cos (Z^-
-

M).

203. Let
^-, bj

be the heliocentric longitude and latitude of the disturbing

planet, which with log r-
}
are given in annual tables like the Nautical Almanac.

The relations between ecliptic coordinates (#, y, z) and the orbital coordinates

(> ^ 0) the axis of f passing through the ecliptic node, are shown by

x y z

% cos fl siaQ

i) cos t sin n cos i cos U sin i

sin i sin U sin i cos ft cos i
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which is the scheme derived in 65. Hence

= cos BJ cos LJ
= cos bj cos (lj H)

77
= cos BJ sin Lj

= cos
fy

cos i sin (/j fl) + sin
fy

sin i

= cos
j

= cos
bj

sin i sin
(/j H) + sin bj

cos i

and thus F1} F2 ,
F3 can be calculated, so far as the coordinates of any disturb-

ing planet are concerned.

But Flt F2 ,
Fs and the coefficients [i, 3], ..., involve also the varying

elements and coordinates which depend on them. The elements may be

identified with the osculating elements at the initial epoch t and the co-

ordinates may be calculated as in undisturbed motion. Then the result of

mechanical integration will give the perturbations of the first order. When
these are known for the several dates covered by the work, the calculation

can be repeated with the improved values and a higher approximation can be

obtained. The work can be arranged so as to obviate this repetition by

including the perturbations to date at each step.

204. The five elements i, H, <, OT, n require only a single quadrature.

The lower limit a + ^w is made to coincide with the epoch of osculation and

the tables are formed in accordance with (27). The corresponding perturba-

tions are then given by (28) or (26) according as a + nw or a -f (n + ) w is

preferred for the final date. It is to be noticed that the differential equations

for the elements have been reduced to a form in which w occurs explicitly as

a coefficient of the derivatives on the left-hand side. It will disappear when

the quadratures are effected, its function being to make the unit of time agree

with the tabular interval. But the unit of time is not really changed, and

with the ordinary Gaussian constant k occurring in the combination kwrtij for

each disturbing planet remains one mean solar day. Thus the perturbation

in n which will be drawn by this process will be the increment in the mean

daily motion. Since all the elements are in the form of angles, it is con-

venient to express k, so far as it occurs in F
}

,
Fz> F3 through the combination

kwnij, by its value in arc (log k" = 3'55...). But in [w, 1], [n,2] k has its

purely numerical value (log k = 8'235...).

The perturbation in M can be conveniently divided into two parts. The

first,

{[M, 1] F, + [M, 2] F,} dt

is calculated in precisely the same way as the other five elements. The second is

The table having been prepared for the first quadrature on the basis of (27)

and (28), the second can be performed by means of (34) and (30). The
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immediate result will give w~
2 S2M, which must therefore be multiplied by w

2
.

To avoid this large multiplier it is usual to calculate w8n from w*dn/dt at the

first quadrature (giving the increment in the w-day mean motion). This

alters the time unit of the acceleration and therefore no multiplier will be

required by 82M, a result which can be otherwise seen by noticing that all

the tabular entries are multiplied by w, while the integrand is divided by w,

being in fact dn/dt instead of w.dn/dt as in the first quadrature actually

performed on this plan.

205. In the case of parabolic and nearly parabolic orbits some modifica-

tion is necessary. The equations for i, H and -BT remain valid, except that it

is well to replace < by e. The equation for e itself becomes

wde/dt = [e, 1] F, + [e, 2] F2

[e,I]=psmv, [^2] =

But the equations for n and M become inconvenient, if not illusory. One

suitable substitute is easily obtained by forming the equation for q, the

perihelion distance. Since q = a(le),

dq .,
. da de 2aw ,, .dn dew = l - w - aw = - l - e -- aw

where

Y sin
<f>

cos < (1 e) sin v ap sm v

np

2a*e (1
-

e) sin v - a2

(1
- e2

) sin v = - a2
(1

-
e)

2 sin v

q* sin v

and

er

e r e 1+e

' 4 sin2 %
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Thus a valid form for the perturbation of q is obtained. If F^, F2 have

been calculated with the angular value of the constant k the results for Se and

Sq will require to be multiplied by sin 1".

Again, an equation can be formed for the variation of T, the time of

perihelion passage. Since

^dn dT d . . dM
<'-^*- n * -*<-->" d

it follows that

rlT
w
Tt

=n" (t
~ T} {[n> 1] Fl + [n' 2] F* }

~ n~l

{[M' 1] Fl + 1M' 2] F3
= [T,l]Fl + [T,2]F2

where

[T, 1]
= w- 1

(t
- T) [n, 1]

- 71-1

[M, 1]

, 2r- e^*\
np

* n V e J

2 (1
- e2)* ( p Zke . .. _,.)= \r cosv T sm v (t T)>n

(
2e 2^ J

and

[T, 2]
= n-1

(*
- T) [n, 2]

- n'1

[M, 2]

-T) (1
- e

2
)^ (p + r) sin v

But these coefficients are in a form absolutely unsuitable for calculation,

especially in the case of a parabola, for which in fact they are required.

The difficulty can be, and is best, met for such orbits by calculating special

perturbations in rectangular or polar coordinates, instead of directly in the

elements.

206. The reduction of [T, 1], [T, 2] to a calculable form is not altogether

easy. It can be effected in the following way. The required expressions can

be written, since n2a3 = &2
, p = a (1 e

2

),
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Now

k (t
- T) = a* (E - e sin #) = - -

1 {(E
- sin E) + (1

-
e) sin #}

where

1 o

But ( 27)

r cos2

$ w = a (1 e) cos2 \E = p (1 + e)~
] cos2 \E

and therefore

2p r v
"

/

Let [5P, 1], [^, 2] be written in the form

r
, 2p*r cosv(l+ecosj)-

T "

where

Fj = e sin v . F, F2
=

(1 -f e cos v) F

and therefore

Hence

j cos %v F2 sin ^v = sin ^v sin v z--
| (

--
. 2 tan2

\v ) f-8j
>

1+6 (\ 1+6 / J

+ | cos v sin v {2 (1 + e)-
1 tan2 w + 3}.

The expressions involving S are finite and they are multiplied by 1 e, which

is a necessary factor. For the other terms, let

2/!
cos $v 2/2 sin $v = -

f sin |y sin v . T-~1+6

yl sin ^w + 2/2 cos %v = | cos v sin v + (1 + e)"
1 cos %v sin w tan2

^ v.
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Then

y^
= *

(1 + e)-
1 sin3 v (3e + tan2

%v)

= |(1+ e)-
1

(1
- cos v) {3e (1 + cos v) + (1

- cos v)}

t/2
= (1 + e)

-1 sin v {f (1 + e) cos
2 v + f (1 e) sin

2 v + sin2

%v\

= | (1 + e)-
1 sin v (4

- cos v + 3<? cos v).

It is now possible to write, with a little simple reduction,

and
3/1, yz have been determined in such a way that

(F,
-

2/1)
cos t>

- (F2
-

2/2) sin t> = - -.
j^sin

v ,g sin G

1 1 e

(Yj.
-

T/J) sin $v + (F2
-
ys) cos ^v = - -

.

^
sin v . g cos G

where

gr sin G 1 S _ o cos G >S 2 tan4 Av
z_j

----- = -L. 2 tan ! v __ =_ __
sin \v 1 + e

'

cos ^v 1 + e
'

tan2 \E
'

Hence

" cos 2v - + ^ Bin (G

which are fairly simple forms, but still require the calculation ofg sin G,gcos G.

In the limiting case of the parabola, S = ^$E
2 and

g sin G = tan2

$v sin v, <jr
cos G = ^ tan4

\v cos v

which then completes the solution.

The more general case of a very eccentric ellipse can be related to the

method of 34. In the notation of that section,

sm^ A=Fi-=
-FT, _

9E + sm E '

1 - fA + G
Hence

E ~ sin E = 1
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Now by the method of 34 A (of the order E'2) is found in calculating v,

and G (of the order E*) is tabulated with argument A. With the same

argument it is possible to tabulate* log and log 77, where

1 -=-', # cot2 # =
77.

Then
. ~ 2tan2 Avsiniv ~ 2 tan4

and the problem is thus solved in a practical way. Similar treatment can be

applied to hyperbolic orbits.

207. It sometimes happens that a comet approaches a planet (generally

Jupiter) so closely that the disturbing force due to the planet is actually

greater than the force due to the solar attraction. It is then more convenient

to refer the motion to the centre of the planet and to treat the solar action as

the disturbing force.

In the ordinary case the equations of motion of the comet are of the form

dt*
"'

r3 "

where M is the mass of the Sun, m the mass of the planet, and the origin is

at the centre of the Sun. If 8, P, G are the positions of Sun, planet and

comet, CS = r, CP = A, SP = p. The equations involve no assumption as to the

relative masses of the Sun and planet, and if they are interchanged the

equations of motion of the comet take the form

where the origin is at the centre of the planet, so that x=x + , ...,#'+ f/= 0,

The advantage of either form depends on the ratio of the total disturbing

force to the corresponding central attraction, and it will rest with the latter if

that is, if /*
= m/M, when

^ + A ~
-T^ cos CSP

]
< V& (xi + -*

-
XTl 008 CPS)r4

/o

4

r*p
2

1 \A4

p
4

t
A2

p
2

/

Let CPS =e. Then
r cos CSP =

p
- A cos 6

r2 = p
2 - 2pA cos + A 2

.

Now in the nature of the case A is small compared with p. Hence

r~4 =
p~* + 4/3-

5A cos 6 + 2/3-
6A2

(-1 + 6 cos2

0)+ ...

r~3 = p-* + 3/j-A cos + fp-
5A 2

(-1 + 5 cos2
0) + ...

*
Bauschinger's Tafelri, Nos. xxvn, xxvm.
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and therefore

r-4 + p
-4 _

2r-p-* (j,
_ CQS ff)

= p
-6A2

(! + 3 CQS2
#) + . ...

To gain an idea of the planet's sphere of influence the approximation need not

go further. On the other side of the inequality the first term preponderates
and it can be further simplified by taking r = p. Thus the significant terms

of the lowest order in A give the inequality

p-
6A6

(l + 3 cos2

ff) < /z
4

p
4A-4

and the polar equation, with coordinates (A, 0) and origin at the centre of

the planet,

A (1 + 3 cos2

<9)
lV = ffp

represents a meridian of the bounding surface, which is one of revolution

and differs little from a sphere. Its radius for Jupiter, Saturn and Uranus is

about a third, and for Neptune rather more than half, of an astronomical

unit.

When the comet enters this sphere of influence its relative coordinates

(#1 #/, yl t//, zl Zi) or (j, 771, \) and its relative velocity ( 1} r)1} ^) are

known and its orbit about the planet can be found, with the constant of

attraction k*m. It remains within the sphere so short a time that the solar

perturbation can generally be neglected, and on emergence a return is made

to the heliocentric orbit, based on the new position (f8 + a?8', *?2 + y/> & + *a') r

(#2 , 2/2,
s2) and the velocity (x2 , i/2 ,

z2).



CHAPTER XIX

THE RESTRICTED PROBLEM OF THREE BODIES

208. The general problem of three bodies is reduced to a relatively

simple and ideal form when two of the masses describe circles in one plane

about their common centre of gravity and the third body has a mass so small

as not to affect this circular motion in any appreciable degree. Let OXYZ
be a set of rectangular axes rotating with angular velocity n about OZ, OX
following OY, and let the coordinates of the masses

//.,
v be ( c1} 0, 0), (c2 , 0, 0)

where /tCj
= vc2 . The velocity components in space of a small body at P (, 77, )

are (% ny, rj + n%, ) and hence the kinetic energy of unit mass is

The equations of relative motion are therefore

rj +

where in this case

V

pl , p2 being the distances of P from
//,,

v. The result of adding these equations,

multiplied respectively by , ), , gives Jacobi's integral of energy

tf = p + r? + fr
= 2V + n2

(
2 + rf*)-C

and in accordance with Kepler's law

k* (/* + !/)
= n2

(d + c2)
3
.

209. This integral has a very simple and important practical application.

Let us return to fixed axes through /A, so that

+ GI
= a; cos I + y sin I, t)

= y cost xsinl, = z

where I is the longitude of v and I = n. Then

z _. 2Ci (^ cos i + y
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Hence Jacobi's integral becomes

& + y
2 + zz + 2w (yx -xy) = 2V- 2n2

Cj (x cosl + y sin 1) + rfcf - C.

The special circumstances under which this integral can be usefully

employed are these. A periodic comet between two appearances in the

neighbourhood of the Sun may pass in close proximity to a large planet,

Jupiter for example. In that event the elements may be so altered that at

the second return the identity of the comet is doubtful. At times when the

perturbations are small and the heliocentric motion is sensibly elliptic,

xy-yx = k >J(pp) cos i

the latter being the projection of the areal velocity on the plane of the

disturbing planet. Hence

- &y/a - 2kn \/Oj0) cos =
2fcv/p2

- 2?i2d (x cosl + y sin 1) + n'cf - C.

It is supposed that the change in the observed osculating elements takes

place almost impulsively within the region of the planet's influence. This

region is small and nearly spherical. Hence
/o a

is the same at the beginning
and end of the encounter, and the changes in x, y and I are small. These can

be neglected together with the other planetary perturbations, and therefore

approximately

fi/a + 2k~ln V(/*p') cos *' = /*/a
" + 2Ar~1n V(/*p") cos i"

where a, a" are the mean distances of the comet, p', p" the parameters, and

i', i" the inclinations of the orbit to the orbit of the disturbing planet, before

and after the encounter. For the Sun /*= 1 and &2
(1 + i/)

= w2a3
, where a is

the mean distance of the planet, and if v be neglected

a'- 1 + 2a
~ *

p'* cos i' = a"- 1 + 2a~ *
p"^ cos i"

which is the criterion of identity proposed by Tisserand. It has been assumed

that the orbit of the disturbing planet is circular, but some allowance can be

made for the eccentricity of the orbit by taking into account the actual

motion of the planet at the time of the suspected encounter.

210. Let the problem of 208 be now reduced to two dimensions (f= 0).

Then

Wf + vp* = p (f + Cj)
2 + M- + v(%- C2)

2 + My
2

+ vcf.

Let the units be so chosen that k= 1 and d + ca = 1, with the consequence
that p + v = w2

. The equations of relative motion may now be written
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where
20 =

fi (Zpr
1 + Pi

2
) + v (Zpr

1 + pa")

and the integral of relative energy is

v2 = 2n-a

These are the equations used by Sir G. H. Darwin, with the masses /*
= 10,

v = 1, in his researches on periodic orbits. Now it is obvious that v* cannot

become negative under any circumstances. Hence the curves of the family

given in bipolar coordinates by the equation

2O = C

are of great importance in the restricted problem of three bodies, because they

represent barrier curves which cannot be crossed by trajectories characterized

by corresponding values of 0. Thus if the barrier curve, or curve of zero

velocity, is a simple loop within which a part of the trajectory lies, then the

trajectory can never pass outside. If the lunar theory can be compared with

this simpler problem it is found that the orbit of the Moon lies within such a

closed curve surrounding the Earth, and therefore the Moon cannot recede

beyond a certain limiting distance from the Earth. This remark is due

to Hill.

The simplest view of the general character of the curves of zero velocity

is gained by considering them as the contour lines of the surface

2O = z, z = C.

If the axis of z is taken vertically upwards, and motion for. a given value of C

is supposed to take place on the actual contour plane z = C, then it is

evidently restricted to those parts of the plane which lie underneath the

surface, since elsewhere in the plane the velocity becomes imaginary. Now
the main features of the surface are easily represented topographically. At

the points where the masses /*, v are situated the surface rises to infinity, but

in the neighbourhood of these singular points may be treated as two peaks.

At any considerable distance from them the terms pp^ + vp2
2 are predominant,

and the surface rises indefinitely in all directions. Now 2ft may be expressed

in the form

2ft = 3 O + v) + /* (Pl
-

I)
2

(1 + 2pr
1

) + v (p.
-

I)
2
(1 + 2p2

~l

)

and clearly has an absolute minimum value 3 (/A + v) when PI
=
p2
=

1, i.e. at

the vertices of the equilateral triangle on the line joining the masses p, v.

These points represent the bottom of two valleys, and a simple consideration

of the continuity of the surface shows that these valleys must be connected

by three passes, one between the two masses and the others on the same line

but on opposite sides of the two masses and separating them from the rising

surface as it recedes in the distance.
"

If it be added that the highest pass is
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that which lies between the masses and the lowest is on the other side of the

greater mass, the general order of development of the contour lines should be

sufficiently evident. The critical curves for Darwin's special case, /*
= 10,

i>= 1, are illustrated in
fig. 7. The whole is symmetrical about the line SJ.

Fig. 7.

211. The points at which the ovals coalesce or disappear evidently

correspond to critical values of fl. Take v <
//,.

The critical values are

given by
8nan d, an a

= =
dtj dpi

'

drj 3p2 ???

which show immediately that such points are points of relative equilibrium

for the third body. These equations are satisfied in the first place by

or pl
= p2

= 1. This gives the "
equilateral

"
points mentioned above, where ft

is an absolute minimum. But other solutions are given by

a(, /) PI Pa

or 77
= 0, together with 3fl/3 = 0. This will lead to the three points collinear

with the masses. For the first, lying between the masses,

dp l dp2 ,

so that
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This is a quintic in
p.,,

with only one real root. The actual solution in

a particular case is easily found by trial and error from the first expression.

The second expression, when expanded, gives

and to the same order

C = p (3 + 3/tf

=
/a (3 + 3ft

8

) + i/or1

(2+ fa)

= p (3 + 9a2 + 2a3
).

For the second collinear point, on the further side of the smaller mass v,

ft =i+*, |=|= + i

and hence

again a quintic in p2 with only one real root. For the approximate solution

= 3ft
3 = 3(l

and to the same order

(7 = /* (3 + 3/os
a -

2p2
3
) + v (2/

o2
-

1

=
/* (3 + 3a2

) + j/cr1

(2
-

| a)

=
yn (3 + 9a2 - 2a3

).

For the third collinear point, on the further side of the larger mass
/A,

3/i S^2
1P*=l+ Pl ,

a|
=
3f

=

and therefore

v /or
2 -

Pi (2+o-)
2

(3o-4-3o-
2 +q-3

)

where ^ = 1 + <r, p 2
= 2 4- o\ Hence

v _ -g-(12 + 24q-+19a-2

+...)

p~
and

13o-2
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which shows that
- 7v - To3

i/)
4 + 12a3

is a very close approximation. The approximate value of G at this point is

When
i///i,

= So3
is small, as in the case of the planets compared with the

Sun, the above approximations are generally more than sufficient. In the

limiting case /*
= v and the arrangement of the points of relative equilibrium

is obviously symmetrical with respect to the rotating masses.

212. Let =, + #, 77
=

77 + 2/,
where ( 0> rj ) is a fixed point. The

equations of motion may then be written

* - 2ny = n10 + ft^tf + nuy + ...

y + 2nd; = H01 + nu a; + flay + ...

where

provided fl is regular at the point (f , 7? ) and x, y are not too large. If

(o> *?o) is a point of relative equilibrium, or as it has been called a point

of libration, and x, y are very small, the linear equations

y + 2nx

are obtained, and these determine the nature of the equilibrium at ( , Vo)-

For they, are satisfied by the solution

x = h cos (mt a), y = k cos (mt ft)

provided - 2mnk sin ft
= (m

2 + ^V) ^ cos a + Mln cos ft

' = (m
2 + fljjo) A sin a + &!! sin /9

sin a = Mlu cos a 4- (w
2 + n^) k cos /3

a = hlu sin a + (wi
2 + lm) k sin /3.

These equations, which result from equating coefficients of cos mt, sin mt, are

equivalent to

(m
2 + ftao) h sin (a ft)= Zmnk

klu sin (a-ft) = - 2mnk cos (a
-
0)

(m? + flm) k sin (a
-

ft)
= 2wwA

Ann sin (a
-

/9)
= - 2mnh cos (a

-
ft).

There are only three independent equations here, and this should be so

because the only quantities which can be determined are the ratio of
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amplitudes h/k, the difference of phases a /3, and in. The three equations

may be written

/i
2

(?rc
2 + n, )

= fc
3

(ra
2 + f3 ,)

nu tan (a
-

/3)
= - 2raw

(m
2 + na) (m

2 + n o2)
= 4m2w2 + fls

n

and these determine a series of infinitesimal elliptic orbits about a point ~of

libration when m has a real value. With certain simple developments such

a series can be traced into a family of finite periodic orbits.

213. The third equation, that is the quadratic in m?,

m4 - ?w2

(4n
s -

fia,
- flm) + Clv, HO, - ft2

n =

decides the question of stability and may be examined more closely. If the

roots in m2 are complex or negative, real exponential functions of the time

enter into the disturbed motion and equilibrium is unstable. If the roots

are real, but of opposite sign, an unstable mode of motion is associated with

a possible elliptic mode and equilibrium is again unstable. Here the point

is surrounded by an unstable family of orbits initially elliptic. This is

illustrated by the collinear points of libration. For it is easily found that

when 77
=

nn = o, HSO = ^ (2Pr3 + !) + *> (2/?2

-3 + 1 )

so that n20 is positive. Now at the point of libration between the masses

dPl dp, an an
Pl + P-2

~
1, 0? +"55 *> 3

=
^

d ?! Ojfr dp2

and therefore, since r)
=

0,

i an i an /in i i

which is negative since p 3
< 1. Similarly fl^ is negative at the other collinear

points of libration. Hence at these three points the absolute term of the

quadratic in m'2 is negative and the roots are real and of opposite sign. Each

of the points is therefore surrounded by a family of unstable periodic orbits.

It has been suggested by Gylden and by Moulton that the phenomenon
known as the Gegenschein is due to sunlight reflected by meteors which, in

spite of the instability, are temporarily retained in the neighbourhood of that

centre of libration in the Sun-Earth system which is opposite to the Sun and

at a distance of about 938,000 miles from the Earth.

When both values of m2 are positive the disturbed motion is the resultant

of two elliptic motions, and equilibrium is stable. This may be illustrated

by the
"
equilateral

"
centres of libration. At one of these

i
gpi a/oa y

2' dr~ drj-
t

2
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and therefore

_ l 2
02~w 5?

+ * <
'
1

dPl dPl 32

Hence the quadratic in w2
becomes, since n* = p + v,

m4 m2
(fi + v) + ^-IJLV

=

and the roots are real and positive if

(p + v)
2 > 21pv

an inequality which is satisfied if p/v is 25 or greater. In that case the

equilateral centres of libration are surrounded by two distinct families of

stable periodic orbits which are ellipses in their elementary form, with periods

tending to 2fr/m. If the masses are more nearly equal, the roots of the

equation in m? are complex, and no such periodic orbits exist.

Since the masses in the system Sun-Jupiter satisfy the condition of

stability, and the disturbing influence of Jupiter predominates over the

minor planets, it might be expected that planets would be found in this

group approximating to the equilateral configuration. Such planets, with

a mean motion nearly equal to that of Jupiter, have actually been discovered.

214. A valuable insight into the general character of the solutions of the

problem of three bodies is obtained from the periodic solutions because they

repeat themselves after every period. These solutions have therefore been

the subject of much laborious study. But such orbits will not be indefinitely

permanent unless they are also stable. Hence it is necessary to study them

in relation to those orbits which initially differ but little from them.

The original equations of motion give

fr*i*---:-y ........................... (1)
it, op

where R is the radius of curvature of the orbit, Sp is an element of the

outward drawn normal, and N may be called the component of effective

force along the inward normal. Hence if the tangent to the orbit makes the

angle < with the axis of
,
R =

v/<j>
and

162
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Also the equation of relative energy gives, when the constant C remains

unaltered,
dv an vdv an

v^- v-^-, -~ = ^ .

os os op dp

Let the undisturbed orbit at P be defined by the quantities s and
<f>,

and the

corresponding point P' on the neighbouring orbit by &s along the undisturbed

orbit and 8 normal to it. Then

or to the first order

d8s ;, an 8P an ss- Sw*: 5 .- + -.
a/> a 8s w

Hence
d ,_.

(2)

Again, let (w, w') be the components of velocity in space of P in directions

coinciding with 8s, 8p. Since these lines are rotating with the absolute

velocity (<j> + re) the kinetic energy of unit mass at P' is

Hence Lagrange's equation for 8p is

Now this equation must be satisfied when
Sjt?
= 8s = 0, and when the terms

which do not vanish have been removed, it becomes

Also it must be satisfied when 8p = 0, 8s = v8^, where 8t is constant, for this

also represents a point moving on the unvaried orbit. Thus

and therefore

hich owing to (2) becomes
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But

Hence finally

^ + %> = ..............................(3)

where

@ = w*+3(<J> + 7i)
2-|5 .

P
a well-knoAvn result due to Hill.

Again, Lagrange's equation for 8s is

which must be satisfied when 8p = 8s = and also when 8p = 0, 8s = v8t.

Hence, after removing the terms which are independent of 8p and 8s and

then those which contain Sp,

-- - ((b
2 - - /'d

2^
2
N

This result may be used to give @ another form, namely

(4)

where V 2 =
&/dp* + 32

/3s
2 = 92

/9
2 + S2

/^9?
2
- Tnis form may be more convenient

than Hill's because V 2

(not to be confounded with the three-dimensional V a

)

does not depend on any particular direction.

For some purposes it is necessary to take the arc s instead of t as the

independent variable. Then (3) becomes

ds \ ds

or again, if 8p = v
~

*
8g,

where

215. When the unvaried orbit is periodic, is a periodic function of t

with the same period T. The equation (3) is therefore a particular case of a

linear differential equation with periodic coefficients. Its general theory may
be indicated. Since the equation is unaltered when t is replaced by t + T,

g (t + T) is a solution if g (t) is one. But every solution is a linear combination
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of any two others which are independent. Hence if g represents g (t) and

G represents g(t + T), g1} g2 being any two solutions,

G, = ag1 + /3g2 , G2
= ygl + 8g2

where a, ft, 7, 8 are constants, not unrelated. For since glt g.2
are two solutions

of (3)

fftffi^ffifft

and therefore

9,9i
-

9i9*
= const. = G2G,- G,G2

Hence a8 /3y
= 1. Let/^/j, De two other independent solutions. Then

ffi
=

afi +?, 5r
2
=
c/1 + d/2

G1
= aFl + bF2 ,

G2
= cF, + dF2

and the result of eliminating g1} g2 , Gl} G2 is

Fl
= Af1 + Bf2 ,

F2
=

Cf, + Df2

where

(ad be) A ada + cdft aby bc&

(ad - be) B = bd (a
-

8) + tffi
- 62

7

(ad - be) C = - ac (a
-

B)
- c

2 + a2
7

(ad be) D = bca - cdft + aby + adS.

Hence A + D = a + 8 is a constant independent of the choice of particular

solutions, as well as AD EG = a.8 fiy = 1. But it is now possible to choose

b/d and a/c so that B=C=0. Then

^ = 4/1, F2
=

Df.2 ,
AD = l

and the functions /2 ,f2 are defined by the property that they are multiplied

by constants when the argument is increased by the period T. Hence the

general solution of the differential equation may be written

lp = a^ fa (t) + a,e~kt
fa (t)

where fa, fa are periodic functions with the same period as and

cosh kT= (a + 8), a constant which can be derived from any pair of inde-

pendent solutions. The quantities k are what Poincare has called

characteristic exponents. If & is a pure imaginary circular functions are

involved and Sp has no tendency to increase beyond a certain limit. The

periodic orbit is then stable. If on the contrary k is real or complex real

exponential functions are involved and 8p will increase indefinitely. The

orbit is then unstable.

The question of stability therefore involves essentially the determination

of k. But this is a matter of great difficulty in general. What is known as

Mathieu's equation, generally written in the form
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of which the solutions are elliptic cylinder functions, is only a particular case

of the general type (3) and it is the subject of an extensive literature. On
the astronomical side the reader may consult Poincare"'s Methodes Nouvelles,

Tome II. See also Whittaker and Watson, Modern Analysis, Ch. xix.

216. The original equations of motion,

-w-sv'+Hrg '^yn
can also be given a canonical form. Let

and then evidently

dH

are equivalent to the above, and they are of the required form. The integral

of energy is H=Q. Now consider the integral

Between fixed limits its variation will vanish along a trajectory in virtue of

the canonical equations. Therefore it is a minimum (or at least stationary)

along a trajectory as compared with its value along any neighbouring path.

Let the time along any such path be determined by the equation of energy
H = 0. Then the integral becomes

'0

from which form, since v2 = 2H - C, the time is absent. Now

J Jo \ ds ds

ds
u^ v

ds
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and

8 pnffcfcj
-

r]d%)
= n P

Jo Jo

Therefore, if 8 =
877
= at the limits,

8J=P \8vds -8
Jo (

Let the tangent to the orbit make the angle < with the axis of
,
and let 8p

be the normal distance to an outer neighbouring curve, so that

dj? = ds . cos
(/>, dij

= ds . sin <, 8 =
8p . sin <, 877

= 8p . cos <.

Then

8J = I {8vds sin fyd (v cos <) Sp + cos <f>d (v sin ^>) 8p + 2n8pds]

=
j

l

K8pds (5)
Jo

where

jR being the radius of curvature. Along an orbit K = therefore, and this is

a result already expressed in (1). It is further to be noticed that

dK = I d2
l

(I
3H 1\ dv _ v dR

dp
~

v dp
2 U2

9p R) dp R* dp

w hen K = 0, and since =
_ft<|> comparison with (3) shows that

It follows that the action J" round a closed orbit is greater than for any

adjacent parallel curve when B is positive at every point. In this case the

periodic orbit is in general stable. Similarly the action J is a real minimum
when is negative at every point. Then, as (3) shows, the periodic orbit is

obviously unstable.

217. This remark is due to Prof. Whittaker, who has given another

application of equation (5). The quantity K can be calculated for all points

on a given curve. Now let K be negative everywhere along a simple closed
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curve A . Then by (5) the value of J will be diminished when taken round

another curve adjacent to and surrounding A. Again, let the quantity K be

positive everywhere along another simple closed curve B external to A. The
value of J will also be diminished when taken round a curve adjacent to and

surrounded by B. Now consider the aggregate of all the simple closed curves

which can be drawn in the ring-shaped space bounded by A and B. There

must exist, if the space contains no singularity of fl, one of these curves

which will give a smaller value of / than any other, and it cannot coincide

with A or B for any part of its length. It represents therefore a periodic

orbit characterized by the constant of energy G, and thus the existence of

such an orbit is established when the two curves A and B can be found

which satisfy the conditions stated. The orbit is necessarily unstable.

The same author has given another elegant theorem. By Green's theorem

(log v) d^ch,
=
j [1

(log v) dv - ~ (log v)

where the first integral is taken over the area of a closed curve, and the second

over its boundary. But if the curve is a trajectory, K = and therefore

8
X
8 8 ,, ,817 dd> 2n

^5. (log v) ^r + ^~ (log v)^ + -y- +
8

v

'8p 817
v

'dp ds v

8 ., .dy 8
,. .d% d$ 2n

-a^*>s-^">i + +T
Hence

This assumes that the enclosed area contains no singularity of the integrand.

But this function becomes infinite at the centres of attraction. Surround the

mass
/j,

at ( Cj , 0) with a small circle ^ of radius p. Then since

v2 = 2fl - G - typr
1

the integral round the circumference becomes
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Similarly the corresponding integral round a small circle 2 surrounding the

mass v tends to the same limit. Now if the outer boundary contains either

of the attracting masses or both, the boundary integral must be diminished

by subtracting the integrals taken round KI or tc2 as the case may be. Hence

the final result is

w +
)
log v ' d^dr} =J7r -v- 2nT

where j
= 0, 1 or 2 according as the loop of the orbit contains neither or one

or both of the attracting masses, 7 is the total angle through which the

tangent to the orbit turns, and T is the time from one end of the loop to the

other. In the case of a periodic orbit in the form of a single closed curve

7=27T.

218. The equations of relative motion are capable of a transformation

which is very useful in some cases. This may be deduced from the intro-

duction of conjugate functions in a general form. Let the original equations be

or in the Lagrangian form

d_
dT\dTdV

dt

d _
dt\dr) 877 drj

where
r-

and the integral of energy is

itf'+
Now let

+ "7 =/(M + iv),

so that

du dv' dv du

and
d . d .8
IT:
= u o~ + v o"

at du ov
Also let

^

8 (u, v) du "dv dv' du
'

Then if

T=T2 +Tl + T
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where the suffix denotes the degree of the terms in u, v (or , T)), it will be

found that

du

2*0= *n (' + 17').

The equations of motion may now be written

d
(d_Ts\

^ /3TA _ 32\ 3Ta dTo dV
dt\du) dt{du) da du du

+
du

*\ ,

d
[ (<W}\ _ dii = W* .

<>?<> <W
dt \dvJdt\dv) dv dv dv dv

and the integral of energy is

It can be verified without difficulty that

d /<tf\\_etf\ =
dt \du) du

Also

du du du 2 du du du

Hence the equations of motion become

Now let

and we have

with the equation of energy

dv
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It is convenient to write

and then

219. What is needed when V is the potential due to two masses
//,,

v at

a distance 2c apart is a transformation of the coordinates which will rationalize

both the distances pl} p.2
. Such a transformation is

+ itj
= b + c cos (u + iv), b = c

(//, v)/(p + v)

where b is the distance of the middle point between the masses from their

centre of gravity. For

P!
2 =

( b 4- c)
2 + if

= 4c2 cos2
1- (u + iv) cos2

|- (u iv)

p2
2 =

(
- & - c)

2 + rf
= 4c2 sin2

(u + iv) sin2 \(u- iv)

and hence

_ p. v _ (M v_

PI Pa c (cosh v + cos u) c (cosh v cos u)
'

Also

J=fl'f2
' = c2 sin (u + iv) sin (u iv) = ^c

2

(cosh 2w cos 2u)

and

2 + rf =/i/2 = 62 + 26c cosh v cos w + c2 (cosh 2v + cos 2w).

Hence

ft' =
y^tc (cosh v - cos w) + j/c (cosh t; + cos u)

+ ^n*bc
s
(cosh 3v cos u cosh w cos 3w) + -j^/^c

4

(cosh 4v cos 4w)

- c
2
(A
- |w

262) (cosh 2v - cos 2%)

and the equations of motion are

-77^ we2
(cosh 2v cos 2w) -y

=
-^.

dl cil ou

The time is given by a final integration

t = ic2 cosh 2t> - cos 2w dT=

These equations are in general very complicated, although they offer

essential advantages in studying the motion in the immediate vicinity of
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one of the masses. Two particular cases may be noticed. In the first the

masses are equal, /*
= v and 6 = 0. The equations of motion then become

-7^
- ncz

(cosh 2v cos 2w) -7
= c'% sin 2u + w 2

c
4 sin 4>u

-^ + nc2
(cosh 2v cos 2w) -^

= 2^c sinh v c*h sinh 2v + Ma c4 sinh 4>v

which are equivalent to equations given by Thiele and employed by Stromgren
and Burrau. The other case represents the problem of two centres of attrac-

tion fixed in space, so that n = 0. Then the equations become simply

-Ty^
=

(/* v) c sin u c*h sin 2u

-TFJ^
=

(/j, + v) c sinh v c2A sinh 2v.

Here the variables u, v are separated and the equations lead immediately to

a solution in elliptic functions. The comparison of this problem with the

simplest case of the problem of three bodies is instructive as to the difficulty

of the latter.



CHAPTER XX

LUNAR THEORY I

220. The theory of the Moon's motion relative to the Earth has been

discussed with generally increasing elaboration and completeness by various

authors from the time of Newton to the present day. The methods which

have been employed also differ considerably, presenting peculiar advantages
in different respects, so that it cannot be said definitely that any one method

possesses an exclusive claim to consideration. But at the present time three

modes of treatment are certainly of outstanding importance, those adopted

by Hansen, Delaunay and G. W. Hill respectively. Hansen's theory was

reduced to the form of tables by the author
;
these tables were published in

1857 and are still in common use, but will shortly be superseded. Delaunay's
work took the form of an entirely algebraic development of the Moon's motion

as conditioned by the Earth and Sun alone. His theory has been completed

by others and made the basis of tables recently published. Hill's researches,

which bear a certain relation to Euler's memoir of 1772, deal only with

particular parts of the theory, but the whole work on these lines has now

been carried out systematically and completely by E. W. Brown and will

form the foundation of a new set of lunar tables now in course of preparation.

Here it is only possible to attempt a slight sketch of one method. For

this purpose Hill's theory will be chosen, partly because it is destined to

receive extensive practical application, and partly because it contains original

features of the greatest theoretical interest. The reader who wishes to gain
a comparative view of the different methods which have been used in the

lunar theory will study Brown's Lunar Theory and may also be referred to

the third volume of Tisserand's Mecanique Celeste.

221. Let the mass of the Earth be E, of the Moon M and of the Sun m,
the unit being such that the gravitational constant G = 1. Let the origin of

rectangular axes be E, (x, y, z) the coordinates of M and (x, y', /) the co-

ordinates of m'. Further, let r be the distance EM, r' the distance Em,
and A the distance Mm'. Then ( 23) the forces on the Moon per unit mass

relative to E can be derived from the force function

T-, E + M m m' , .F= + -
-p-3 (xaf + yy' + zz')
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by differentiation with respect to x, y, z
;
and similarly the forces on the Sun

per unit mass relative to E can be derived from the function

, M M. ,F = -
, + -

-^ (xx + yy' + zz )

by differentiation with respect to x', y, z'. Hence the ^-component of the

Sun's acceleration relative to G, the centre of gravity of E and M, is

dF' M 3F

E+M
E+M+m x x\

AM;
This expression will be derived by differentiating the function

/ _ E + M+m' /E_
M\

E+M V +
A/

with respect to a;', or with respect to ac
l ,
where (xl} ylt z^) are the new co-

ordinates of ra' when parallel axes are taken through G instead of E. Let rx

be the distance m'G, 0^ the angle m'GM and 8= cos #j. Then

and

where P,, P2 ,
... are Legendre's polynomials

P^S, P2
=

f>Sf
2
-i, P3

Hence, when expanded in terms of r/r, ,

ri

Now the Moon's parallax is of the order l
c

, the solar parallax is of the

order 9" and the ratio M/E is of the order 1/80. It follows that the second

term in F^ is of the order 10~7 as compared with the first. It can be

neglected, at least in the first instance. FI is therefore reduced simply to

the first term, and the meaning of this is that the motion of G about m', or

of m' about G, is the same as if the masses E and M were united at their

centre of gravity.
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This motion is elliptic and the coordinates (x1} ylt z^) can be treated as

known functions of the time according to undisturbed elliptic motion. The

influence of the other planets is left out of account in the first instance and

finally introduced in the form of small corrections. The first task, and the

only one considered here, is to find an appropriate solution of the problem of

three bodies, the problem being already so far simplified that the relative

motion of the Sun and the centre of gravity of the Earth-Moon system is

supposed known.

222. The force function F is expressed in terms of (x, y', z') and not the

coordinates (xl} yl} z-^) now supposed known. It is necessary to consider the

effect of this. The ^-component of the Moon's acceleration is

3F /n JITX x ,X X , X'

^- = (E + M)--m - -- m -

dx 'r1 A r s

E \ m! f M

x' = x,+ Mxj(E + M), x- x = -
x, + Exf(E + M).

This component is clearly derivable from the force function

~
Mr'

when r and A are expressed in terms of (xlt ylt z^) instead of (x ', y ', z'}.

When A"1

,
r'"1 are expanded in terms of r/rx this becomes

p _E+M m' \(E+M)* r*

r
+

r> EM +^ '

_E+M m'r2
( E-Mr E2 -EM +M2 r*

~^~ h
ri r*

+
~E^Mr,

3+
(E+M? ^ ^

for the term in 1/rj does not contain (x, y. z) and can therefore be suppressed.

As a matter of fact the force function which is commonly used for the

motion of the Moon is neither Fl nor the function

,, E +M m' m'r ny- >A-7r
where 6 is the angle m'EM, but the function

E + M m m'rF*=-
r

+ ^-^ S

which is derived from F by substituting the coordinates of the Sun relative

to G for the coordinates relative to E. Thus
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and therefore in the expanded form

=E+M iri_

r rj

after suppressing m'/v This is not the same as Flt but for practical

purposes it can be brought into agreement by a simple device. Let a, a' be

the mean values of r, ra . It is found that to a term of the series involving

(r/r,)> correspond inequalities with the factor (a/ay. If then

(E - M) a/(E + M) a'

be substituted for a/a' in the results which follow from the use of F2> they
will be very nearly the same as if they had been derived by using Flt It

may be left to the reader to examine the order of the chief outstanding dis-

crepancy after this treatment of F2 . It is easy to make the adjustment exact.

223. Let the axis Ez be taken normal to the ecliptic and let EX, EY
rotate in the ecliptic plane of (acy) with the Sun's mean motion n'. The

equations of motion of the Moon are then

Y+Zn'X-n"Y =^
*

'

"IE-
:

Now if E-+ M =
fjt,,

since n/2 a'3 = m' (more strictly m' + //.),

the higher terms containing r/rx and therefore the solar parallax as a factor.

Let v' be the true longitude of the Sun and let v' = e' when t = 0. Then the

Sun's coordinates are

the axis of X being always directed towards the Sun's mean place. When
the solar eccentricity is neglected and the Sun's orbit treated as circular,

v' = n't + e' and ^ =
a', so that

Hence when the solar parallax and eccentricity are both neglected

F2
= ^r-

1 + w" (|Z
a - r2

)
=

/.7-
1 + ri* (Z 2 - 72 -^2

)

P. D. A. 17
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and when, still further, the latitude of the Moon is ignored, the equations

of motion become simply

X - 2n- 3n'"-X = - pX/r
3
}

Y+zriX . -Hp3FM .""
.................

These two-dimensional" equations represent the simplest problem bearing any

real resemblance to the actual circumstances of the lunar theory. It is the

degenerate case of the restricted problem of three bodies when the two

finite masses are relatively at a very great distance apart and refers strictly

to the motion of a satellite in the immediate neighbourhood of its primary.
These equations have great importance in Hill's theory.

Again, when the solar parallax alone is neglected, F% may be written in

the form

Fz
=^ + n'2

(fX' - JT-) +

where the third term, which vanishes with the solar eccentricity, is a quadratic
function in X, Y, z. Thus

2̂
=

/ir
-i + n '* (X2 - F2 - i*2

)
- i (A'X* + 2H'XY+B'Y* + C'z*}

where A', H', R, G' are functions of t to be derived from the elliptic motion

of the Sun. The equations of motion now become

X- 2n'Y-3ri*X + A'X + H'Y=-
Y + 2n'X + H'X +B'Y=-
z + n'2z +C'z

and these are the foundation of the researches of Adams into the principal

part of the motion of the lunar node.

224. It is now necessary to give Hill's transformation of the general

equations of motion. Let

n

n n '

(n n')
2 '

Then, since r2 = us + z2
,
n being undefined as yet,

+ 2m2

9 (P2r
2

where O2', H 3 , ... are homogeneous functions in u, s, z of degree 2, 3, ... and
of degree 0, -1,... in a'. Let O' = H/+ 0, + ....

The kinetic energy of the Moon T is given by

22YM = (X - n'YY + (f+ n'X}* + z*

= (u + ritu) (s riis) + z 2
.
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The equations of motion are therefore
O

Tjl

u + 2n'iu - n'*u = 2

s - 2n'is - ri*s = 2~
ou

Let

where t ,
like n, is a constant at present undefined. The previous equations

become

D*u + 2mDu + m*u = KUr> - -

D'-s - 2m Ds + m*s = icslr3 - ~
du

It is, however, convenient to separate from IV (accented for this reason) the

part which is independent of the solar eccentricity. This is

fls

' - H2
= m2

(3X
2 - r2

)
= fm2

(a + s)
2 - m2

( us + z2
).

With this change the equations of motion take the form

KU dl

KZ . an** - m2* -r-~^
where fi = -O2 + 1, + . . , Thus

(2)

which vanishes with the solar eccentricity.

225. The next object is to transform the equations in u and s so as to

remove the terms involving r~3
. Since ( 123)

and F2 contains terms involving t explicitly only in O, in this case

us + z 2 - ri*us = 2FZ -v2

j-^dt
+ h

172
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or in the later notation
*)

Du . Ds + (Dzf + fm2
(w + s)

2 - m2^2 + = 6Y -

where (7 is a constant of integration, D"
1
is the inverse operator to D, and Dt

represents the operator D applying to U only in so far as fi contains t

explicitly. This corresponds to the equation of energy.

Again, since r2 = us + z*, the equations of motion (2) give

sD2u + uD*s + 2zD-z + 2m (sDu - uDs) + fm* (u + s)
2 - 2m2^2 -

2/e/r

an an an\ _ _
ds du dz ) ,

by Euler's theorem, Hp being a homogeneous function of degree p in u, s, z.

The result of adding the last two equations is

D2

(us + z*) -Du.Ds- (Dz)
2 + 2m (sDu -uDs) + fm2

(u + s)
2 - 3m2z2

(4)

This is one equation of the required form.

The other equations are obtained simply by eliminating the terms with

ir* as a factor between different pairs of the equations of motion. Thus
from the first pair

OS OU :

and when the third equation is used,

D (uDz - zDu) - 2mzDu - $m*z (ou + 3s)
= z \u -=-

os dz

D (sDz - zDs) + 2mzDs - %m*z (3tt + 5s) = z
|-'

- s
|-

.

These combined give

D {(u s) Dz L zD (u s)}
- 2mzD (u + s)

- m*zW

/an an\ x an

.......
where with the upper sign W =

4>(u + s) and with the lower W=u s. In

this more symmetrical form the real and imaginary parts of u and s are

clearly separated.

Equations in the form of (4) and (5) have two advantages. In the first

place the left-hand members are homogeneous in u, s, z of the second degree.

Except for the constant C this applies also to the right-hand members when
the parallax of the Sun is neglected, and the parallactic terms need rarely be

taken beyond the third and fourth degrees. In the second place, whereas

X and F can be expressed as trigonometrical series in terms of t, u and s

can be expressed as algebraic (Laurent) series in terms of and such series
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can be more easily manipulated. Also if u =/() s ==/(~ I

) and therefore

when either u or s has been calculated the other can be derived immediately.

226. The general method of the lunar theory, which is common to all

forms, consists in choosing an intermediate orbit which bears some re-

semblance to the actual path of the Moon and in studying the variations

which it must undergo in order that the path may be represented accurately
and permanently. This intermediate orbit, since it merely serves as a subject
for amendment, will naturally be chosen with a view to simplicity. At the

same time, the more closely it represents the permanent features of the

actual motion, the less burden will be thrown on the subsequent variations.

Thus one might take the osculating elliptic orbit of the Moon about the

Earth as the intermediary, neglecting the effect of the Sun altogether. The
intermediate orbit adopted by Hill is called the variational curve and this

must now be defined.

When the solar eccentricity (e} and the solar parallax are neglected,
n = 0. Also, when the Moon's latitude is neglected, z = 0. Equations (4)

and (5) then become

D2

(us) -Du.Ds+2m (sDu -uDs) + fm2

(u + )
a =

C\

D (uDs - sDu - -Imus) + fm 2
(u

2 - s2)

which must be equivalent to (1), whence in fact they can be directly deduced.

The constant K (or /*) has been eliminated and the constant C has been

introduced. There must be a relation between them which can be found by
reference to the original equations of motion. Hill's variational curve is

defined as that particular solution of (1) or (6) which represents a periodic

orbit. Since the axes of reference rotate at the rate n' the period of this

orbit must be 2-7r/(n ri) where n is the mean motion of the Moon. From
this it follows that the coordinates X, Y of the solution have this period and

can be expressed in the form of Fourier series in (n
-

n') t, while u, s can

be expressed in the form of Laurent series in The coefficients will be

developed in powers of m, and this is an essential advantage of the method,

since it is precisely this development which is less easy by the earlier

methods. As a particular solution of the equations the symmetrical periodic

orbit involves no arbitrary constants beyond those already introduced, namely
n, which depends on the actual scale of the lunar orbit, and t

,
which gives

an arbitrary epoch corresponding with the fact that (6) do not involve the

independent variable explicitly.

The existence of such periodic orbits is assumed. The question has been

discussed analytically by Poincare (Methodes Nouvelles, Tome i), who has

proved that they do exist in general. To some extent the assumption will

be found practically j ustified by the results. But there is no doubt on the

point. The periodic orbit in the actual circumstances could be found by the

method of quadratures.
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227. The assumption that the periodic orbit required is symmetrical

about both axes at once limits the form of the expansions. For with this

limitation X, T must be of the form

X = 2 A*+1 cos (Zi + 1)|, F= 2 A'*+l sin (2i + 1) = (n
-

n') ($
-

<)

where F= when = t . Hence

* = 2 ft (A2i+1
-

A'zi+i) ?i+l + \ (4*+, + A'gi+1 ) -*-*}
= a 2

90

where

, ji+i
= a a^ - d-ai-a-

As it is necessary to multiply such series together and to exhibit the products
as double summations, it is convenient to write

Dw = a 2 (2* + 1) a* ^ l

'

+1 = a 2 (2j
- 2t -

Ds = a 2 (2i + 1) a_^_2 ?
2i+1 = a 2 (2j

- 2t - 1) a_2j+2l
-

or similar equivalent forms, so as to retain always a fixed coefficient a2; and a

fixed power # in the typical constituent. The result of substituting the

series in (6) is :

C*
- 22 (2t + 1) (2j

- 2i - 1) a* a__
2j+2i^

+ 2m 22 (4 + 2 - 2j
t ^

+ |m2 2 2 c^ (2a_2y+

+ fm2 2 2 Oa- (a^^a - a_
2j
_2i_2) ^'

j

where i and J have all positive and negative integral values. The coefficients

of every power of f must vanish identically, and therefore

ar*C = 2 {(2t + I)
2 + 4m (2i + 1) + fm2

}
a2

2i + fm2 So* a_2i_2 . . .(8)

when j = 0, and

= 2 |4j
2 + (2i + 1) (2i + 1 - 2j) + 4m (2i + 1 -j) + fm2

}

= - 2 4; (2t + 1 -J + m) a^ a_^+at
- + fm2 2 a* (o^

* *

when j has any other value.
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228. Owing to the introduction of a, one coefficient a may be made

equal to 1, though retained for the sake of symmetry. Then, if m is a

small quantity of the first order, ap is found to be of order \p\, being a

function of m alone. This fact makes it possible to obtain the coefficients

by a process of continued approximation, provided m is sufficiently small.

The terms containing aaa2j,
aQa^ in the last equations are obtained when

i=j and i = 0, and they are respectively

|4j2 + 2; + 1 + 4m (j + 1) + |m2

}
a a^ + (4j

2 -
2j + 1 - 4m (j

-
1) + fm2

}
a a_

2j

and
-

4j (1 + j + m) a,azj
-

4j ( 1
-
j + m) a a_

2j
............... (9 )

Let the two equations be combined so as to eliminate the second of these

terms. The result may be written :

2 a* {[2j, 2i] a_2;+2i + [2j, +] a^^ + [2j, -] <&_#_*_}
=

...(10)

where

W 2fl = - * 8j
2-2-4m + m_+_4 (i-j) (j-l-m)

'

8j
2 - 2 - 4m + m2

F2
.

_,-1= _3m
2

4j
2 -8j-2-4mQ-

16j
2

'

8j*
- 2 - 4m + m2

= _?m
2

20j
2 -

16? + 2 - 4m (5j
-

2) + 9m2

16j*

'
"

8j
2 - 2 - 4m + m2

the common divisor being chosen so that the coefficient of a a^, [2j, 2J],

is - 1, while [2j, 0]
= 0.

If, on the other hand, the term in a a2j
be eliminated, the result will be

found to be

S a^ ][- 2j, 2i - 2j] a_2j+2 + [- 2j, +] <&_,_*_ + [- 2j, -] a^^j =

which can be deduced from the same series of equations (10) by changing
the sign of j and then writing i j for i in the first term. This single series

is therefore sufficient. The last equation can also be written

2 {[- 2j,
-

2i] a^a-zi + [- 2j, -] a
2j^_za^ + [- 2j, +] _2,-_2i

_2a2i }
=

and hence the rule for connecting the pair of equations corresponding to' + j :

in terms multiplied by [2j, 2i] change the signs of j and i throughout (both

in coefficients and in suffixes) ;
in the other terms write [ 2j, ] for [2j, +]

and [ 2j, +] for [2j, ],
the suffixes being unchanged.

229. Since the coefficients [2J, +] are of the second order in m, the orders

of the three terms are respectively

which are at least
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Let the equations be written down so as to include all quantities of the sixth

order (neglecting m8
).

This requires j
= 1, 2, 3. The orders of the

terms with the only .possible values of i are :

j = 1, i = 2 (6, 10, 14), 1 (2, 6, 10), (2, 2, 6),
- 1 (6, 6, 6),

- 2 (10, 10, 6)

j**2, i = 2 (4, 8, 16), 1 (4, 4, 12), (4, 4, 8)

j = 3, i = 3 (6, 10, 22), 2 (6, 6, 18), 1 (6, 6, 14), (6, 6, 10).

Hence the required equations are:

a a2
=

[2, 4] a2at + [2,
-

2] a_2a_4 + [2, +] (2a2a_2 + a 2

) + [2, -] (2a a_4 + as_s)

a a_2
= [- 2,

-
4] a_2a_4 + [- 2, 2] a2a4 + [- 2, -] (2a2 a_2 + a 2

)

+ [- 2, +] (2a a-4 + a2-2)

a a4
=

[4, 2] a2a_2 + [4, +] 2a a2

a a_4
=

[ 4,
-

2] a2a_2 + [ 4, ] 2a a2

a a6
=

[6, 4] a_2a4 + [6, 2] a2a_4 + [6, +] (2a a4 + of}

a a- 6
= [- 6,

-
4] a2a_4 + [- 6,

-
2] a_2a4 + [- 6, -] (2a a4 + a2

2

).

Thus, since a = 1, if m6 be neglected,

a2
=

[2,+], a_2
= [-2, -]

and then, neglecting m8
,

a4 =[4, 2] [2,+] [-2,-] + 2 [4,+] [2,+]

a_4
= [- 4,

-
2] [2, +] [- 2, -] + 2 [- 4, -] [2, +].

These values will give ae , a_s as far as m9
,
and inserted on the right-hand

side of the first pair of equations they give second approximations to a2 ,
a_2

of the same order. It is to be noticed that each stage of further develop-

ment carries an equation four orders higher.

The ratio of the mean motions of the Sun and Moon, and therefore the

numerical value of m, is known with great accuracy from observation. Hill

adopted the value

m =
n'/(n

-
ri)

= 0'08084 89338 08312.

Hence it is practicable to introduce the numerical value of m from the

beginning, and the approximation to great accuracy in the calculation of

a 2 ,
... is then extremely rapid by the above method. This is the process

which has been adopted in the latest form of lunar theory. It is also possible

by giving m other values to trace the development of the whole family of

periodic orbits of lunar type. These orbits are of great theoretical interest,

especially for larger values of m. But it is evident that the effect of the

neglected parallactic terms will become more considerable, and such results

may differ sensibly from true solutions of the restricted problem of three

bodies. Also when m exceeds the question of convergence begins to in-

troduce practical difficulties and the method of quadratures, followed by
Sir G. H. Darwin and others, becomes necessary.
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230. To find the value of a recourse must be had to an equation of

motion which has not been reduced to a homogeneous form in u, s. Since

f1 = z =. and r2 = us, the first of (2) becomes in the present case

~
(D- + 2mD + fm2

) u + fm2s = KU (us)

~
-

or

a 2 {(2i + I)
2 + 2m (2t + 1)4- m2

} a^2i+1 + fm2a 2 a* f-*-
1 = w (*) "I

f ;

This equation must hold for all values of
, including = 1. Then w=s=a 2 a^-,

and therefore

a 2 {(2i + 1 + m)
2 + 2m2

} a* = a~2

(2 a*)-
8
.

But ( 224) * = fi (n
-

re')-* = /* (1 + m)
2 n~2

,
so that

2a3 = /*(!+ m)
2
(2 a*)-" [2 |(2 + 1 + m)

2 + 2m2

} a^]-
1

(11)

It has been usual to write ri-a
y =

fi, a being the mean distance which would

correspond to the mean motion n in the absence of solar or other perturba-
tions. Thus a = a (1 + powers of m) when the values of 0$, are inserted.

The precise form of this relation is required only when it is desired to

compare two theories expressed in terms of a and a respectively. The con-

stant a fixes the scale of the orbit and therefore depends on the parallax,

which is observed directly.

When the coefficients a^ and a have been determined, (8) gives the

value of C, if it be required.

For the transformation to polar coordinates,

r cos (v nt e)
= r cos (v n't e f) = X cos f + Y sin f= (u%~

1 + s)
r sin (v nt e)

= r sin (v n't e' )
= Y cos f X sin g = (s w^"1

) i

where e = e' (n n) t0> since =
(w n) (t t ) and if

=
log . Hence

r cos (v n t e)
= a

{
1 + (a2 + & 2) cos 2f + (a4 + a_4) cos 4f + . . . 1 )

(12^
r sin (v nt e)

= a
{ ( 2 _2) sin 2f + (a4 _4) sin 4f + . .

.} j

which lead to the determination of r and v, the more simply because v nt e

is evidently of the second order in m.

231. The use of rectangular coordinates is a distinctive feature of Hill's

method. But for some purposes polar coordinates present advantages. By
a simple change of units and notation (1) become

d2p dq _ p
dt*~ dt

= P ~^

dt~ 1
s

which can be reduced to canonical form by putting (cf. 216)
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The transformation to new variables, r, I
; r', I', defined by

p = r cos /, p = r cos I r~l
I' sin I

q = r sin I, q = r' sin I + r~l
I' cos I

will leave the canonical form unchanged, since

p'dp + q'dq (r'dr + I'dl)
=

and therefore it is an extended point transformation ( 125). Let t be

eliminated from the equations by taking I as the independent variable.

After writing out the equations in explicit form make the transformation

r = l/a; r' = p/(r, l' = a)/a
2

and finally put e = s
. The result is to give the equations

(-!)* 8,.
... ., ...

and the integral H = h becomes

%p
2 + (&>

-
I)

2 -
1 cos2

/ - (he? + e)
= 0.

Assume a solution in the form

For a periodic orbit described always in one direction as regards / these

series are convergent, and if the coefficients are real, am = - ct-mt b2n = 6_2n ,

c.^ = c_2n, and therefore

1 dr . 2wZ

Inl

e = = c -f 2 2 c2n cos -r- .

The index k is arbitrary. It may be proved that if k is an odd integer

the orbit is completed in k circuits and is symmetrical about both axes, and

if k is an even integer the orbit is completed in $k circuits and is sym-
metrical about the axis ofp only. For Hill's variational curve k 1.

The substitution of the assumed series in the equations leads to three

series of equations which must be solved by continued approximation as in



231, 232] Lunar Theory I 267

Hill's method. A most interesting result is that the series for e converges
with exceptional rapidity, so that the equation

r~3 = c + 2c2 cos 2/

where c = 93c2 nearly, represents the variational curve with an error which

on the scale of the lunar orbit is no more than half a mile. No simpler idea

of the nature of this curve could possibly be given.

It may be left as an exercise to the student to fill in the details of the

outline conveyed in this section*.

232. The method by which the variational curve can be determined

with any required degree of accuracy has been fully explained. But it must

not be supposed that this curve represents the lunar orbit in any true sense.

It is merely a particular solution of equations which are themselves only
a degenerate form of those which characterize the Moon's motion, and the

only significant parameter involved is the mean motion of the Moon. The

next step is to seek the form of the general solution of the same equations.

With this object it is necessary to study the variation of the particular

solution and to determine a fundamental quantity c.

With some change of notation (3) and (4) of 214 give

df*
* "

where, in the application to (1),

SN being the normal displacement to the variational curve, -\Jr
the inclination

of the tangent to the axis of X, and V the relative velocity. In terms

of u, s,

V2 = X*+Y 2 = us = - v-DuDs

since d/dt = ivD. Hence, R being the radius of curvature,

Also

I d^- 1 d. fJL *Y?\ -d (_L dv'

2

\ 4. _L /^Z.
2

Y'

V d?
~
F.<2\2K dt J dt V2T2 dt )

+ 4F4
V dt )

*
Cf. J. F. Steffensen, Royal Danish Academy, ForJtandlinger (1909).
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Finally

Therefore, since v = n' n, ri = mv and p = KVZ
,

Now since w = 2a2i *, 5 = f-
1 Sa^ ^' and

i i

and Ui can be calculated by equating coefficients in

S (2t + I)
2 a2i

*+' = S (2t + 1) a^ 2i+1
. S /7< ^.

i i i

Similarly, by the first of (2) when II = 0,

u (fcr~
3 + m2

)
= 2u2Mi^ = IPu 4- 2m DM 4- ^m 2

(5 + 3)
i

so that

22ojrf f*
+1

. S-ifi?
8* = 2 {(2i + I)

2 + 2m (2i + 1) + fm2

}
a2i ^

2i+1 + fm 2 2a_ 2,;_2^+1

whence J/j can be calculated in the same way. When- Ui, Mi have been

found it remains to substitute the series in (14), a process which involves

squaring two series, and the result may be written in the form

Thus (13) becomes

(15)

and the derivation of t has been fully explained. It is easily seen that

_;= f and that Mt , Ui and <*)$ are of the order
j

2i
\

in m.

233. Owing to the symmetry of the variational curve is a periodic

function with the half period of the curve, Tr[(n ri}. Hence by 215 one

solution of (15) has the form

and c is the quantity which is now required. The result of substituting

this series is

3 i 3

which must be an identity, and therefore for every value ofj

6
j (c + 2j)

2=S^
or more fully, since ,:= -i,
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These equations are of infinite order. Nevertheless, let the coefficients bt be

eliminated in the same way as though their number were finite. Then
A (c)

= where A (c) represents the determinant of infinite order

each row being divided by such a factor that the constituent in the leading

diagonal becomes 1 when c = 0. This is Hill's celebrated determinant,

which introduced the consideration of the meaning and convergence* of

determinants of infinite order into mathematical analysis.

234. The determinant A ( c) = A(c), for the change only reverses the

order of the constituents in the leading diagonal. Also A (c + 2j)
= A (c),

for the displacement of the leading diagonal along itself may be compensated

by moving the divisors of the rows. Hence if c is a root of A (c), c + 2j

are also roots. The highest power of c in the development is given by the

product of terms in the leading diagonal, and this product is

=
(COS 7TC COS 7T \/o)/(l ~ cos T Vo)-

It follows that

A (c) = (COS 7TC COS 7TC )/(1 COS 7T Vo)

for this contains the right number of roots, the same as A (c), and the same

coefficient of the highest power of c. The roots are those already found, and

there are no others. But this equation shows that

A (0) = (1
- COS 7TC )/(1

- COS 7T Vo)

and therefore c is a root of

sin2

|7rc
= A(0) sina wV .....................(16)

*
Cf. Whittaker's Modern Analysis, p. 35 ;

Whittaker and Watson, p. 36.
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The solution of A (c)
= is thus reduced to the calculation of A (0). The

latter determinant is convergent if Si i is convergent, and this may be

assumed for sufficiently small values of m.

As a matter of fact in the present case A (0) is not only convergent but

very rapidly convergent. It may be written in the form

A(0)

1

where

Suppose every 0, to be multiplied by 0J. If then the sign of 6 be changed
the sign. of every alternate constituent in every row and every column is

changed. Multiply every alternate row and every alternate column by 1

and the original determinant is restored. This involves multiplication of

A (0, 0) by an even power of 1, since the number of rows and columns is

equal. Hence A (0, 0) = A (0, 8), and A (0, 6) is an even function of 6.

But the power of 6 in any term of the development of A (0, 0) is the sum of

the suffixes of the 0, associated with it. Therefore the sum of the suffixes

in any term of the development of A (0) is even. Since 0,- is of the order

[ 2j \

in m, this means that the order of every term is a multiple of 4.

It is evident that the determinant A (0) must be developed axially, the

term of zero order, 1, coming from the leading diagonal alone. There can

be no term in 0, alone, for 0,- incapacitates by its row and column two units

from the leading diagonal as cofactors. Similarly a product 0^0^ incapaci-

tates more than two such units unless their rows and columns intersect on

the leading diagonal. Thus i =j and the only terms of binary type involve

squares.

235. The mode of developing A (0) will be sufficiently understood if m12

be neglected. The sum of the suffixes can only be 0, 2 or 4. Hence the

only possible terms are of the type

A (0) = 1 + A@S + B 2
2 + CQi*, + DS.

It is also easy to see how each of these terms arises. Thus

, -&i I, .B02
2 = 2

, -/3/02

-&, --2 2J
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The next term corresponds to three consecutive diagonal constituents, and

Finally, the term in
t

4 must correspond to four diagonal constituents only
and it is therefore

i J

D = 22 ftft_! ftft_i = A 2

2ft'
2

*,_!
-
22ft+1ft

2

ft_1

* j j j

for, as the two minors must not overlap, i cannot have the values j orj + 1.

It remains to calculate the values of these coefficients. Let = 4a2
.

1

Then

= v_L_ (_JL _J_Y_s * (J_ -i1

7 32 (2a
-

1) Va - j
"*"

a +j
- l) J 32o (2a + 1) U +j a -J+ 1

- --
_ 8a (4a

2 -
1)

'

a +j 8a (4a
2 -

1) (a

7T COt 7T 7T COt ^7r-\/o

The other coefficients can be calculated similarly by first reducing to the

form of partial fractions. Hill's results include all terms of order less than

16, and with the value of m already given ( 229) he obtained the value

c =107158 32774 16012.

Without going further than the term of which the form has actually been

found here,

(17)

The argument given above as to the order of the terms refers to j, 2 , ...

and not to effects arising from . But 1 is itself of the first order,

and therefore this expression neglects m 7 instead of m8
. Since m = 0'08 the

error in c might be expected to occur at about the seventh decimal place,

and in fact it is about 5 units in this place. This simple expression, involving

only o and <*), ,
is therefore very approximate.

It may be noticed that + tc (n
-

ri) are the characteristic exponents of

the variational curve. Since c is real this curve represents a stable orbit for

small variations.
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236. The introduction of the eliminant of infinite order was a bold and

original expedient on the part of Hill, though justified later by analysis.

But an analogous method had been used earlier by Adams, whose results

were published after the appearance of Hill's. They refer to the integration

of the third equation of (2) when H = 0, or

D2z - z (Kr~
3 + m2

)
= 0.

If z be neglected in the coefficient of z, that is in r~3
,
the series already used

in 232 may be inserted, and the equation becomes

which, since Mi = J/_^ is of the order
j

2i
|

in m, is of exactly the same form

as (15). A solution is known to be of the type

and g must be determined from the infinite set

Hence the eliminant is A' (g)
= 0, and the solution is given by

sin2
^TTgo = A' (0) sin2

TT \/(2M )

where A'(0) is the result of replacing @,- by 2Mt in A (0).

Adams used the value m =
w'/

= 0'0748013 exactly, which is not quite

the same as Hill's value. He thus obtained the corresponding numbers

m = 0-08084 89030 51852, g = 1 "08517 13927 40869.



CHAPTER XXI

LUNAR THEORY II

237. It is now necessary to consider the form of the general solution of

the equations (6); in the present chapter equations will receive reference

numbers in continuation of those assigned in the previous chapter, so that

the latter will suffice without referring specifically to the chapter or section

in which they occur. The solution of (15) may now be written

8N = Zbi?i
, log

= *(- n')(t- t,).

The arbitrary constant ^ makes it possible to assign any required phase to

the variation in relation to the periodic solution and as 8N is supposed small

(so that 8N2 has been neglected) the coefficients bi may be considered to

have a small arbitrary factor. These two arbitraries make the small variation

otherwise general. Since c has been determined it would clearly be possible

to determine real values of the coefficients (except for the arbitrary factor)

by substituting the series in (15), equating coefficients, and proceeding by
continued approximation.

Again, if 80- be the displacement in arc corresponding to 8N, by (2) of

214 adapted to the present notation,

or ( 232)

Hence, V being an even function of , tScr has the same form as 8N. But

since

and
8N= 8X sim/r

- SFcos t =
fa (8u . e~"* - 8s . e

Bo- = SX cos ^ + SFsin ^ =
fc (Su . e~^ + 8s . &*

it follows that

8u=~
P. D. A. 18
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Hence 8u, 8s, like Du, Ds, are odd functions in with real coefficients, and it

is possible to write

the coefficients as expressed being the same in the two series since Su + 8s = %

is real. For the purpose of this argument it is necessary to associate the + c

solution for 8u with the c solution for 8s, and to notice that (i/0ic are

constant conjugate imaginaries with absolute value 1 which have been re-

garded as external factors of the series with real coefficients for 8N, 180-, 8u

and 8s. At the same time 8u 8s is a pure imaginary.

Hence the general solution of (6), differing but little from the variational

curve, may be written

u

where i has all integral values between + oo and p has the values and + 1.

Also A 2i
= ax as in the variational curve and c is a determined function of m

which has been denoted by c .

238. But the solution which is now sought differs by a finite amount

from the variational curve. The above form must therefore be regarded

merely as the beginning of the full development. Hence the restriction on

p will now be withdrawn and its values will be allowed to range between

+ oo . The coefficients of the first order A^^ contain a small arbitrary para-

meter e and the higher coefficients A^pc will be obtained by successive

approximation in the ordinary way, so that A^ pc will be of the order
| p \

in e. The introduction of e into the solution will affect both A 2i and c, and

a^ and c represent those parts only which are functions of m alone and not

ofe.

It is assumed that this process will produce convergent series. If they

converge they are true solutions of the differential equations, and not other-

wise. This recurrent question in dynamical astronomy cannot be dealt with

here. But the reader must realize its fundamental importance, and he will

understand why so much attention has been given, by Poincare especially, to

discussions of this kind, although they may seem unproductive of new and

striking results.

It is now to be noticed that

D (*+' /c
)
=

(2i + 1 + pc)
2i+1 7C

, D^+P* =
(2i + 1 +pc) *+*+P

and therefore that the result of putting i
= will affect in no way the pro-

cess of calculating the coefficients. If this substitution is made it is only

necessary to retain c explicitly in the index of and to remember that the

argument of the trigonometrical term corresponding to g*+i+p is

(2t + 1) (n
-

n'} (t
- t ) +pc (n

-
ri) (t

-
t,).
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With this understanding the form of solution becomes

c^ .........(18)
i p i p

Comparison of these series with (7) shows immediately that the effect of

substituting in the differential equations and equating coefficients of ^'+?c

will follow as before if

A, 22, 2i+pc, 2j + qc
i p

be substituted respectively for

a, 2, 2i, 2j.

Thus to (10) corresponds the equation

2248po {[2j + qc, 2i +pc] A_2j+2i_qc+pc
i p

+ [2j + qc, 4] Aj-si-2+gc-pc + [2j + qc, -] A_2j^i^ qc
_pc }

=0 . . .(19)

which holds unless j
=

q = 0. The form of the symbolical coefficients has

been given with (10), [2j + qc, 2j + qc]
= l is the coefficient of A A 2j+qc ,

and [2j + qc, 0]
= is the coefficient of A A_2j_qc , The counterpart of (8) is

a-2 (7= 22 l(2t + 1 +j?c)
2 + 4m (2i + 1 +pc) + fm

2

} A^+po
i p

+ fm2 22 Ati+p* 4

239. Of the first importance are the terms which depend on the first

power of the parameter e. When 8N* was neglected A 2i was identical with

Ozi, and therefore A^ = a.2i when e2
is neglected. Let

The limitation to the first order in e means a return to the equations at the

end of 237 and the only admissible values of q are + 1. With either value

p must be chosen so that c occurs only once in the suffixes of any term, or

terms involving e2 will be introduced. Hence (19) gives

+ c, 2i + c] a_2j+2l-6i + [2j + c, 2i\ a* e'_,-+

[2j + c, +] (flsHii-aei + Ogie^i-j) + [2j + c, -] (a_2j_2f_2 6/ + a^e',j-^} =

-
c, 2i - c] a_0+8 e/ + [2j

-
c, 2i] a 2i e_j+i

-
c, +] (a^-^e/ + a^eVi-0 + [2j

-
c, -](a_2,-_2i_,6i + a^e.^-O} = 0.

Permissible changes in i make it possible to reduce all the suffixes of e, e' to

the form i, and the simpler equations

2 {[2j + c, 2i + c] a_2j+2;ef + [2j + c, 2i + 2j] a2i+2j i

+ 2 [2j + c, -h] a^^e* + 2 [2j + c, -] a_2j
_2;_2 e/}

=

2 {[2j
-

c, 2i - c] a_2j+2 e/ + [2j
-

c, 2i + 2J] aii^ i

+ 2 [2j
-

c, +] a2̂ _2 e/ + 2 [2j
-

c, -] a_
2;
-_2l-_2ei j

=

...(20)

182
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are thus obtained. Since the numerical value of m is introduced from the

outset and c has been determined, the coefficients of e^, e/ are numbers, which

in general become rapidly smaller at a distance from the central term. The

equations can therefore be solved by continued approximation. As they

determine the ratios only of e^, e/, it is possible to put

e - e
' = 1

, i
=

bi e +& e ', e/ = &/ e + & e '.

The equations for j = 1, 2, ... will then serve to determine the coefficients

bi, &, ty, /3j, where b = ft = !,#, = b
' = 0. For j = 0,

0=...+ [c, 2+c]oa e1 +[c, 2]oa e1
'

+2[c,+]a_4 e1 + 2[c,-]a_1 e1

'

\

- a e + 2[c,+]a_ 2 e + 2 [c, -] a_2 e
'

1 (21)

+[c,-2+c]a_2e_1 +[c,-2]a_2 e'_1+2[c,+]a e_1+ 2[c,-]a e
/

_1 +...J

with a similar equation obtained by changing the sign of c and interchanging

e, e'. Either of these two equations, with e e
()

' = l, determines e and e ',

and hence e^, e/ in general. The two must lead to the same result, and

together are merely a check on the value of c, which, had it not been deter-

mined otherwise, could in theory be deduced from the whole set of these

equations.

240. Before continuing the development of a method the whole aim of

which is a systematic advance towards great accuracy in the complete results,

and which is therefore apt to obscure the main features of the actual motion

of the Moon, it will be well to consider the kind of results which have already
been obtained implicitly or can be readily deduced. For this purpose a low

order of approximation must be adopted and m 4 will be neglected. Then it

is easily found that

a2
=

[2, +] = T̂ m2
.+ im3

,
a_2

= [- 2, -] = -
ifm2 -

fm3

2M = 1 + 2m + fm2
, 2M, = 2M_, = fm2 + J m3

U =1, Ut
= |m2 + 3m3

, U^ = - J^m
2 - im3

o
= - 2Jf + 2 (CT + m)

2 = 1 + 2m - m2

To the order named, the combination of (16) with (17) gives

C = V@o + W/(l-@o)V@o
= 1 + m -

fm2 -
-^V-m

3 = T07263
and similarly

go
= V(2M ) + Jfi'/(l

-
2#.) V(2if )

= 1 + m + fm2 -
|fm3 = 1-08521.

The numerical value of g , corresponding to m = O08085, is much nearer the

truth than that of c . Also it follows from (11) that
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Then (12) give

r cos (v
- nt - e)

= a [1
- (m

2 + \m3

) cos 2}

r sin (v
- ro< - e)

= a (-^-m
2 + -^m

3

) sin 2

whence
v = nt + e + --m2 +

.

Terms depending on m only are called variational terms. The coefficient of

the principal term of the variation in longitude is thus

JJ-m2 + J^m3 = 0-01013 = 2090"

which is some 16" in defect of the true value. This term was discovered

observationally by Tycho Brahe, and its period, indicated by 2 (or 2D in

Delaunay's notation), is half a synodic month.

241. The equations (20) for j=l, when the leading terms only are

retained, become simply

ei
=

{[2 + c, c]a_2 +2[2 + c,+]}e + [2 + c, 2]aB e
'

e_! = [- 2 + c, c] a2 e + {[- 2 + c,
-

2] a_2 + 2 [- 2 + c, -]} e
'

e/= [2
-

c, 2] a, e + {[2
-

c,
-

c] a_2 + 2 [2
-

c, +]} <?

'

e'_! = {[- 2 - c,
-

2] a_2 + 2 [- 2 - c, -]} e
rt + [- 2 - c,

-
c] a.e '.

It is to be noticed that \x, y\, \x, +] contain as a divisor

Dx = 2x- - 2 - 4m + m2

and that this has the factor m when + as = 2 - c. It is easily found that

[2 + c,c] = - &, [2 + c,2] = -|, [2 + c,+] = Tf m2

[- 2 + c, -] = |fm +^m2
, [2

-
c, +] = -

as far as the present low order of approximation requires. Hence with the

approximate values of a2 , a_2 ,

e^^W^-^mV
e_, = (^m + fffm-) e + (^m + -W-m

'2

)

'

e/ = -
(e\m + iffm2

) * - (f|-
m +^m2

) o'

eL1 ^feme- T|gmV.
It has been seen how the order of e_j, e/ is lowered by the divisor Dx .

A similar circumstance affects the coefficients of (21) more seriously, since

Dc = 2c2 - 2 - 4m + m a = - *f^m
3
.
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The disappearance of the terms below m3

explains why an extremely accurate

value of c is required in the numerical development. Without continuing
the series for c beyond m3

,
Dc is her,e limited to a single term, and therefore

only the terms of the very lowest order in (21) can be taken into account.

This equation is thus reduced to

[c, 2] Oae/ - e + [c,
- 2 + c] a_ 2 ^ + 2 [c, +] a e_! =

where

[c, 2]
=

[c,
- 2 + c]

= -
#fcm-, [c, +] = - ^m-'.

Hence

which gives quite simply 3e + e
' =

>
an^ with e - e

' =
1, e = , e

' = -
f .

These values, though representing only the terms of zero order in m, are true

within 1 per cent. It follows that

e/ = ifm + f\\m2
,

'

e'^ = -^m2

where, owing to the imperfect values of e
,
e ', the second terms in e_i, e/ may

also be defective.

242. The terms thus found in (18) are

to which correspond ( 230)

rcos(v -nt-e) = a.e {(e + e ')cos

rsin(w
- ?rf- e)

= ae{(e
- e ')sin

where

<t>
= c(n-n')j(t-t 1 )

is the argument of the trigonometrical term corresponding to c
. These

terms are additive to the variational terms already obtained.

The fundamental terms are

r cos (v nt e)
= a.(l- |e cos <)

r sin (v
- nt e)

= ae sin
</>.

Now in elliptic motion (24) and (25) of Chapter IV give, to the first order

in e,

r cos w = a ( \e + cosM + \e cos 2M)

r sin w = a ( sin M + \e sin 2M)
whence

r cos (w -M) = a(l e cos Jf)

r sin (w M )
= 2ae sin M.
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These can be identified with the former by putting a = a, e = 2e, <f)
= M, and

v = nt + e + w M
= w + {n

- c (n n')} t + e + c (n
- n) ti

= w + {1
-
c/(l + m)} nt 4- const.

This shows that to this extent the motion of the Moon is purely elliptic, with

eccentricity |e, but that this motion is referred to a line rotating uniformly,

given by

Thus c determines the motion of the lunar perigee, which completes a revolu-

tion in the direct sense in rather less than 9 years. The above approximation

gives 128 sidereal months or 3500 days.

In the older lunar theories, beginning with Clairaut, the rotating elliptic

orbit is adopted in the first approximation.

243. The result of collecting the terms found so far as necessary is

r cos (v nt e)
= a {1 m2 cos 2 |e cos

<f>

-
(|fm +WOe cos (2f- <) + ^m2e cos(2+ </>)}

r sin (v nt e)
= a [^m2 sin 2f + e sin

</>

+ (Jm + J^in
2
) e sin (2 -</>) +^m2e sin (2 + </>)}.

The effect of dividing the latter by the former is to add to the second series

the terms

m2e (cos 2 sin
<f>
+ j sin 2f cos <) = m2e (||- sin (2 + 0)

-^ sin (2
-

<)}.

Hence the longitude is approximately

v = nt + e + Jg'-m
2 sin 2 + e sin <

+ (-^m + %^m2

) e sin (2
-
<) + ifm2e sin (2f + <).

As a constant of integration introduced at one stage of the present

method, e may be defined in any suitable way for the later stages. Its

value depends on the exact definition adopted and will be found by com-

paring the final results with observation. Thus |e as defined by Brown is

not to be identified with the e of Delaunay, for example. The difference is

not great, however, and its value may be taken to be 0'0549. Thus the co-

efficient of the principal elliptic term, in longitude, e sin
<j>,

is of the order 6'3.

The term next in importance has the argument 2 < (or 2Z) I in

Delaunay's notation). The coefficient is right to the order given, though the

above derivation left this doubtful, and its value gives

(Jm +Wm2) e =
'

73/ nearly.

The true coefficient, depending on e alone, is 4608". This inequality is

the largest true perturbation in the Moon's motion and is known as the

Evection. Its discovery from observation is due to Ptolemy.
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The term with the argument 2 + (or 2Z> + I) is much smaller. The

above coefficient gives 157", while the true value is about 175" for the part

depending on e alone. It will be noticed that the greater part of it is

due not to a true perturbation in the rectangular coordinates but to inter-

ference between the variation and the principal elliptic term in deriving the

longitude.

244. The terms depending on the first power of the solar eccentricity e'

will be next considered. With z = and the solar parallax still neglected,

fl = fl-2 and (4), (5) become

D2

(us)
- Du .Ds + 2m (sDu - uDs) + fm2

(u + s)*
= C- 3H2 + D~l

(D t
fls)

D (uDs - sDu - 2mw,s) + fm 2

(u
2 - s2)

= s~2 - u^OS (jlk

where (3) gives

I12
= m2

^ (3r
2 2 - r2

)
- |m 2

{3 (u + .s)

2 -
4ws|.

Now
rS = (XX' + YY'} rr1 = \ (u + s) cos %'

-
|t (u

-
s) sin %'

where ( 223) %'
= v' n't e

' = v'
<j>'

is the solar equation of the centre.

Hence
r#2 = \ (u

2 + s
2

) cos %x + IMS
-

it (u
2 - s2

) sin 2%'
and therefore

H2
= m2

s (I (u? -f s2) cos %x + ~2
US ~ f L (u

* - s2) sin 2%'}
-
im2 (3

where u, s have the values given by the variational curve. The Sun's mean

anomaly is

0'
= ri (t

-
4) = m (n

-
n') (t

- t3)
= - i log f3

m
.

The whole disturbing function must ultimately be developed in powers of

f3
m as far as necessary, the coefficients involving u, s, of'1 and e'. But for the

immediate purpose it is easily verified that to the first order in e',

= - cos 2v' = 1 + 3e' cos d>', sin 2v' = 4e' sin d>'.

ri
8

r^ r^
Hence

- fm8e (^ (- #,->
-
frs

Thus the right-hand members of the equations at the beginning of this

section will be of the form

for, as in 238, the suffix of 3 may be suppressed in the calculation with the

proper understanding as to the argument corresponding to
m

in the results.

The solution is of the form

fzi+pm <? a } 1 T 5"
f)m c,

*
,

6 ac,. A <&.

i p i p
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where

AX = o*i, A 2i+m = e't)i ,
A 2;_m = e'rji

and p has the values 0, + 1 only, until higher powers of e are taken into

account. The solution follows the same course as in 239 except that there

are now terms on the right-hand side of the equations. The equations of

condition corresponding to (20) are thus

2 [[2j + in, 2i + m] a_
2j+2 ,: rj { + [2j + m, 2i + 2j]

.

2(
-

+2 ,- T?/

+ 2 [2; + m, +] a
2j
_2(-_2 ?/; + 2 [2j + m, -] a_2j

_2l-_2 T;/}
= E"zj+m .

This form results from the linear combination of a pair of equations obtained

by comparing coefficients of 2J+m and in these the leading terms by analogy

with (9) are respectively

. . . + {4/
2 + 2/ + 1 + 4m (/ + 1) + fm2

}
a

e'rjj

+ {4/
-
2/ + 1 - 4m (/ - 1) + fm2

) a/i/-; + = e'^+m

... - 4/ (1 +/ + mj a
e'iy;

- 4/ (1 -/ + m) a er)'_j + ... = e'JS'2j+m

where / is written for j + Jm. The combination is such that the coefficient

of i/_>-
vanishes and that of ^ becomes 1. Hence

-/ + m)#2j+m + {4j^
- 2f + 1 - 4m (/ - 1) + f

4/
2

(8/
2 -2-4m

The divisor, which appears also in the symbolical coefficients [ ], becomes

small only through the factor /, when j = 0, 4>j'~
= m2

.

245. The calculation of
rjj, rjj'

when m is given its numerical value at

the outset, proceeds as in the case of
e/, e/ with this difference, that the

equations, contain definite right-hand members. A particular solution of the

differential equations is required, representing a forced disturbance of the

steady variational motion. Hence no new constant of integration enters.

The machinery is of course absurdly elaborate when only the main parts
of the leading terms are sought, but this plan will be pursued. It is easily

found that

H 2
= fmVa2

{- J ((?+" + -*-m
) + \ (?~

m + r2+n)
) + (1 + 6a_2) (

m + -">)}

with the neglect of m in the coefficients of 2 m
,
but not m

. The operator
D

t applies to f
in

only and gives a multiplier + m to every term, while the

operator D~l

applies to generally and gives divisors + 2 + m or + m. Hence

to the same order in m
-' (DA) = fmVa2

{(1 + 6a_2) ( + -")}.
Also
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Hence
Em = #_m = -

fin
2
(1 + 6,_,); Em

' = - A"_m = 12m 2a_2

Em" = (- m-1 + f) #m - |m-^m' =
fm + =fm

2

E"_m = (m-
1 -

J) #_m - |-m-
2#'_m = _ fm - ^-m

2
.

Thus 770, 7o' must be of the first order in m and give rise to terms of at least

the third order in the equations for j = I. These contain no small divisor

and for the lowest order they give immediately :

-% =E"2+m =^2+m = 3
2
m2

_m * - ifm2
.

Coefficients of the form [m, y\ are of the order 1 in m, but they multiply
terms of at least the fourth order in the equations for j

= 0. These give
therefore to the second order

-770 + 2 [m, +] (v?.! + 2 [m, -] a^'-i = E"m
- < + 2 [- m, +] aoV-i + 2 [- m,. -] a^ = E"_m

where

[m, +] = [- m, +] = -f, [m, -] = [- m, -] = f .

Accordingly

Thus the principal terms depending on the solar eccentricity may be put
in the form

r cos (v nt e)

= a.e' {(770 + 770') cos <' + (ifc + 1/-0 cos (2^ + ^) + (17,' + i7_x) cos (2|
-

<#>')}

= ae' {fm2 cos
<f>'
+ ^m 2 cos (2 + </>')

- |m2 cos (2^
-

0')}

r sin (v nt e)

= ae'
{(T/O

- V) ^n
</>'
+ (^j

-
T;'^) sin (2 + f) + (T?/

-
77^) sin (2^

-
<')]

= ae' {- 3 (m - m2
) sin

</>'

- |im2 sin (2 +
</>') + ^m2 sin (2^

-
0')}.

In deriving the longitude there are no interfering terms of this order, and

the last line without a gives the additional terms depending on e'. The

term with argument </>' (or I') is called the Annual Equation after its period.

The value of e is 0*01675 and the coefficient of this part of the term,

3e' (m m2

),
is 770" as compared with the complete value 659". For

the argument 2 (' (or 2D -^
I') the coefficient f^e'm

2 is + 109", the true

value being + 152", and for the argument 2+ </>' (or 2D + I') the coefficient

i^e'm
2

is 15"'5, the true value being 21"'6. The discrepancies are

considerable and show that the parts depending on higher powers of m are

large. As series in m the coefficients converge slowly, and hence the great



245, 246] Lunar Theory II 283

advantage of the Hill-Brown method, which by employing an accurate

numerical value of m from the beginning avoids expansions in this parameter

altogether.

246. In deriving the terms with the characteristic a'"1
alone, e' is neg-

lected and therefore O2
= 0, Dt l = 0, and

O = O
:i

= 2m2
a,'-

1 P3r
s = mV"1

(or'S
3 -

3r*S)

= ^mV-1

{5 (u + s)
3 - 12us (u + s)}

since rS =X = % (u + s) when e = 0. The terms on the right-hand side of

(4), (5) are thus

- 4H 3
= - ^m'a'-

1

(5 (u
3 + s3) + Sits (u + s)\

= a8 a'-1

--u=- fm2a'-' (5 (u
3 - s3) + us (u

-
s)}

= aV"1

respectively. The additional terms required in the solution must be of the

form

in order to produce odd powers of . Similarly H4 has the factor a'~- and

gives rise to terms with the same arguments as the variational terms. The

solution follows the same course as for the terms with characteristic e', and

the relation connecting E"2j+l
with E$+lt E'2j+1

is the same as before when

/ =j + i
The principal terms are given by 2j + 1 = + 1, + 3. The divisor D^ is of

the order m when j'
= | only. But f!3 contains m2 as a factor. Hence,

when terms of the order m3 are neglected in E' Zj+1 ,
m2 can be neglected

in m~2n3 and the variational coefficients a2, a_2 are not required. Thus it is

enough to write
-

4fl, = - 1 rnS-aV-
1

{5 ( + r3
) + 3 (C+ f-

1

)}

S ~

and therefore

Also, to the same order in m,

E," = (- -im-
1 -

The equations for alf a_j can be adapted from (21) and its correlative by

putting c = l, e = 61'=a 1
and e

' = e_j = of_j . To the second order in m
these give

[1, 2] ,! - a, + [I,
-

1] a_2 o_, + 2 [1, +] aBa_, = ^
r

1

"

[- 1, 1] asa, - o_! + [-!,- 2] a_2a_, + 2 [- 1, -] OO CL.I
= E"'_,
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whence
in + if in2

^mctj
- GU -

gfma-! + ^ma^ = - ffm _ ^|
and therefore

-
a, = ifm + ffm2

, -_! = - ffm - -Ujfm2
.

The additional terms in their elementary form are thus

r cos (v
- nt e)

= a2^" 1

{(j + -i) cos f + ( 3 + a_3) cos

= a3 a'" 1

{(jfm +^m 2
) cos - f|m

2 cos

r sin (v nt e)
= aV"1

|(i
-

a_j) sin + ( s a_3) sin

= as a'- 1 -Jm + m2
s

and the last line, divided by a, gives the corresponding terms in longitude.

The mean parallax of the Sun is 8"'80 and of the Moon 3422"'7
;
to the

above order a/a'= 0'002571. This gives -114" for the coefficient of the

first term (argument f or D) and 1"'6 for the coefficient of the second

(argument 3 or 3D), whereas the complete values, with the characteristic

a/ a' alone, are 125" and under 1". The term with argument D is known

as the Parallactic Inequality. Its period is one lunation (or synodic month)
and the comparison of its theoretical coefficient with observation gave

probably the best determination of the solar parallax until the direct geo-
metrical method based on the observation of minor planets was adopted.
This use of the parallactic inequality is not entirely free from objection

because the Moon cannot be observed throughout a complete lunation and

systematic error may be suspected, due to the varying illumination of the

lunar disc.

247. Hitherto the terms of u, s which are of the first order in the

characteristics e, e',a.a~
l have alone been considered. If the third coordinate

z be assumed to be of the first order the first two equations of (2) show that

u, s contain in addition only terms of the second and higher orders. The

third equation of (2) has already been considered in 236, and when O is

neglected terms in z of the first order are given by the equation

Let

V = g(n-ri)(t-t

Then the general solution is of the form

where a preliminary value of g has been found in 240 and k, t2 represent
the two necessary arbitrary constants. As before the suffix of 2 has been

suppressed because it does not affect the calculation, though the proper
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argument must be retained in the results. The coefficients ki are deter-

mined by equating terms in -)+*, so that

and it is possible to write k = 1.

In obtaining k1} k^ to m2
only it is possible to neglect &2 , 7c_2 and approxi-

mate values of M
, Jl/j

= Jf_j have been found in 240. Thus the equations

are

(2
-

g)
2
&_! = 2J/ &_1 + 2M..&

where

(2 + g)
2 -2Mo = 8, (2

-
g)

2 - 2M = - 4m - 3m 2
,
2Ml

= 2M^ = fm2 + J^m3
.

Hence

k^&m*, fc-^-fm-fim2

and to this order in m
<* = ak {?

- r8 -
(fm + ffm) (?-

2+g - 2
-*) + T

3
Fm2(* -

-"-)}

z = 2ak {sin 17 + (fm + ffm2

) sin (2f
-

77) + T
3^m2 sin (2| + 77)}.

248. Here the fundamental term is

z = 2ak sin
77
= 2ak sin {g (n n) (t t2)}

and its general meaning is easily seen, though the exact definition of k must

be adapted to the final approximation and then determined (like e) by direct

comparison with observation. The maximum value of z is 2ak. But it is

also approximately a tan 7, a being the mean distance in the orbit projected
on the plane of the ecliptic and / being the inclination of the orbit to this

plane. Hence k is nearly \ tan /, and differs little from Delaunay's 7= sin \I.

Its provisional value may be taken to be 0'0448866 = 9260".

At a node z=0 and the period between successive returns to the same node

is 2-TT/g (n n'). In this time the mean motion in longitude is 2-7rn/g(?i n').

Hence the mean rate of change in the position of the node is

(27rn/g (n n') 2-Tr}
-r- 2?r/g (n

- n) = n g (n n')

= n [1
-

g/(l + m)} = n (- fm2 + ||m
3
)

with the approximate value of g found in 240. Since this expression is

negative the lunar node has a retrogade motion and completes a circuit in

6890 days or 18'9 years, which is reduced by about 100 days when the com-

plete value of g is used. These facts have an important bearing on the

theory of eclipse cycles.

In deriving the elementary terms in latitude with the characteristic k it

is enough to take from the variational solution

r = a(l-m2
cos2f)

and to the order m2 the latitude is

z\r
= 2k (sin 77 + (fm + ^|m

2
) sin (2f

-
77) + J^m

2 sin (2f + 77)}.
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The first term, with argument 77 (or .Fin Delaunay's notation) is the principal

term in latitude. Its coefficient is 5 8'. The second term, with argument
2

77 (or 2D F\ has been called the evection in latitude. Its coefficient

as found above is 610"'6, the true value being 618"'4. The third term, with

argument 2 + 77 (or 2D + F) has the coefficient 83"'2 as compared with the

true value 94"'5.

249. It is now possible to sketch the whole method of the subsequent

development. The greater part of the practical work of calculation has been

based not on the homogeneous equations used above, which present advan-

tages in special cases (especially the calculation of long-period terms), but on

the original equations (2),

Dhi + 2mDu + fm2

(u + s}
- "~ = -~

t OS

., KZ . an^ - -?%
It is unnecessary to use the equation in s because s =/(~1

) if u=f() ;
two

real equations are replaced by a single complex one. Also the characteristics

entering into u and z are distinct. Hence the treatment of the equations in

u and z is also distinct. The order of a characteristic is the sum of the

positive powers of the parameters e, e', aa'" 1
,
k which compose it : m is

a mere number for this purpose, and retains its identity only in the argu-
ments. Now suppose that a complete solution u = u1} s = s1} z = zl to the

order
//,

in the characteristics has been obtained. The next step is to find

the solution u = u, + u2 ,
s = s

1 +s2 ,
z = zl -f zz ,

where u, s2 ,
zz represent the

terms of order p+l. Insert these values in the equations, retaining only
the first powers of u2 ,

s2 ,
z2 . The result is, since r2 = us + z*,

(D + m)
2

(wj + M.J) + -|-
m2

(uj + u.2 + 3s, + 3s2)
- K (M, + u2) rr3

(D
2 - m2

) (zj, + z2}- K (2, + zz} rr
3 + l/c^rr

5 (u^ + u^ + 2^O = - i ."
oz

Now terms of order less than
//. + 1 must be satisfied identically and therefore

terms linear in wls sl} zl may be omitted. Also terms of order higher than

fj,+ 1 can be neglected. Hence vlt s1} z
l may be used in calculating H, and

in conjunction with u2 ,
s2 ,

z2 it is possible to write u1
= u

,
s1
= s

,
zl
=

0,

rj
2 = u s = PQ, where u

,
s

,
z=Q is the variational solution of zero order.

Hence the equations reduce to

(D + m)2
M, + u2 (|m2 + %KP<r3

)+ s2 (fm2
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where the terms with D have been retained on the right-hand side, though

apparently of order not higher than /i, for a reason to be explained later.

For the moment they can be left out of sight.

250. Since the treatment of the two equations is separate but quite

similar it will be enough to consider the first. It is convenient to write

HI = u + u-{, sl
= s + Si and to expand the term tcu^r^

3 in terms of /, s^, zly

rejecting the variational part icu p
~3 and the linear terms. The form of

the known solution has been made sufficiently obvious, and it is clear that

the right-hand side, when developed, will contain an aggregate of character-

istics X each of order p + 1 and each associated with one or more series,

Each constituent part may be taken to be of the form

A

where

q\, &, (?s having fixed integral values (positive or negative) in the series con-

sidered, while 2i may have odd integral values when aa'~: occurs in X.

The part of the solution required to satisfy this series is of the same form

and \i, X/ are to be found by inserting this expression in the equation. This

may be written

(D + m)
2 u2 + Mu2 + Ns^ 2= A

where

M= |m2

+%Kp
-3 =^M^-\ N? =

fm2 + |u 2

/)

-5= pIN^.
The series M, in which Mt

= M_it has already occurred in the determination

of c and g . After substitution of the series for u2 , s2 comparison of the

terms in (
2./+r>+1 on both sides of the equation gives

( 2j + r - 1 - m)2

\'_j + $MtX^
This series of linear equations, in which the coefficients Mi} A7

; rapidly diminish,

must then be solved by successive approximation. When this has been

carried out for each series A and every characteristic X, all the terms of order

/* + 1 in u, s have been determined. The treatment of z is precisely similar.

251. But one important question clearly arises. Is the set of linear

equations consistent and definite ? If the modulus of the set, which can be

written as a symmetrical determinant of infinite order since Mi = M_{,

Ni= N-i, is not zero, the solution is certainly definite. This is the general

case. But consider the determination of e^, e/ the co-factors of the character-

istic e of the first order. By the above method these will be obtained from

(23) by putting A-
t

= A'
'

_j
= and T = c. The consistency of the equations
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now requires the modulus to vanish. It is obvious that this condition in fact

must lead to a determination of T which will be identical with the value of

c
, though the latter was found above in a formally different way. When

the equations have thus been made consistent the solution only becomes

definite when the arbitrary condition e - e
' = 1 is added, and this condition

is equivalent to a definition of e.

It is now evident that the modulus vanishes whenever T = c, or for every
series based on the same argument as that of the principal elliptic term.

The consistency of the linear equations requires a relation between the

coefficients A
jt
A- which may be expressed by equating the modulus to zero

after replacing any column in it by the series A
j}
A-. But owing to the

symmetry of the modulus this relation is capable of a much simpler form.

Let the equations (23) be multiplied by e
jt e'_/ and let the sum be taken for

all values ofj. Then the coefficient of \j is

(2j + T + 1 + m)
2

ej + ^Mi j+i + 2#ie _j+i =
i i

because, since S^e/+i== 2.M_i ;_$== 2.Mi;_i, this is one of the equations of

condition. Similarly all the coefficients on the left-hand side vanish, and

the required relation appears in the form

= 2(Aj
e
j + A'_

j e'-j) ............................ (24)

The reason for retaining the terms (D* + 2mD)M1 in (22) will now be under-

stood. Without them there is no reason why the relation (24) should be

satisfied, and in fact it will be contradicted. But let u: contain terms of the

form

(D
2 + 2mZ>) (Ul )

= & {[c
2 + 2c (2* + 1 + m)] Ei?i+c

+ [c
2 + 2c (2i

- 1 - m)] E'_-*-*}

where terms obviously of order less than /i + 1 are omitted. Then clearly, if

the value of c here be regarded as unknown, it will be possible to adjust its

value so as to satisfy the relation (24).

252. The matter is made clearer by considering the actual facts. In the

first order there is one such series, with the coefficients a, e/. In the second

order there is no such series and the question does not arise. The primitive

value c suffices. In the third order series of this type reappear, associated

with the characteristics e3
,
ee'

2
,
ek2

,
e (a a'"

1

)
2

. The contemplated change in c

is associated with e through the first order terms. Hence the relation (24)

in the third order will give in succession the parts of c which contain

e2
,

e'
2
,
k2 and (a a'"

1

)'

2
. Similarly still higher parts of c may be found in con-

junction with the inequalities of a higher order. It is natural that the

motion of the perigee (and the value of the characteristic exponent) which

was determined for highly simplified conditions, should require adjustment
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when the conditions are more complicated and the deviation from the periodic

orbit is no longer infinitely small.

For c let Cj + \'8c be written, where \'Bc is the part to be determined, its

characteristic being X', and let

where B
j} #_,, Dj}

D
'_/

are calculated numbers. With the new value of c the

quantities Aj, A'_j satisfy a certain relation identically as required, and the

equations (23) become consistent, but the solution is not definite because any
one of the equations can be derived from the rest. An arbitrary condition

can be imposed, and the form X ' = X is chosen. The solution is then con-

ducted in the following way.

The equations forj= are left aside. Three separate solutions are then

made of the remaining equations: (1) X,-
=

fy, X'_y
=

&'_,- when X = X
' =

and Aj = Bj, A'-j
=

#_,- ; (2) X,-
= d

jt X'_;
=

d'_/ when X = X '=0 and Aj=Dj,

A'.j
=

iy.j't and (3) \
j =fji X'_; =/'_, when X =X ' = 1 and Aj = A'^ = 0.

The last, which under the different condition X X
' = 1 would have led to

j, e'_j, is independent of Aj, A'_,-
and applies in all cases. The complete

solution is therefore

X,-
=

bj + djBc +fj\ , \'_j
=

b'-j + d'-jSc +/-,-X .

When these are inserted in the equations for j
= the result is of the form

b + d Bc +/ X = b
' + d 'Sc +/'X =

and Be and X are thus determined. The value of Be must also satisfy the

relation (24), so that a check on the accuracy of the work is provided. The

solution of the equations (23) for the case when T = c is therefore complete,

and the derivation of the higher parts of c has been explained. It may be

noted that on the left-hand side of these equations the primitive value c is

to be retained for r at every stage, both because it is associated with terms of

the full order /A + 1 and because the theory of the equations depends on the

fact that the modulus vanishes. On the other side c will receive its full

value so far as it has been determined. When a new part of c comes to be

determined in conjunction with inequalities having the characteristic X, Be is

always associated through (D
2 + 2mD) (u,) with the terms in MJ of the first

order in e. Hence the new part of c itself always has the characteristic

X' = e-X, and the numbers d
} ,

d'_} , like/-, /'_,-, are the same in all cases.

253. With the equation for z matters follow a precisely similar course,

and the exceptional case arises when r = g.
The conditions are simpler,

because X^ + X'.^O always, and therefore the arbitrary relation has the

form X =V = 0. The terms of the first order with suitable arguments have

the characteristic k, and the part of g found in conjunction with inequalities

having the characteristic X contains the characteristic k^X.
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The arbitrary condition X =V adopted in all cases has an importance

beyond that apparent in the actual calculation. The aggregate of the terms

considered up to the final stage of approximation gives for the one argument

u = aef (e f +
s = ae-' (e

-c 4

The last expression remains unaltered throughout the course of the approxi-

mations. Hence the constant e is defined as
"
the coefficient of a sin I in

the final expression of p sin (v nt e) as a sum of periodic terms, where

v nt e is the difference of the true and mean longitudes and p is the

projection of the Moon's radius vector on the plane of reference."

Similarly the terms of the form

in the first approximation have no addition made to them subsequently,

since XQ = \>' = 0. Hence the constant k is defined as
" the coefficient of

2a sinF in the (final) expression of z as a sum of periodic terms."

There is no reason to alter the definition of a, which is based on the

variational curve. But it is then to be noticed that the constant of distance

in the projection on the z plane will no longer be aa ,
where a = 1, but will

be affected by terms with various characteristics which arise in the course of

the approximations as the constant parts of u~l or s. Either m or a, since

they are connected by a certain relation (11), maybe regarded as an arbitrary

constant of the solution.

The remaining three arbitraries have been denoted by t
,

tli 2 - These

may be replaced by e, r, 6, the mean longitudes of the Moon and its perigee
and node at the epoch t = 0. Then

D= (n- n'} (t
- t )

= (n
- n) t+e-e

I =c (n-n')(t-t1 )
= c(n-ri)t+e-v7

I' = m(n n'} (t ts)
= n't + e' vr

F = g (n-ri)(t- t2)
= g(n-n')t + -0

where e' is the mean longitude of the Sun at the epoch t;
= and CT' is the

(constant) longitude of the solar perigee. The time t3 is not an arbitrary : it

depends on the Sun alone and is one of the data of the problem.

The formulae for transformation to polar coordinates were given in 230

for two dimensions only. It is necessary to replace r by p, its projection on

the plane of the ecliptic, where p
2 = X2 + F2 = us. Then

u^1 =
p exp. i (v nt e)

s% =
p exp. t (v nt e)

z =
p tan

<f>
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where
<f>

is the latitude. Hence the true longitude and the latitude are

v = nt + e + Jt (log st;
-

logu^}

The constant of the Moon's horizontal equatorial parallax is based on a,

where n2a3 = E + M. To obtain the parallax at any time this constant must
be multiplied by

a _ a /us + z*\
~
*

r
~
a

'

I a J
In these expressions for v, </>

and ar~ l the variational parts w
,
s are separated

from the other terms MI, sly z, and the expressions are then expanded in terms

of the latter. Advantage can thus be taken of the expansions already obtained

in the course of the previous work. The conversion to the final form of

coordinates therefore entails no great amount of extra labour.

254. This completes in outline the solution of the main part of the

problem, in which the Earth, Moon and Sun are treated as centrobaric

bodies, and the orbit of the Sun, or the relative orbit of the centre of mass

of the Earth-Moon system, is treated as an undisturbed ellipse in a fixed

plane. A large number of comparatively small but highly complicated
corrections are still necessary in order to represent the gravitational motion

of the Moon in actual circumstances. They may be classified thus :

(1) The effect of the ellipsoidal figure of the Earth, and possibly of the

Moon.

(2) The direct action of the planets on the relative motion of the Moon.

(3) The indirect action of the planets, which operates by modifying the

coordinates of the Sun. These indirect effects are in general larger than

the direct effecj^s, and are sometimes sensible in the lunar motion when they
are insensible in the relative motion of the Earth and Sun. Among the

indirect actions of the planets may be specially mentioned

(4) Lunar inequalities produced by the motion of the ecliptic, and

(5) The secular acceleration of the Moon's mean motion, which arises

from the secular change in the solar eccentricity e under the action of the

planets.

It is impossible to discuss these matters profitably in a short space. The
reader will find references in Professor Brown's Treatise and detailed results

in the memoir* which contains his complete and original theory.

* Memoirs R. Astr. Soc., LIU, pp. 39, 1R3 ; LIV, p. 1 ; LVII, p. 51 ; LIX, p. 1.

192



CHAPTER XXII

PRECESSION, NUTATION AND TIME

255. In order to investigate the motion of the Earth about its centre of

gravity we take a set of rectangular axes OXYZ fixed in space and a

second set Oxyz coinciding with the principal axes of inertia. These are

fixed in the Earth and move with it. The two sets are drawn in such a

sense that the positive directions of the corresponding axes can be brought
into coincidence by a suitable rotation. Their relative situation is defined

by the three Eulerian angles 6, <f>, ty, where is the angle between OZ
and Oz, <j>

is the angle between the planes OXZ and OZz, and ty is the angle
between the planes OZz and Ozoc. Then the coordinates are related by the

scheme :

X Y Z
x cos 6 cos

<f>
cos

T/T
sin < sin ty cos#sin<cosA/r+ cos(sin-^ sin cos

-^r

y cos 6 cos
<f>

sin ty sin
<f>

cos ^ cos^sin^sim^H-cos^cosi/r sin sin ty

z sin 6 cos < sin 6 sin
</>

cos 6

The result of resolving the angular velocities which is a rotation in the

plane OZz, $ which is a rotation about OZ, and ty which is a rotation about

Oz, about Ox, Oy, Oz is to give the equivalent angular velocities about these

axes, namely
&>i
= sin

i/r
< sin 6 cos

-\Jr

o>2
= cos^ + (j)

sin 6 sin ty (1)

G>3
=

ty + (j>
COS

which are Euler's geometrical equations.

Let A, B, C be the moments of inertia about the axes Oxyz and L, M, N
the moments of the external forces about these axes. Then the dynamical

equations may be written in the well-known form :

Aw! (B C) a)2 a>3
= L \

Ba>2 -(C-A)toa(0l
= M\ (2)

Cd>3
- (A - B) vl0>z = N)
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256. The external forces which are here considered are due to the action

of the Sun and Moon. An approximate expression for the action of either

of these bodies is sufficient and easily found. The potential of the Earth

(mass TO) at a distant point P has been found ( 18) to be

Tr sr* dm ~ (m A + B + C 3/
V = Or2, = Cr

(
h

p \r

where OP = r and / is the moment of inertia of m about OP. This expression

is true as regards terms of the second order in the coordinates of points in m
relative to the centre of gravity 0. Terms of the third order will clearly

vanish in the sum provided that the mass m possesses three rectangular

planes of symmetry: and this is sensibly true in the case of the Earth.

Terms of the fourth order are small in consequence of the ellipsoidal figure

of the Earth and are neglected. Now V is the work done by unit attracting

mass at P when the particles of the mass TO are brought from infinity to

their actual configuration. Hence the work done by a finite mass near

a distant point 0' is

'-3/>

R 2R3

by similar reasoning, if 0' is the centre of gravity of the attracting mass

TO', 00' = R, A', B', C' are the principal moments of inertia of TO' at 0' and /'

is the moment of inertia of TO' about 00'. Now since A, B, C and / are of

the second order in the linear dimensions of m, terms of the second order in

the linear dimensions of TO' can be neglected when associated with them.

Let the coordinates of 0' relative to be (x, y, z) and of P relative to 0' be

(, 77, a Then

r2/ = A (x +

But since 0' is the centre of gravity of the mass m'

^dm =
2?) dm' = ^dm = 0.

Hence if the expression to be summed be expanded in terms of |, 77, the

terms of the first order vanish in the sum and terms of the second order are

neglected. To this order of approximation

(A + B+C-,- dm

and if / now represents the moment of inertia of m about 00', the complete

expression for U becomes

nm' m(A' + B' + C'-3r) m' (A +B + G-
37)|
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This represents the mutual potential of two masses m, in with sufficient

accuracy. In the usual astronomical units ( 24) G = k'*. The mass of the

Sun is unity and for the masses of the Earth and Moon we take E andfE.
Then if the mean distances of the Sun and Moon are a' (= 1) and a" and the

mean motions ri and n",

G (1 + E) = n'2 a '

257. The moments of the external forces about the axes Oxyz being

L, M, N, the work done by them when the Earth receives a small twist

defined by the rotations dta1} da)2 ,
d(os about the same axes is

dU = Ldo>l + Mda>2 + Nda>3 .

But U depends on the orientation of the Earth only through the occurrence

of 7; and
R*I = Ax* + By* + Cz*

(x, y, z) being the centre of gravity of the attracting body. Hence

dU=- 3Gm (Ax dx + Bydy + Czdz)/R
5

.

But with due regard to sign, when the axes are rotated,

dx = y da)3 z dco2 , dy = zdw l xdw.A , dz x dw.2 y dwl .

Hence, equating the coefficients of da)1} daj2 , da)3 in the two expressions

fordU,

L = 3Gm'(C-B)yz[R5
,
M = 3Gm (A - G)xz\R\ N= 30m' (5- A}xyjR

5
.

These apply to a body possessing three distinct principal axes. But the

Earth may be regarded as an ellipsoid of revolution, for which B = A and

C>A. Under these circumstances

L = 3G-m'(C-A)yz/R
s
,
M= - 3Gm' (C-A}xzjR\ N=0.

On the other hand, the term in U which depends on the orientation of the

Earth is more generally

a useful form for some purposes. The last term on the right, being inde-

pendent of the orientation, can always be rejected ;
and when the Earth

is considered uniaxal, it is possible to use simply

U" = -2Gm'(C-A)z*/R5
........................ (3)

258. With B = A and N= 0, the third equation of (2) gives

d>3
= 0, &>3

= n

and the other equations of the set become

A&! + (C - A) Mo>2
= L

Aa)2 (C A) na)
l
= M.
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The actual motion of the Earth is a steady state of rotation disturbed by the

external forces and this steady state will be found by putting L = M = 0.

The equations then give
&>! + fji"(o l &>2 + f*

2
o)2
=

where

Hence the steady state is given by

<! = k cos (pi + a), f 2
= A, sin (pi + a).

But the instantaneous axis of rotation in the Earth is the line

xjh cos (fjd + a)
= yjh sin (fit + a) = z/n

which indicates that if h is fairly small the terrestrial pole describes a small

circle of radius h/n about the axis of figure in the period 2-7T//4. This is the

Eulerian period of A/(CA) (roughly 300) days. Now the angle between

the Zenith of a place and the Pole is the co-latitude of the place, an angle
which can be constantly observed. Hence the latitude of any place should

exhibit a variation with a period of about 10 months. Until a quarter of

a century ago no variation of latitude had certainly been detected. Since

that time variations (of the order of 0"'3) have been systematically observed

and studied and have also been traced in the older observations. But

analysis has proved conclusively that these variations contain no part which

conforms with the Eulerian period. They cannot therefore be explained by
the free motion of the Pole on a rigid Earth. Hence observation justifies

the belief that h/n is insensibly small.

The variations of latitude observed are always very small and constitute

a highly complex phenomenon. The periods of the chief components of the

motion of the Pole are about 12 and 14 months.

259. Corresponding to the free movement of the Pole on the Earth's

surface we have, by (1),

= Wj sin
yjr + &>2 cos T|T

= h sin (/j,t + a + i/r)

<j>
sin 6 = a>2 sin >/r &>, cos ty

= h cos (fj,t + a +
-\/r).

For the plane OXY we take the plane of the ecliptic which varies but

slightly in consequence of planetary perturbations. The value of 6 is about

23. Hence and
<f>

are very small in comparison with n, a fact in accord-

ance with observation even when the disturbing effects of the Sun and

Moon are operative. Hence, further, ty differs only slightly from n.

The rotational energy of the Earth is T, where

A (fc + <j>

2 sin2

0) + C(jr + <j>
cos 0)

2
.
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Hence the Lagrangian equations of motion are

~
(A6) - A(j>

2 sin 6 cos 6 + C$ sin 6 (fy + <j>
cos 0)

= ^
~ {40 sin2 + (7 cos (t + < cos 0)}

=
|?

=
jj|.

But since

cos 0)}

the first two equations beconje

AB'

A$* sin cos + Cn sin = ^~

-r (Acj) sin2 + (7w, cos 0) = r .

It has been seen that n is very large compared with and 0, and it follows

that those terms are of predominant importance which contain n as a factor.

Neglecting the other terms on the left the equations become simply

1 dU
Cn sin 080

fi- -1 ^
Cn sin 80

'

The complete justification for omitting the terms rejected must be sought

by substituting in them the results which follow from the latter simple form

of equations, when it will be found that they are practically insensible. The

form to be used for U is given by (3), so that

U=-IG(C-A)2m'z*IR*

a sum of two terms corresponding to the Sun and Moon. For each dis-

turbing body it is necessary to find the product of zs/R2 and a?jR* expressed
in appropriate terms and with a suitable degree of approximation.

260. The axes XYZ being fixed in space are defined so that OZ is

directed towards the pole of the ecliptic for 1850.0 and OX towards the

equinox for the same epoch. By the scheme of transformation

z = X sin cos + Fsin sin + Z cos 0.

The position of a disturbing body, such as the Moon, is more conveniently
referred to a similar set of axes for another epoch t. The necessary changes

may be considered successively, thus :
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(i) Rotate the axes about OZ through the angle ft so as to bring OX to

the position OXl
. Then

X = X, cos ft - F, sin n, Y= FlCosft + X, sin n, Z = Z^

where ft is the node of the ecliptic for epoch t on the ecliptic for 1850.0.

(ii) Rotate the axes about OX^ through the angle i so as to bring OFa

to the position OF2 . Then

X, = X,
, F! = Y, cos i - Z2 sin i, Z, = Z2 cosi+Y2 smi

where i is the inclination of the ecliptic for epoch t to the ecliptic for 1850.0.

(iii) Rotate the axes about OZ2 through the angle N - ft so as to bring
OX2 to the position OX3 . Then

X2
= X3 cos (N- ft)

- F3 sin (.Y
-

ft),

Fo = F3 cos (#"
-

ft) -f X3 sin (JV - ft), 2
= #

:!

where N is the longitude of the Moon's node reckoned through ft in both

ecliptic planes.

(iv) Rotate the axes about OX3 through the angle c so as to bring OF3

to the position OF4 . Then

X3
= X4 ,

Y3
= F4 cos c Z4 sin c, Z3

= Z4 cos c + Y4 sin c

where c is the inclination of the Moon's orbit to the ecliptic for epoch t.

But, if (X4 ,
Y4 ,

Z4) are the Moon's coordinates,

X4
= r cos (t;

-
iV), . Y4

= r sin (v
- N), Z4 =0

where r is the radius vector and v is the longitude of the Moon at epoch t

reckoned in its orbit; this longitude is the sum of three arcs in the two

ecliptic planes and the plane of the lunar orbit. Now i < 1 and, for the

Moon, c is of the order 5. Terms of the order i
2
, c3 and ic are therefore

neglected. Then the result of eliminating (X 3 ,
Ys ,

Z3), (X4 , Y4 , Z4) gives

X.2 = r cos (v
- n) + ^c

2r sin (v
- N) sin (N - H)

F2
= r sin (v

-
fl)

- |cV sin (v
- N) cos (N - O)

Z2
= cr sin (v N)

and the result of eliminating (X, F, Z), (Xlt F1} Z^ gives

z = X2 sin cos
(<j>

- H) + F2 sin sin (<
- H) + Z2 cos

+ i
{
Y2 cos 6-Z2 sin sin (<

-
ft)}.

Hence

z/r = sin cos (v
-
<) + c cos sin (v N) |c

2 sin 6 sin (v
- N) sin (<

- N)

+ i cos sin (v ft).

In squaring this expression terms not involving 6 or can be rejected,

because they disappear on differentiation. Also terms involving v with



298 Precession, Nutation and Time [OH. xxn

coefficients above zero order are found to be negligible in effect. Under
these conditions the result becomes

zz

/r*
=

\ sin2 + $ sin2 cos 2 (v
-

<)

4- c sin 6 cos 6 sin (< JV) + i sin 6 cos sin (< H)

iV)-fc
2 sm2

........................(4)

261. Certain expansions in terms of the mean anomaly in undisturbed

elliptic motion are now required. When e
?>

is neglected in the formulae

of 40, (22), (26) and (27) of Chapter IV become

r/a = 1 + \e*
- e cos M %e

2 cos 2M

a^/r
3 =

(1
-
f e2) cosM + 2e cos 2M + zj-e* cos 3M

tfy/r
3 =

(1
-

fe
2

) sin Jf+ 2e sin 2.M +^ sin 3^f.

The latter give, w being the true anomaly,

a4 sin 2w/r
4 =

(1
- e

2
) sin 2M + 4>e sin 3if + -\

3-e
2 sin 4M

a4 cos 2w/r
4 = e2 + (1

- e
2
) cos 2M + 4,e cos 3i + ^3-e2 cos 4if

a4

/r
4 = 1 + 3e2 + 4e cosM + 7e2 cos 2if

whence, after multiplication by r/a,

a? sin 2w/r> = [- \e sin 3f] + (1
-

|e
2

) sin 2if + [|e sin 3^/ + ty# sin 4Jlf]

a3 cos 2w/r
3 = [- |e cos M] + (1

-
-|e

2

) cos 2M + [|e cos 3M + J/e
2 cos 471/]

a'/r
3 = 1 + f e2 + 3e cos Jlf+ [f e

2 cos 2M].

The eccentricity being small, of the same order as c, the terms [ ] which

involve M and are not of zero order, are immediately rejected. Now

M = ri't + /j.
TS

V = W + TS

where n't + /* is the mean longitude of the Moon in its orbit and -sr is the

longitude of the lunar perigee, both being measured partly in the two

ecliptic planes for 1850*0 and the epoch t and partly in the plane of the

lunar orbit. From the expression (4) can now be derived

a^/r5 =
(
-
|c

2 + f e
2
) sin

2 6 + c sin cos sin
(<f>
- N)

+ i sin cos sin
(<
-

fl) + c2 sin2 cos 2(<f>-N)

+ % sin2 cos 2 (n" + yt* -</>) + fe sin2 cos (w"$ + /i
-

-57)

the final term being retained though periodic and not of zero order.

For the Sun c = and hence similarly

a'V2

/r'
5 =

( + f e'
2
) sin

2 + i sin cos sin (<
- H)

-f- 1 sin2 cos 2
(rc'tf + /A' <) + f e' sin2 cos (?i^ 4- /A' sr').
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262. These expressions give the means of forming U, for

U= %G (C - A) 'Zm'z^/R
5
.

For the Moon ( 256)
GW = GEf = fri'*

a3
~

a"3 ~l+f
and for the Sun

Gm' _G _ n'2

~a?~ ~af~3
~

1 +E '

Let
C* A -fv\

/f
'~ C^ A *i'2u Ajn u j n

'l+E .(5)

Then

*L--K ^-K **
Cn~ 2>

r5
"

1-
r'

5

= -
[A"2 (

-
| c2 + f e

2

) + A^ (| + t e'
2

)} sin2 -
(A^ + ^T2) i sin 20 sin (<

- H

A"j {| cos 2 (n'i + / -
0) + f e' cos (n't + p'

-
')}

sin2

-^ {| cos 2 (w
/r + /i -</>) + f e cos (n" + /*

-
w)} sin2

- K2 {c sin cos 6 sin (<-^) + c
2 sin

'2

00082(0-^)} (6)

The dynamical equations ( 259)

^-^_ i9 ~
sin ed0

A i

sin 8

which result must be solved by continual approximation. This process,

when guided by the facts of observation and limited to practical require-

ments for a period of a century or two, is very simple. For it is known

that is very nearly constant, while < changes progressively but very slowly.

Hence it is possible to discuss the secular effects, or precession, and the

periodic effects, or nutation, separately.

263. The last three lines in the expression for U/Cn, containing six

terms, give rise to periodic terms in 6, <j),
which can be. neglected in the

first instance. The secular changes come from the terms in the first line.

With sufficient accuracy we may write

. i sin fl = gt, i cos fl = g't, e' = e + ej

the quantities e
, elt g and g being given by the theory of the Sun's motion.

The corresponding changes for the Moon are negligible in effect or rather

are treated differently. Hence the equations for the secular movements of

the Earth's axis are

4>
= - {K2 (1

-
f c

2 + fe
2

) + K, (1 + fe
2
)] cos

- (Ki + K2)

C-*
(g' sin<f>-g cos 0) t - SK^e, .tcosd

= (Kl + K2) cos (g' cos(f>+g sin
</>)

t.
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When t = (1850*0), 6 is the mean obliquity of the ecliptic for that date

and may be denoted by e . Also
<f>, being the angle between the planes

OXZ and OZz ( 255), is 90 by the definition of the axis OX. The periodic

effects at the time t = are excluded from consideration here, but their

influence is small. Hence initially

<f>
= 90 - {K2 (1

-
f c

2 + 1 e2) + K> (1 + f e 2

)}
cos o .f\

(7)
sin fo

= 6 + I (Kl + K,) cos e . gtf
3

The length of time during which these expressions will be valid depends
on the numerical values of the quantities involved. For a short interval

from 1850'0 (a century or two) the preceding equations hold good, and may
be written.

*.-*-"-*!]. ...(8)
0=*, + 7*

!

J

the suffix ra denoting mean values from which periodic changes are excluded.

Thus
</>m ,

6m define the position of the mean equator at the time t relative to

the fixed ecliptic (1850'0), the coefficients a, /3 and 7 being now determined

by (7). The motion of the mean equator on the fixed ecliptic, measured by
90 < m ,

is called the luni-solar precession in longitude. The angle 9m e

may be called the luni-solar precession in obliquity.

264. It has been convenient to use a fixed set of axes XYZ, where

Z represents the pole of the ecliptic for 1850'0 and X the mean equinox for

the same date. It is now necessary to introduce a new set of axes X'Y'Z',

where Z' represents the pole of the ecliptic for the epoch t and X' the

corresponding mean equinox, i.e. the intersection of the mean equator and

ecliptic at the epoch t. Let z represent the N. pole of this mean equator,

its position being defined by <f>m , m . The longitude of Z' in the XYZ system
is O - 90 and ZZ' = i, where

i sin O = gt + ht2

i cos ft = g't + h'&

the terms of the second order being omitted above because they clearly give
rise to terms of the third order only in the luni-solar precessions.

Let us consider the spherical triangle ZZ'z, of which two sides are

ZZ' = i and Zz=0m . Since XZZ' = 11-90 and XZz =
<f>m , the angle

Z'Zz < m ft + 90. The side zZ', which is the mean obliquity of the

ecliptic at t, will be denoted by 8m', and the angle ZzZ'',
which is called the

planetary precession, will be denoted by a. Hence

cot i sin 6m cos dm sin (O <j>m) + cot a cos (O <f>m)
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and to the second order

301

cos i sin m i sin (1 - < m) cos m

(g't + h't
2
) cos <f)m + (gt + hf) sin

<f>m
sm~0TO - {(fft + ht2

) cos <j>m -(g't + h'?) sin $m \
cos T,

sin f + g't cos e

since it is enough to take dm = e and
<f>m = 90 at. Hence to the required

order

(9)
sin e sin e

y y

Fig. 8.

Again, in the same triangle,

cos m
' = cos i cos m + sin i sin 6m sin (fl <f>m)

whence, to the second order,

(Om - m') sin | (6m + em')
= - i* cos m + sin m (agt

2 -
g't

-

To the first order, therefore,

Om ~ 0,n = -
g't, sin (0m + m')

= sin e + \g't cos e .
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Hence to the second order

ff'
2
} ? cos eo + tft + h't*

~
agt

2
) sin e_

........................(10)

The relations between the various sets of axes are shown in
fig.

8. The equator

X'y (epoch t) cuts the fixed ecliptic XY in x, where Xx = zZY= 90 $m ,

the luni-solar precession, and xX' = xzX' = ZzZ' = a, the planetary pre-

cession. Let ZX' cut XY in D, so that XD is the negative mean longitude

(1850'0) of X', the mean equinox at t. This arc is called the general pre-

cession and will be denoted by 90 < m',
so that xD = < m

'

</>m . The angle
DxX' = Zz-0m and xDX' is a right angle. Hence

tan
(<f>,n 4>m)

= tan a cos 6m

and to the second order

Thus by (8) and (9) the general precession may be expressed in the form

90 -
<f>m

' = Pt + P't2

where
P = a g cot e

P' = ft
- cot e (h + ag' gg' cot e )

and by (8) and (10) the mean obliquity of the ecliptic is

where

Q=g'
Q' = 7 + k

f -
ag + |^f

2 cot e .

265. To find the periodic effects, or nutation, it is necessary to return

to 262 and write

<=< m + 3>,
= m + .

Now
<f>m and Om have been calculated so as to satisfy the secular terms which

arise in the equations of motion from the first line of the expression (6) for

UjCn. Hence the six periodic terms of the last three lines alone are now

relevant, and the dynamical equations become

6 = - KI {cos 2 (n't + /!/-</>) + 3e/ cos (n>t + P- '}}
cos

'

K2 [cos 2 (n't + fji <) + 3e cos (n't + //, tj)} cos 6

- X2 {c sin
(cf>
- N) cos 2^/sin + \<? cos 2

(<f>
- N) cos

(9}

<y) = {^ sin 2 (n't + p -
<f>) +K2 sin 2 (n" + /A -</>)} sin ^

+ 7T2 {c cos cos (^
- N) - \& sin d sin 2 (0

-
N)}.

The Moon's node makes a circuit of the ecliptic in 18 years in the retro-

grade direction, so that it is possible to write
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To the first order in t, which is alone necessary, 6 = e
fl
and < = 90 at

;
the

coefficient a can clearly be incorporated with n, n" and N-,, before integration

in those terms in which < occurs, though the change in n', n" is unimportant.
Then on integration

<I> = KI cos e
j<r

, sin 2 (n't + //)
--$ sin (n't + /*' r')

+ #2 cos e
1 ^ r, sin 2 (n"i + /*)

-- sin (n"

-f^ -jr
sin (N - NJ) cos 2e /sin e - - sin 2 (.ZV

- ^iO cos e

[a i uv,

= sin e {^i cos 2 (n'* + //) +~ cos 2 (n"< + /*)

+ 2 cos e cos (o -
J)
-~ sn e cos

ll *"!

It is unnecessary to add integration constants because these are incorporated
in

<f>m and m , and, except as so far explained, annulled by definition at the

initial epoch =0 (1850).

266. 6 is the nutation of the obliquity of the ecliptic, and <J> is the

nutation of longitude, </>
and 4> being measured in the direction of increasing

longitudes. The numerical quantities involved are of such an order of

magnitude that a fair standard of accuracy has already been obtained in the

formulae. If more precise results were needed, it would be necessary (1) to

carry the expansions for the disturbing bodies further, and (2) to continue

the process of integration by successive approximation to a higher stage.

The latter process would clearly introduce terms of the form at sin (nt + a).

Among the terms of the former origin those depending on three times the

Sun's mean longitude (n't + /u/) are the most important, and it may be left as

an exercise to the reader to determine them.

By far the most important terms in the nutation are those with the

argument (N -
Nj). The other terms being omitted, let

^^^ccoseo/^ ...........................(11)

x = [<I>] sin e = c/Tsin (JV
- Nj) cos 2e / cos e

y = - [6] = - e/fCOS (N - NJ).

Since c/f'is an angle of a few seconds only, x and y may be considered as the

rectangular plane coordinates of the Earth's pole relative to the mean pole,

x being measured in the direction of increasing longitudes and y upwards
towards the pole of the ecliptic. The relative path of the true pole is

therefore the small ellipse

x2 cos2 e + y'
2 cos2 2e = </T

2 cos2 2e
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described in a period of about 18 years. Since cos e > cos 2e the major axis

is directed towards the pole of the ecliptic and, since x has the same sign

as y, the sense of description is such that the relative longitude of the true

pole is increasing when it lies between the mean pole and the pole of the

ecliptic, that is, it is clockwise when viewed from a point outside the celestial

sphere. The centre of this elliptic motion is carried by precession almost

uniformly in the direction of decreasing longitudes round the pole of the

ecliptic.

267. Since the manner of the investigation has been controlled by the

actual magnitude of the various quantities involved, it is necessary to intro-

duce numerical values if the results are to be properly understood. Three

quantities are based on observation, and not derived from theory, namely,
the obliquity e at the fundamental epoch 1850*0, the precession constant P
and the nutation constant JV. The values now accepted are

e = 23 27'31"-7, P = 50"-2453, JV= 9"'210.

The eccentricity of the Earth's orbit is given by

e' = e + ej = 0'016 7719 - O'OOO 000418 1

and the position of the ecliptic by

% sin ft =gt +ht* = + 0"'05341 1 + 0"'000 01935 t*

i cos n = g't + tit
2 - - 0"'46838 t + 0"'000 00563 1

2

the unit of time being a Julian year of 365'25 mean solar days. The Sun's

period relative to the equinox is the tropical year, and the corresponding

mean motion is therefore

ri = 2?r x 365-25/365-2422 = 6'28332.

The eccentricity and inclination of the Moon's orbit are

e = 0-05490, c = 5 8' 43" = 0-089802.

The tropical period of the Moon is 27"32158 days, and hence the mean

motion in a Julian year is

ro" = 83-997 radians.

The retrograde motion of the Moon's node has a sidereal period of 6793 5

days. The corresponding mean motion, corrected for precession, is

N! = 0-33757 radians.

It is now possible to derive the values of Kl and K2 . In the first place,

by (ID,

.fi^^/c cos eu
= 37"-74.

Also

a = P + g cot e = 50"'2453 + 0"'1231 = 50"'3684.

But, by (7) and (8),

a sec e = K, (1
-

f c
2 + f e

2

) + KI (1 + I b")
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whence
54"-91 = 0-992425 K2 + 1*000422 K,

and thus

K, = 17"-45.

Since any error in JV affects Kz directly and hence K^ equally, greater accuracy
would be superfluous. The expressions for the luni-solar precession ( 263)
now become

90 -
(f>m = at + /3t

2 = 50"-3684 1 - 0"000 1077 t
2

Om =e + jt?
= 23 27' 31"-7 + 0"-000 0066 t

2

while the general precession ( 264) becomes

90 -
<f>m

' = Pt + P't2 = 50"-2453 1 + 0"'000 1107 t
2

and the mean obliquity of the ecliptic

= 23 27' 31"-7 - 0" -46838 1
- 0"'000 0008 1\

268. In giving the numerical values of the terms in the nutation ( 265)
the notation is changed to that employed in the Nautical Almanac. The

results which follow from substituting the above constants are :

3> = + 17"-23 sin 8 - 0"'21 sin 2 ga + 1"'27 sin 2L

- 0"-13 sin (L-Tr) + 0"-21 sin 2 (
- 0"'07 sin gl

= + 9"'21 cos 83 - 0"'09 cos 2 Q + 0"'55 cos 2Z + 0"'09 cos 2([

where L is the Sun's mean longitude (?i' + /*'), TT is the longitude of the

Sun's perigee (-or'), ([
is the Moon's mean longitude (ri't + /u.), g1 is the Moon's

mean anomaly (n't + /* or), and Q is the longitude of the Moon's ascending
node (JVo NJ). In the Nautical Almanac the nutation of the obliquity of

the ecliptic () is called A&>, and the nutation of longitude ( <) is called

AZ. Comparison shows that no term with coefficient exceeding 0"'05 has

been omitted here.

Two important astronomical constants are involved implicitly in the

constants of nutation and precession, namely the mass of the Moon and the

ratio (C-A)/C, which has been called the mechanical ellipticity of the

Earth. For the equations (5) may be written

l+f'K^'ri'*' 3' ri*

the mass of the Earth, E= 1/333432, being negligible. Here K, and K,,

expressed above in seconds of arc, are angular motions in a Julian year,

and n, n' and n" are sidereal mean motions in the same unit of time. With

sufficient accuracy the above values of n' and n" may be used, and for n the

value 2?r x 366. Hence

//(I +/) = 0-012102, /= 1 /81-6
p. D. A. 20
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for/, the ratio of the mass of the Moon to the mass of the Earth, and

C-A = 1

C
~

304-2

for the mechanical ellipticity of the Earth. The mass of the Moon is also

obtained as a by-product from the observations of a minor planet in a refined

determination of the solar parallax. The value of f found by Hinks in this

way was I/ 81 '53.

269. The practical application of the results obtained for precession and

nutation belongs to the domain of Spherical Astronomy and will not be

pursued in detail here. Nutation is so small that its effects can be, and

are, treated independently of those due to precession. Of the latter some-

thing more may be said in order to define the two quantities employed in

calculating the effects of precession in right ascension and declination.

Let a, 8 be the R.A. and declination of a star at the epoch t. These refer

to the system of axes X'y'z (fig. &), which differs by a simple rotation

through the angle a about z from the system xyz. Hence the coordinates

of the star in the latter system are

x = cos 8 cos (o + a), y = cos 8 sin (a + a), z = sin 8

whence, by differentiation with respect to t, it easily follows that

& + d = (xy- yd)/cos
2 8

8 = 2 /cos 8.

Now the relations between the systems xyz and XYZ are expressed by the

scheme :

X Y Z
x sin

</>

- cos
<f)

y cos 6 cos < cos 6 sin < sin#

z sin 6 cos
<f>

sin 6 sin
<f>

cos 0.

Here XYZ are constant, and differentiation of the linear formulae for xyz,
when XYZ are finally expressed in terms of x, y, z, gives

x = (y cos 6 + z sin 9) <j>

y = x cos 6
.(j> z6

z = - x sin 6 . + yd.

Hence, when x, y, z are expressed in terms of a, 8,

a + d = cos0.j>- tan 8 sin (a + a) sin & .
(j>

- tan 8 cos (a + a) . 6

8 = - cos (a + a) sin 6 .
<j> + sin (a + a) 0.

These differential expressions are required to the first order in t, and ad

being of the second order may be rejected at once. Hence (the symbol n

being used here in a new sense)
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d = in + n sin a tan S p cos a tan 8

8 = n cos a +p sin a

where
w = a cos 6 .

<j>,
n = sin 6 .

</>, p =a sin
.<$> +

and may be replaced by e . With the numerical values given in 267, (9)

gives
ft = 4- 0"-1342 1 - 0"-000 2380 t

2

a= + 0"-1342 - 0"-000 4760 1

and from the luni-solar precessions

= _ 50"-3684 + 0"-000 2154

= + 0"-000 0132 1.

Hence
m = + 46"-07ll + 0"-000 2784

T? = + 20"-0511 -- 0"-000 0857 t

while j9
= + 0"'000 0002 and is altogether negligible. Thus m and n are the

important quantities known as the annual precessions in R.A. and declination.

The total precession in R.A. from 1850 for a point on the equator is

f mdt =
./ n

= 46"-07ll t + 0"'000 1392 1\

The expressions found for d, S are the coefficients of the first power of the

time and these terms suffice for short intervals only. The further develop-

ment of formulae for the transformation of coordinates from one epoch to

another according to the methods of astronomical practice must be sought in

such works as Xewcomb's Compendium of Spherical Astronomy.

270. It is now possible to consider in some detail the astronomical

measure of time. The third equation of (1) is

0)3
=

-^r + (j)
COS 0.

Here <w3 is the angular velocity of the Earth about its axis of figure and is

a constant previously denoted by n. As this symbol has been used with

another meaning in 269 it will now be replaced by &>. The angle -^ is

the angle between a meridian plane (Ozx) fixed in the Earth and rotating

with it and the plane (OZz} passing through the pole of the fixed ecliptic.

For the fixed meridian we adopt the meridian of Greenwich. The rotation

^ refers therefore to the Greenwich meridian relative to zx in fig. 8, and

f = TJr-a will measure the same rotation relative to zx. But the angle
between the Greenwich meridian and zx, x being the equinoctial point at

the time t, is the hour-angle of the First Point of Aries, i.e. the sidereal time

at Greenwich. Thus, T being Greenwich sidereal time,

f =
-^r d = G> a

<j>
cos 0.

202
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It is the true equinox which is now involved, affected both by precession and

nutation, so that

<f>
=

<t>m + <*>,
= m + -

Hence
r = &) a

<j>m cos 9m 4> cos 6 +
<j>m sin Om

= (a + m <l> cos 6 n

= a> + ra 4> cos e
'

with sufficient accuracy, for n can be neglected since is small and n

is about 10~4
,
and <J> being small cos may be replaced by cos e . Hence

integration gives for Greenwich sidereal time

T = TO + tat + m-f, + m2t* <l> cos e ..................(12)

where t is measured in Julian years of 365*25 mean days and reclined from

1850 Jan. 0, Gr. mean noon. The quantity t is an equi-crescent variable in

the sense required by the dynamical laws which have been used
;

its origin

and unit are for the moment of importance only so far as they condition the

numerical values of the coefficients. On the other hand the sidereal time T

is not uniform, being affected by secular and periodic terms. Hence T is

merely an intermediate standard of time. But this in no way affects its

practical utility. By far the largest term in <I> cos e is

15"'803 sin & = 1 8'054 sin Q,

of which the period is nearly 19 years, and ra2 is very small. The irregularities

in T are therefore very small and gradual, and far less than the natural

irregularities in the rate of the most perfect sidereal clock. Since this

instrument shows the hour-angle of the First Point of Aries, it also shows

the right ascension of stars on the meridian, and this principle serves both

to determine the error of the clock and to measure the apparent positions of

the stars.

271. In the next place a mean Sun is defined which moves in the plane
of the equator with the uniform sidereal mean motion p,. Its R.A. at time t,

reckoned from the true equinox, is therefore

A = A + fjut + mj, + m^t? <3> cos e

and its hour-angle
T= r - A = TO

- A + (o>
-

fji)
t

is the measure of Greenwich mean time. The constants occurring in A are

adjusted as far as possible to secure identity with the mean longitude of the

actual Sun affected by aberration. This may be written in the form

L = (\o + \J + X^2

) -k + (Pt + P'tz
)

L2t
2
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where A is the true mean longitude of the Sun when t = 0, Xx is the sidereal

mean motion, and 2\^ is the secular acceleration which arises indirectly from

the perturbations of the other elements of the Earth's orbit
;
k = 20"'47 is

the constant of aberration
;
and (Pt + P't2

) is the general precession in

longitude. The adjustment of the constants in A and L gives

A = LQ , fj, + ?! = L 1

and leaves outstanding between L and A the secular discrepancy (L2 m2) f

which would lead ultimately to a departure of the actual Sun, apart from

periodic effects, from the meridian at mean noon. This quantity is small

and far from certain in amount, and will have no practical effect for many
centuries to come. Now at 1850 Jan. 0, Greenwich mean noon,

and the effect of adding one mean day to T or t is

24b = 360 =
(

-
/*)/365-25

whence

a)/ 365-25 = 24h + (L,
- wO/365-25

(w + m,)/ 365-25 = 24h + ZJ 365-25.

Now, according to Newcomb,

L = 279 47' 58"-2 = 18h 39m 11 8'88

L, = 1296027"-6674 = 86401-84449

L2
= + 0"'000 1089 = + Os-000 00726

while in the latter unit (1
s = 15")

TOl = + 3-07141, ma
= + Os-000 00928

so that

A/365-25 = 236s
-55533, (L,

- mO/365'25 = 2368'54692.

Hence in numbers the equation (12) for Gr. sidereal time becomes

T = 18h 39m 11-88 + (24
h 3ra 563

'55533) D + Os>000 00928 1
2 - 3> cos e

where D = 365'25 t is the number of days reckoned from 1850 Jan. 0. When
D is given an integral value this expression gives the sidereal time at Gr.

mean noon and its value (less a multiple of 24h) is tabulated for every day
in the Nautical Almanac. When the nutational term is omitted,

AT = (24
h 3m 568'55533 + Os>000 00005 t) AD.

The secular term is also negligible, and hence

1

1 7aD
,

d
7 = *-5 = 1-002 7379.

1 sidereal day
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Another period which differs little from the sidereal day, but must not be

confounded with it, is the period of the Earth's rotation on its axis, measured

by &>. Its ratio to the mean sidereal day is

272. A catalogue of astronomical positions gives mean places freed from

nutation and reduced to the equinox of a common epoch. Such an epoch is

always the beginning of a tropical year and this expression must be defined.

It is the moment when the mean longitude of the Sun as above described,

is 280 = 18h 40m . It follows that the length of a tropical year is

24h
. 365*25 mean days

365-25

1-000 021 3483 + O'OOO 000 000 168 *

= 365-242 20272 - O'OOO 000 0614 1

or 365-242200 mean solar days at the epoch 1900. For the present the

secular change is unimportant. Once the beginning of the tropical year
is fixed in a particular calendar year, its beginning in any other year

may be found by adding so many tropical years. But the details will be

better illustrated by a direct example from the year 1900. When = 50,

L'- 18h 40m 448
-123. Now 50 Julian years exceed 50 years of 365 days by

12| days, whereas the calendar inserts 12 leap days between 1850 and 1900.

Hence this is the mean longitude for 1900 Jan. 0'5. The mean longitude
for 1900 Jan. (Gr. mean noon) is therefore L' - P^/365'25 = 18h 38m 45 8'845

and must be increased by 74M55 at the daily rate 2368>555 in order to

become 18h 40m. This requires 0'3135 mean days, and the beginning of

the tropical year in 1900 is therefore Jan. 0'3135, the fraction of a mean day

being reckoned from Greenwich mean noon. This epoch is recorded briefly

as 1900'0. It is to the mean equinox of this date that the observations of

the year are reduced in the first instance.

273. Such in outline are the main features in the astronomical methods

of reckoning time. They involve certain constants which, being based on

the comparison of theory with observations, are capable of improvement.
But there is no absolute standard of time. Ultimately no doubt the con-

tinued comparison of theory with observation according to such a system of

time as that described above will bring to light discrepancies in the motions

of the heavenly bodies of a kind which cannot be attributed to errors of
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observation. Then the question will arise whether these discrepancies can

be removed by a mere adjustment of an accepted system of constants in-

volved in the measure of time or whether the fault lies in the theory. This

is the ordinary experience of practical astronomy. It may, however, prove
that what have been regarded as constants are not really constant at all.

Thus to, the rate of rotation of the Earth on its axis, may vary owing to such

causes as the secular cooling of the Earth and the effect of tidal friction.

There is, indeed, reason to think that this is so. But ultimately it is only

possible to adopt such a system of measuring time as will reconcile all

celestial phenomena as far as may be with the simplest possible body of

laws. In the meantime to deal with discrepancies as they arise is among
the most critical problems of technical astronomy.



CHAPTER XXIII

LIBRATION OF THE MOON

274. The form of solution found suitable in discussing the rotation of

the Earth depends on special circumstances and is by no means general.

The Moon's rotation similarly presents quite special features which require

very different treatment. This movement is governed to a high degree of

approximation by Cassini's laws :

(1) The Moon rotates uniformly about an axis which is fixed with

respect to the Moon itself. The period of this rotation is identical with the

sidereal period of the Moon in its orbit, namely 27*321661 days.

(2) The pole of the lunar rotation z makes a constant angle (1 35')

with the pole of the ecliptic Z, which may here be regarded as a fixed point

on the celestial sphere.

(3) In consequence of the nearly uniform regression of the lunar node

on the plane of the ecliptic and the nearly constant inclination of the lunar

orbit (5 9'), the pole of the Moon's orbit P is known to describe a small

circle about Z in a period of 18| years. The arc of a great circle zP contains

also the pole Z. In other words, the planes of the lunar orbit and the lunar

equator intersect on the ecliptic, the latter plane being intermediate between

the two former.

These laws were discovered by observation "and they are so exact that

later work with more refined instruments has failed hitherto to determine

any divergences from them with a satisfactory degree of certainty. They
define as it were a steady state of motion, and it is necessary to inquire
under what conditions such a state is possible, and to what oscillations it is

subject according to theory.

275. The first of the above laws corresponds with the well-known fact

that the Moon always presents the same face to the Earth, or more truly

that a large fraction of its surface (nearly f) is always concealed from obser-

vation. In order that exactly the same face should be seen at all times

three further conditions would be necessary and the failure of these conditions

gives rise to three distinct components of what is called the apparent or
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optical libration of the Moon. These conditions and the corresponding
effects of their departure from the facts are :

(1) The motion of the Moon in its orbit about the Earth must be

uniform. But owing to the equation of the centre and periodic perturbations

the actual place of the Moon may differ from its mean place by as much as

8. Hence an oscillation in the central meridian, which is known as the

libration in longitude.

(2) The axis of the Moon must be normal to the plane of its orbit.

Actually the angle which it makes with the normal to the orbit is

1 35' + 5 9' = 6 44'.

The monthly effect of this is called the libration in latitude.

(3) The point of observation must be the centre of the Earth. Owing
to the position of the observer on the Earth's surface, which varies with the

rotation of the Earth, there is a parallactic effect which is called the diurnal

libration.

These three effects which together constitute the optical libration of the

Moon are purely geometrical consequences of the known conditions, and

entirely independent of the dynamical libration which is now to be examined.

276. When the rotation of the Moon is in question the action of the

Earth as a disturbing body is clearly preponderant and the action of the

Sun is neglected. Let be the centre of gravity of the Moon, OXYZ a set

of ecliptic axes, fixed in space, and Oxyz a set fixed in the rotating body and

coinciding with the principal axes of the Moon, the corresponding moments

of inertia being A, B, G. Now since the axis of rotation is nearly or quite

fixed in the body it must practically coincide with a principal axis
;
for a

permanent axis in any other position would require a constraint which is

obviously absent in this case. This principal axis will be identified with Oz.

As in | 255 the two sets of axes are connected by the angles 6, <j>
and ty, and

= ZOz being always of the order 1'6, its square may be neglected. The

relations between the coordinates are then given by the scheme :

X Y Z
x cos < + ir sin <) -f )

cos *f

y sin (< + -^) cos
(</> + ^) sin

z 6 cos
(f>

sin
(/>

1

and Euler's geometrical equations become

&>!
= sin

-vjr <j>0
cos ^r

&>2
= 6 cos ^ + <j)6

sin
ojr
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The dynamical equations are again of the form

J.G)! (B C) 0)2 Q)3
= L

Bd)z (C A) 0)3(1)!
= M

Ca)3 (A B) wl &)2
= N

where ( 257)

L = 3Gm(C-B)yz/r\ M= 3Gm(A - C) xz\r\ N = 3Gm (B - A)xyjr*

m being the mass of the Earth, (x, y, z) its coordinates and r its distance

from the Moon. Let (X, F, Z) be the ecliptic coordinates of the Earth

relative to the Moon. The inclination of the Moon's orbit, c = 5 9', is so

small that c2 will be neglected. Then (cf. 65)

X = r cos (! + to + w), Y = r sin (O + to + w), Z = re sin (a) + w)

where 1 is the longitude of the Moon's node, (fi + CD) the longitude of the

Moon's perigee, and w the Moon's true anomaly. But

\= fi + o + w

is the longitude of the Moon in its orbit. Hence, by the above relations

between the two sets of coordinates,

x = r cos (X, <j) -v/r), y = r sin (X <
T/T)

- z = rd cos (\-<f>) + re sin (X
- Q)

the product cd being neglected in x and y. Let

C-B = Aa, A-C = B/3, B - A = Cr
Then the dynamical equations of motion become

a + ao)2 &>3
= 3Gmar~3 sin (A,

-
<f> ^r) [6 cos (X <) + c sin (A, ft)h

3Gmj3r-
3 cos (\-(f>-^){0 cos (X

-
<f>) + c sin (X

-
H)} I . ..(1)

f6rm7r
3 sin 2 (X (f>

-
-^) }

As the figure of the Moon is to all appearance sensibly spherical, a, /3 and 7
must be fairly small quantities. And since, further, the instantaneous axis

is nearly fixed in the body and very close to the axis of z, wl and <u2 must be

very small in comparison with oo3 .

277. It follows that in the last equation the term 70)1 o>2 can be neglected.
Hence this equation becomes, in view of the third geometrical equation,

$ + ^ = 3Gmyr-3

sin2(\-<f>-^) (2)

The Moon's mean longitude is n't + e, where ri is the Moon's mean motion

and e is a constant. The Earth's mean longitude, as seen from the Moon, is

therefore TT + n't + e. But according to Cassini's first law,

&>3
=

(j>
+ ty

= n'

or

n't + const.
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the constant depending on the choice of a fixed meridian on the Moon's

surface. Let it be so chosen that the latter expression is equal to the

Earth's mean longitude. The corresponding meridian is called the first

lunar meridian. In order now to allow for a possible inequality in the

Moon's rotation an angle % is introduced such that

This angle represents an oscillation in the position of the first meridian.

According to Cassini's laws % = and observation proves that ^ is certainly

very small. The equation (2) now becomes

X = -%Gmyr-
5

sm2(x + \-rit-e) .................. (4)

It is clear that the conditions of stability are only complicated by the

inequalities in the motion of the Moon. Therefore we substitute for the

moment a uniform circular orbit with mean distance a, so that X = n't + e,

r = a' and

% = f Gmya'~
3 sin 2^

= -fn/2

7 (l-t-/)-
1 sin2

A; ..................... (5)

where/ is the ratio of the mass of the Moon to the mass of the Earth
;
since

by Kepler's third law

m(l+/) = n'2 a'3 ...........................(6)

But the equation of motion of a simple pendulum of length I and inclined to

the vertical at an angle 6 is

= -
gl-i sin 6

which can be identified with (5) by taking x= %& and 3/i
/2

7(l +f)-* = gl~\

Both equations can of course be solved generally in elliptic integrals. But

it is enough to notice the physical fact that the pendulum is capable of

small vibrations provided 9 is small initially and g is positive. Similarly ^
if initially small will remain small provided 7 is positive, i.e. B > A. Now, if

the inclination of the lunar equator to the lunar orbit be neglected, (<f> + i/r)

measures the displacement of the axis of x from the equinox from which the

longitudes are reckoned. Under these simplified conditions the first meridian

contains the axis of x and always coincides with the central meridian of the

apparent disc. The axis of x is therefore directed approximately towards

the Earth and this defines the axis about which the moment A is less than

the moment B. This is the first condition of stability. It is also to be

inferred that A=B. For if A = B, % = and a small disturbance would

introduce a secular term in % which observation shows to be absent.

278. If 7'
= 7(1 +/)"

1 the more general equation (4) for ^ becomes

% = |n'
2

7' (a!jrf sin 2 (% + X n't e).

Now (\ n't e) is of the order of the eccentricity of the lunar orbit

(055). % is still smaller and a /r differs from 1 also by a quantity of the
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order of the eccentricity. Hence if the square of the eccentricity be

neglected,
X - n't - e)

X + 3wV% = -3V2# sin (fa + h')

where the terms under 2 represent the equation of the centre and periodic

inequalities of the lunar motion. This is the ordinary equation for forced

vibrations and the solution may be written in the form % = %i + %2 where ^
is a particular solution, corresponding to the forced vibrations, and %2 is the

complementary function, corresponding to an arbitrary free vibration. It is

easily verified that
TT

* = 3ri/V:SA-3V Sin (kt + k/)

and

where K, k' are arbitrary. Terms in ^ can only become sensible by reason

of H large or h small, and the most promising terms in the lunar theory are

consequently the equation of the centre (or principal elliptic term) :

'ht+h' = fflt
#= + 22639"-l, /* = 47033"-97

and the annual equation :

ht + h' = 0, H = - 668"-9, h = 3548"-! 6

where gl
is the Moon's mean anomaly, is the Sun's mean anemaly, and

the unit of time is the mean solar day, so that n' = 47435"'03. The corre-

sponding terms in %j are

377' 11'15

It is easily seen that, 7' being certainly very small, it is the second of these

terms which is the larger. But the determination of its coefficient from

observation has not yet been made with satisfactory certainty. Since the

Earth's distance is about 220 times the Moon's radius a geocentric angle
of 1" is the equivalent of 4' in selenographic arc near the centre of the lunar

disc. As the quantities to be looked for are likely to be of this order, or

rather still less, and the observations are very difficult, positive results must

be awaited from the study of the large-scale photographs of the Moon which

are now available. According to Franz, using the heliometer observations of

Schliiter, the coefficient of sin is about 2', giving 7 of the order O'OOOS,

and the arbitrary libration K, which should have a period of rather more

than 2 years, is practically negligible.

279. Since, by (3), &)3 + % = n where ^ may now be supposed very small,

the first two dynamical equations may be written

Wi + n/

a>a =L/A\
)
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Now let

f = 6 cos ty, 77
= 6 sin

i/r

so that

|
= cos ^r + <j>0 sin

T/T
-

(<j> + $) sin
xjr
= o>2

-

?}
= sin

i/r <j>0 cos ty + (<f> + $) cos
\/r
=

&>! + &>3fJ

Again &>3 may be replaced by ri, being multiplied by and 77
which are

small. Hence (8) become

77
-

(1
-

a) w'| + aw/2

77 =L/A

Expressions for Z/-4, M/B have been given in (1), and if /= 1/81 be

neglected in (6) these are

3cm/2

(a'/r)
8 sin (X

-
<
-

i/r) {0 cos (X
- <) + c sin (\ - fl)}

3y3n
/2

(a'/r)
2 cos (X

-
</>

-
i/r) {0 cos (X -</>) + c sin (X

-
H)}

and as they are already of the order or c multiplied by a or /3, the other

quantities involved are only required to the first order in e, the eccentricity

of the orbit. Now g1 being the mean anomaly, by Ch. IV (9) and (30) or

in a more simple way

a' /r =1 + ecosgly w g}
= 2esing1

where

<h
= n't + e BT, w = X or

w being the true anomaly and -cr the longitude of perigee. Also % is in-

significant here, so that by (3)

(j)
+ -^r

= Tr + nt + e=g1 + 'Gr + TT .....................(10)
Hence

X <
i/r
= w gl TT = 2e sin gl TT

sin (X - <f>

-
yjr)

= - 2e sin gl ,
cos (\

-
^>
- ^) = - 1

(a'/r)
3 sin (X

-
<f>

- ^) = - 2e sin
ffl }

r ............... (.*' I

(a'/r)
3 cos (X

-
</>

- ^) = - 1 - 3e cos^ J

Again,
cos (X

- <) = - cos (i/r + 2e sin^rj
= - cos

i/r -f 2e sin^ sin
i/r

0cos(\-<j)} = -0 cos
i/r + e0cos(g l

- ^) - e^cos (#, + ^) ...(12)

and finally
X tl = w + nr 1 = g1 +vr l + 2e sin gl

sin(\-fl) = sm(gl + ia ~n) + 2esing1 cos(g1 + rff - O)

c sin (X
-

fi)
= c sin^ + r li)

+ ce sin (2^ + r - H) - ce sin (w - ft) ............ (13)

It is now necessary to introduce (11), (12) and (13) into L/A, M/B, to

reject terms of the third order in e, c and 0, arid to resolve the products



...(14)
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of circular functions which occur into single functions. The result of this

simple reduction gives

L/A = 3cm'2

{
e6 sin (gl + ^) + ed sin (gl

-^ ec cos (r - O)

+ ec cos (2gl + -57 ft)}

Jlf/^
=

.S/3?i'
2

{fed cos ((ft -f \lr) + \eQ cos (^ ty) \ec sin (-CT II)

fee sin (2gl + & -
ft) c sin (^ + ^ H) + cos -^

The last term in M/B is 3/3n
/2

f, which may be transferred immediately to

the other side of the corresponding dynamical equation. This leaves one

term only of the first order in M/B : the remaining terms in L/A and M/B
are entirely of the second order.

280. Let the actual dynamical equations, after transferring the term

3/3n'
2

,
be replaced by the forms

77
-

(1
-

a) n'f + cm'2
?;
= 3an/2 P' cos (pn't + q)]

} (15)
\ + (1 + ft) n'i)

- 4n'2 = 3/3n'
2 P sin

(jpre'J + q))

A particular solution is f = Q sin (pn't + q), t]
= Q' cos (jw'i + q), provided

(16)
Q (- p*

-
4/3)

-

Q Q'

oL(l+ft)pP'-ft(p
2 -a)P ft(l-a)pP-a(p* +

= 3_ = _3

... (p
2 -

)(p
2 + 40)- (1

-
a) (1 + /3)F

~
A

In this way any periodic terms on the right of the equations can be

represented by corresponding terms in and vj. But the coefficients Q, Q'

involve P, P' multiplied by the small quantities a or ft, and are therefore

extremely small unless A is also very small. Now A=j5
2

(p
2

1) when
a and ft are ignored and therefore, ceteris paribus, sensible terms can be

obtained only when p is very near to or 1.

Solutions of the same form constitute the complementary function and

are determined by (17) when P = P' = 0. Then p is given by

A =
p* -p2

(1
-

3ft
-

aft)
-

4.aft
=

2p*
= I- 3ft -aft V{(1

-
3/9

-
aft)

2 + Waft}

It is enough to retain in p the terms of the first order in a, ft, and thus

2p*
= l-3/3-a/3(I-30-a/3 + 8aft)

so that ifp1} p2 are the two roots,
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Thus the periods of the two possible terms are determined with sufficient

accuracy, the former being nearly a month, and if the corresponding co-

efficients are Q1} Q/, Q2 , Q2', then by (16) to the lowest order only

Hence a solution of (15) when is substituted on the right-hand side is

ft
= Ql sin {(1

-
f ) n't + q,} + Q2 sin {2 V(- /3) * + q2]

ril = -Ql cos {(1
-
f ) n'tf + ^} + 2 V(- /a) Q.2 cos (2 V(- ) t + q2 }

and as these expressions contain four arbitrary constants Q1} Q2 , ql , q2 they

represent the required complementary functions.

These arbitrary terms again appear to be insensible. The important

point is that a/3 must be negative, for otherwise the circular functions would

be changed into hyperbolic functions and the motion would be unstable.

This means that (6' B) (A C) is negative, or again that C is not inter-

mediate in magnitude between A and B. This is the second condition of

stability which has been found.

281. To terms of the first order only,

where, the secular inequality of the node being taken into account,

gl + iy = n't +
,
O = no

-
fjtn't, fj,

= + 0-004019.

Thus in applying (17), P' = 0, P =
c, p = 1 -I- /*, and therefore

-- V ~^c
...(18)

If a, /3 and p be regarded as small quantities of the first order and those of

the second order be neglected,

Q = -Q
/ =

3/3c/(2/i + 3
/8) ........................ (19)

so that and 77 contain the terms

These terms contain the explanation of the steady motion of the Moon's axis,

which is expressed by Cassini's laws.

For the coordinates of the Moon's pole of rotation relative to the pole of

the ecliptic may be taken as

X = 6 cos
<f>
= cos

((f) + -|r) + t] sin (<

= f sin (< + -^) 77 cos (<
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Let the free components fa , ^ be ignored and also the forced oscillations of

the second order which have still to be found. Then

X = Q sin (g, + v - n -
<$>

-
-f)

F = Q cos ( ffl + - H -
<
-

^).

But by (10)

and therefore

X = Qsmtl, F=-Qcosfl.

But the longitude of the pole of the lunar orbit is O ITT, so that its

coordinates are similarly

Z' = csinn, F' = -ccosfL

Hence these two poles are always exactly on opposite sides of the pole of

the ecliptic provided Q is negative. This requires, since Q is given by (19),

> /3 > I/A. Hence C > A, which is a third condition to be satisfied by the

moments of inertia. The resultant of the three places the moments in the

order

G>B>A
where C refers to the axis of rotation and A to that axis which in the mean

is directed towards the Earth.

It is now clear that the further conditions necessary in order that the

second and third laws of Cassini shall remain approximately true are one

and the same, namely that those terms which have been neglected in the

above argument are really small in comparison with Q. This quantity is

the mean value of 6, and its numerical value is 91''4 according to Franz.

With c = 308'-7 and /*
= 0-004019 it follows that

-/3 = (C-A)/B = 0-000612

which should be tolerably well determined. It is to be noticed that a, /3, 7
are not independent, but connected by the identity

a + @ + 7 + ot/3y
= 0.

The product is negligible and if 7 = 0*0003 as given above, then a. is of

exactly the same order as 7.

282. The terms of the second order in e, c, 6 can now be found without

difficulty, since here it is legitimate to give 6 and
i/r their values in the

steady motion. Thus 6 = ,
its constant mean value, and since in the steady

motion
<f>
= O -f ^TT,

f>jfc+-n +*.
Hence without the terms of lower order already treated, the expressions (14)

become

LJA= 3cm'2

[e (0 + c) cos (2^ + - O) - e (09 + c) cos (r -
O)j

MjB ;=
3/3<n'

2

{- \e (0 + c) sin (2^ + *r - fl)
-

\ e (0 + c) sin (BT
-

fl)}.



281-283] Libration of the Moon 321

The corresponding terms in |, rj can be found in the way explained in 280.

But since TO and O change slowly p is nearly 2 in the case of the terms which

contain 2gl in the argument. Their counterpart in
, rj

is therefore negligible.

With the other pair p is very small. The secular changes in the node and

perigee may be expressed by

fl = O fin't, TO = TO-O + vn't

so that p = f
i + v,and2P = P'=-e(0 + c). Hence (17) give

Q_ Q
2a (1 +j3)p-/3 (p*

-
a) 13 (1

-
a)p - 2a (p + 4)

(p*
-

a) (^ + 4/8)
-

(1
-

a) (1 +

which, when simplified by the removal of all but the most significant quantities
in the denominators, become

The terms of the second order are therefore simply

& = 3e ^~~ sin (TO
-

O), ^ =
f/3e ^--J COS(TO

-
ft) ......(21)

Now v = 0-008455, /* + i/ = 1 /80 nearly, and Q + c = 400'. Also e = 0'0549

and with the above values of a and /8, 3e = - f /8e
= 0*00005. Hence both

coefficients are numerically l'*6, and

^ = l'-6 sin
(TO-

-
fl), 7/3

= - l'-6 cos (TO
- H)

the period being 80 lunar months or 6 years.

283. When the several terms found are combined,

% = Zi + 2 + |3 , ^ = ?7i + Vz + %
and by (9)

i
=

17
~

3^ 2
= + e^.

Now with the approximate forms (20)

2
= -

n'r}.2> % = ri%2
and from (21)

i = w'(A* + ")?73, ^s=-w'(^+i')|3 .

Hence, putting < 3
= n' here and neglecting the arbitrary terms 1,171, the

existence of which has not been established by observation,

co, In'
= -

(1 + ^ + i,) ,, o)a /n'
=

(1 + /i + v) -t)3

and (/i + v) is relatively unimportant here.

One remark is necessary however. For the sake of simplicity and in order

to concentrate attention on the main feature of the motion, the coefficients

of 2 and ?72 in (20) were made numerically equal by the simple expedient

of neglecting /i
2

(= O'OOOOIG) in comparison with
p,. Consistently with this

p. D. A. 21
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the factor (1 + /i) has been omitted in finding |2 , rj2 ,
and the result is that

2, "n-1
do not appear in a)ls o>2 . This factor can only be reinstated correctly

after /*
2 has been restored in 2 , % Now by (18) a , ^ are of the form

'

&={(!+/*)- a} G sin 0, 7?2
= -(l-a)

where g = ^ + OT O. Hence

^2 /n'
=

(1 + /*)* (1
-

a) G sin
gr

and the contributions to G>I} o>2 are given by

= - a (2/z, + /*
2

) Cr sin #

The factor a shows that A&?j is very small and if ^ as well as a be now

rejected,

AtWj/w' = 0, Aa>2 /n'
=

2/i?;2 .

Hence in a numerical form the forced rotations are finally given by

atjn' = - fs
= - l'-6 sin (tsr

-
ft)

og/n'
=

17,
-

2/i?;2
= - l'-6 cos (r - O) - 0'7 cos (^ + w - H)

since G = - 91 ''4 and /*
= 0'004.

With the more exact expressions the coefficient in 2 is numerically

greater than that in r)2 ,
the difference being p (1 + //. + a) 6r or

yu,6r. This

amount, 22", may be divided equally between the two coefficients without

disturbing the observed mean inclination of the lunar equator to the lunar

orbit, and thus

fa
= - 91'-6 sin (gl + <& - H), ^ = 91''2 cos (g 1 + or - H).

Lastly, by (7), if ^2 the free libration in longitude be ignored,

Oil 0-000242
"I* = ~*n

-^o-sa^/' 7 cos ^1 +
o-ooi865-y 7 cos0

where the coefficients are expressed in circular measure. Thus the position

of the instantaneous axis, relative to the principal axes of the Moon,

is determined. It has therefore been seen under what conditions Cassini's

laws are approximately true, and how far they must necessarily be modified

by disturbing actions.

The latest results from observation, by M. Puiseux of Paris, seem to be

at variance with the foregoing theory. It is probable that it will be necessary

to treat the Moon as a deformable body, as the observed variations of latitude

have shown to be requisite in the case of the Earth. The above theory is

very largely due to Poisson.



CHAPTER XXIV
Vo . "b

FORMULAE OF NUMERICAL CALCULATION

284. If we consider a function of one variable or argument only, for the

sake of definiteness, it can be represented in three distinct ways, namely :

(1) By an analytical form, e.g. sin a; or a hypergeometric series F
(or, /3, 7, x).

The effectiveness of such a form depends on the knowledge of its properties
and the facility with which it submits to the ordinary operations of mathe-

matics.

(2) Graphically, by a curve. This gives a continuous representation.

Values of the function corresponding to particular values of the argument
can be obtained and the processes of differentiation and integration can be

performed mechanically. But the accuracy of the results is limited in

practice.

(3) Numerically, by a series of isolated values. This gives a discon-

tinuous representation, but one capable of very great accuracy. In theory
this does not serve to define the function, for it may vary in any manner

between the given values. Even in practice the representation does not

cover terms -in the function with a period of the same order as the .intervals

between the values. But with due care this limitation causes little in-,

convenience.

Each mode of representation has distinct advantages of its own and to

pass from one to another is a problem frequently arising and often attended

by great difficulty. The form (1) may be considered the ultimate expression
of natural truth, but it has no absolute superiority. Thus integration may
be practically impossible in this form and must be replaced by a mechanical

quadrature.

A function determined by a series of observations or experiments falls

generally under the form (3). Now the variable quantities which occur in

Astronomy, e.g. the coordinates of the Moon, are in general so complicated,

even when an expression in analytical form is available, that for practical

purposes it is necessary to use an ephemeris, or a table of values calculated

for equal intervals of time (not necessarily one day, as the name would

imply).
*
It is therefore necessary to consider how functions represented in

212
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this way may be manipulated so as to give intermediate values by inter-

polation for comparison with the results of observation, and also to render

numerical differentiation and integration possible.

285. Let w be the constant interval of the argument and yn =f(a + nw)
be the function to be considered, the values of yn being given for consecutive

integral values of n. A simple difference table can be formed thus :

a + (nl)w 2/n_j

yn
-
yn-i

a + nw yn yn+\
-

fyn + yn-i

y*+i
-
yn .

a + (n + l)w yn+i

Now let two operators A, S be introduced such that

Ayn = yn+1 yn , 8yn = yn yn-i

Then it follows that

ASyn = A (yn
-
yn^) = yn+1

-
2yn + yn-i = S (yn+l

-
yn) = SAyn .

Hence the operators A, S are commutative, and similarly it is easily seen

that they obey all the laws of ordinary algebra. The inverse operators

A- 1

, S-1

may be defined so that AA"1 = 1, SS"1 = 1. Then the table of

differences may be replaced by a table of operations which, acting on yn ,
will

reproduce the difference table, thus :

1 AS
A

AS- 1 A2

The two operators are not independent, for the position of AS in this table

shows that they are connected by the homographic relation

AS = A-S, S = A(1 + A)-
1

,
A = S(1-S)-

1

(1)

Let x be the variable, so that y =/(#), and let D = dfdx. Then

=/(#) + wf (x) + i^
2

/" (*') +

= e
D
.f(x) (2)

or 1 + A = e
wD

. Hence

=f(x) + qwf (x) + \(fitff" (as)+ ...

Thus

f(x + qw) =
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which is Newton's original formula of interpolation and can be written in

the form :

where
j q \ by a proper choice of n may always be taken < \, and in any case

should not exceed 1. The coefficients are simple binomial coefficients.

286. The differences A, A 2
,... are diagonal differences in the table.

But the most useful formulae involve central differences, lying on or adjacent

to a horizontal line in the table. If the blank spaces in the odd columns are

filled by the arithmetic means of the entries immediately above and below,

the operators in the complete central line are

1 i(A + S) AS (4.+S)AS (A8)
2

which can also be written, by introducing two new operators K, k,

1 k K kK K*
where

(4)

Thus k cannot be expressed rationally in terms of K] and in order to find a

formula in terms of central differences it is necessary to expand in terms

of K, keeping only the first power of k. Thus

(l+&) = (l+k + $K)v = kuq + v
q (5)

where

.^=(1+W +
(|)(1

+ |

It is easily verified that

+ vq
= uq+1 ,

u
q (K + I.ST

2
) 4- Vq (1 + \K) = vq+l

since

Also
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It is therefore possible to write

v
q
= 1 + qSbrK

r
,

u
q
= q -f- 22 (r + 1) br+1Kr

.

Let br become &/ in vq+1 ,
uq+1 ,

and equate the coefficients of Kr~l in the first,

and of Kr in the second, recurrence formula. Thus

2rbr
' = 2rbr + (r 1) 6.r_j + qb.r^

(q + l)br

' = 2rbr + $ (r
-

1) br_, + qbr

and, on eliminating br',

2r (2r 1) br = (q + r 1) (q r +

This shows that
'

/ _ (q+r \\ A
r=

( 2r-l J2r

where A is a constant, and since 6j
=

\q, A = 1. Hence

and the first terms of the complete formula are therefore

q . k^. K +^. kK + ^--

This series was found by Newton, but is generally known as Stirling's formula.

It is here taken as fundamental, and other results are deduced from it.

287. The formula of Gauss depends on the even central differences and

the odd differences of the line below, the operators being therefore

1 K K*

A &K
These are, in terms of k, K,

1, k + $K, K, (k + $K)K, K\ ....

But (5) may be written in the form

where by (6)
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This gives the coefficients of the even central differences, the coefficients of

the odd differences of the adjacent line being still given by u
q

. The first

terms of the complete formula are therefore

5!

If the order of the difference table were reversed, 8 would take the place of

A and the sign of w would be changed. Hence similarly

By choosing either (9) or (10) q can always be taken between and + \.

288. The formula of Bessel contains the odd differences in the line

immediately below the central function, with the mean even differences

of the same line, so that the operators are

1+iA, A, .(H-iA)lT, &K, (1 + ^A)^2
, .....

The odd differences are thus the same as in the formula of Gauss, and

therefore

(1 + A)? = AM? + Vq = (1 + A) Vq + A (uq
- $Vq)

where, by (6) and (8),

This gives the coefficients of the odd differences, and the coefficients of

the even (mean) differences are given by Vq
. Hence the first terms of the

complete formula are

j

Bessel's own form differs from this in the first two terms, being written
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which is of course equivalent, but is not symmetrical with respect to the

middle of the tabular interval. To make this symmetry clearer, let p + ^ be

substituted for q in (12), which then becomes

yn+.+p
=

(1 + 1A) +p . A + . (1 + iA) K +p .
--*

. &K

+fe^l^
When the sign of p is reversed, the terms of even order are unchanged and

the terms of odd order are simply reversed in sign. If terms of the two

orders are computed separately, two interpolations corresponding to + p
are obtained at the same time. This is of great advantage in systematic

interpolation to regular fractions of the tabular interval, e.g. in reducing the

12-hourly places of the Moon to an hourly ephemeris. Stirling's formula

presents a similar advantage. But (13) becomes particularly simple at the

middle of an interval, for then q = | or p = 0, and the odd differences dis-

appear. Thus

-T*+...}yn .........(14)

and this gives intermediate values with great ease and accuracy.

289. When the values of a function y are known only at irregular

intervals of the argument x, as in an ordinary series of observations, the

function is strictly indeterminate in the absence of other information as to

its form. Nevertheless, when n values ylt ..., yn are known, corresponding
to a?!, ...,#, a formula

y = a + a,x + . . . -f an_, xn~*

can be found which is satisfied by the n values and within the interval

#! to xn will generally resemble the true function closely. The n coefficients

can be determined by the linear equations

yr
= aQ + a^r -}-... + an_i xr

n~l

(r = 1, . . .
,
n

).
These can be solved in the ordinary way, but it is immediately

obvious that the result can be written

(

where the numerator of the fraction written does not contain (x xr). For

this equation becomes an identity when xr , yr are substituted for x, y. The

.expression on the right is a polynomial of degree n 1 in a; and the equation,

since it is satisfied by every pair (xr , yr), must be identical with the previous

equation, the coefficients in which can be written down by comparison. The
formula (15) is due to Lagrange and is directly suitable for interpolation,
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differentiation and integration. An illustration of its use in a case where

n = 3 has been given in 71. When n is large the formula naturally be-

comes inconvenient for practical purposes.

290. Returning to the function with known values at regular intervals

of the argument, let us consider the process of mechanical differentiation.

By (2)

wD =log(l+A) = A--|A
2 + iA 3 -...

)

=
(log(l + A)}

2 = A 2 - A 3 + {.VA
4
-.../"

These formulae are suitable only in simple cases where great accuracy is not

required. The loss of accuracy is a natural tendency when differentiation is

concerned. The forms (16) also apply only to the tabulated value of the

argument. But since

x = a + (n 4- q) w, wD = wd/dx = dfdq

a formula of differentiation can be derived from every formula of interpolation.

Thus Bessel's formula (12) gives

wy'n+q
=

(A
(

and analogous forms may be derived similarly by differentiating (7) and (9)

with respect to q.

But there are some particular cases of special simplicity and importance
in the formulae of central differences. According lo (6) u

q
is an odd function

and v
q
an even function of q.

Now when q
=

0, d/dq is the coefficient of q

and d2

ldq
z

-is twice the coefficient of (f in kuq + vq . These coefficients can

easily be taken from ku
q
and vq respectively, and give, by (6) or (7),

wyn
' =

(k
-

and

.(18)

.(19)

Both (18) and (19) involve the alternate differences in the central tabular

line.

Similarly when V
q , Uq

are expressed in terms of p - q + 1 instead of q as

in (8) and (11), V
q

is an even function and Uq is an odd function of p.

When q
= ^,p = Q and d/dq is the coefficient of p and d2

/dq
2

is twice the
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coefficient ofp* in (1 + ^A) Vq + A?7
7

. These coefficients can readily be taken

from (13), which sufficiently indicates the law of formation, and thus

...(20)

(
1 1 1

and

The distinction between the operators (1 + A)
4 and (1 + ^A) must be

carefully noted. That on the left, (1 + A)*, indicates an addition of half the

tabular interval to the argument, so as to apply the differentiation at the

right point, which is the middle of the interval. That on the right, (1 + A),

merely denotes the mean of adjacent differences in a vertical column of the

difference table.

291. Convenient methods for mechanical integration or quadrature can

now be deduced. The formulae for differentiation just found, (18), (19), (20),

(21), are of the form

wD = kS, (K), w*Dz = S2 (K)

wD (1 + A)
4 = AS3 (K), w*D* (1 + A)

4 =
(1 + A) S4 (K)

S (K) denoting a power series in K. Hence

k-^/8, (K), w~* D-* = 1 /& (K)

The coefficients of the reciprocals of the K series must be expressed more

appropriately, thus :

jfc-i = k/k*
= k(K+ i^2

)-
1 = kK-*j(l + \K}

(1 + A) A-1 = S-1 = A/f-1

(1 + A) (1 + IA)-
1 = (1 + A) {1 + |A

2
(1 + A)-

1

}-
1 -

(1 4- *A) (1 + \ AS)-
1

It is therefore necessary to multiply S1 and >S
Y

4 by (1 + \K) before finding the

reciprocals of the series by division in order to have results for D~l
,
D~2 of
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exactly the same form as those already found for D, D1
. These results are

easily found to be

: (22)

(23)

-) (24)

*
+...)...(25)

The development is here carried as far as differences of the fifth order.

This is generally sufficient.

It is now necessary to examine the meaning of these purely formal

results. The operator K, like its components A, B, is such that KK~l = 1,

and therefore, as K represents a move two places to the right in the table,

K~l

represents a move two places to the left. The difference table now

requires an extension not hitherto contemplated, and the central line of the

table of operators, with the adjacent lines above and below, now becomes :

B BK SK* ...

[k] K [kK] K 2

[kK
3

]...

A f(l

Here 1 corresponds to the original entry yn in the table. The natural

differences as directly formed are expressed simply, while those which are

means of the entries immediately above and below are enclosed by [ ].

But while the symbols occurring in the columns to the right of the central

column (representing the function itself) will be readily understood, the

construction of the columns to the left must now be explained. The numbers

in the first column to the left are such that their differences appear in the

central column. Thus

-' - 8K-1

) yn = yn ,
A^-1

yn = yn + BK^ yn

and when one number in this column is fixed, the rest are formed by

adding successively (when proceeding downwards) the tabulated values of

the function. The entries in this column therefore contain an additive

arbitrary constant. The second column to the left is related to this first

column in exactly the same way as the first column to the central column,

and therefore contains another arbitrary constant, but is otherwise definite.

The use of four different operators in the table may seem excessive, since

they are all expressible in terms of one. In fact

A" = 4 sinh2

and this suggests another mode of development which has here been de-

liberately avoided. But all these operators have simple special meanings
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and it is important to notice that kS~* and (1 + A) are equivalent, but quite
distinct from AAr 1

, though in the complete table, in which the mean differ-

ences are filled in, they all three denote one vertical step downwards.

292. As with A"1 and the other operators, D~l
is such that DD~l = 1, or

D, D~l

represent inverse operations. And since D represents differentiation,

D~l

represents integration. Thus take the formula (24). The column A&"1

being formed with an arbitrary constant, the right-hand side of the equation,

operating on yn ,
will produce a function (represented in tabular form) which

is wr1 D~ l

(1 + A)* yn = w~l D~ l

yn + ^.
On the application of D or differentia-

tion, this becomes w~1

yn+ i. Hence the meaning of the formula is

r
where ra is written for n -f |. The lower limit is arbitrary. But the right-

hand side also contains an arbitrary constant, and this constant can now be

chosen so as to fix the lower limit of integration. For let this limit be

a + \w. If then m =
\, n = in (26)

^' 2

----)2/o ......(27)

and the value of A-fiT"
1

. ?/ is now determined. With it the whole of the

corresponding column can be definitely calculated by successive additions of

the values of the function. When this is done, (26) represents the definite

integral of y between the limits a + \w and a 4- (n + ^) w.

Quite similarly the meaning of (22) is seen to be

ra+nw

r'J
ydx = (kK-*

where the lower limit is a when

= kZ-*-k

But the latter form is not convenient, because kK~ l

y ,
which is hereby deter-

mined, is the mean of two numbers not yet known. Now

1

y
- SK-1

y

and therefore

^-...)y .........(29)

Thus A.K"-1
.
2/

is determined, and the calculation proceeds as in the previous

case. It is to be noticed that, though (27) has been derived from (26) and

(29) from (28), (26) can be used in conjunction with (29), giving a and

a +(n + 1) w as the limits of integration, or (28) with (27), giving a + nw as

the upper limit and a + \w as the lower limit.
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293. In a similar way (23) and (25) give the second integrals, thus

............(31)

where m = n+ as before. The lower limit c of the subject of the second

integration is arbitrary. But if the first summation column, on the left of

the function y, has 'been based on (29), c = a
;

if it has been based on (27),

c = a + ^w. The lower limit b of the second integration is also arbitrary and

corresponds with the additional arbitrary constant in the second summation

column K~l
. The latter is easily determined by taking the case b = a, n =

of (30). Thus
= (K-'+&-ybs

K + v#fas K*-...)y9 ...............(32)

This gives K~l

y ,
and the whole of the second summation column becomes

determinate when the first column has been fixed. Or again, if the lower

limit b is to be a + \w, (31) gives when b = a + %w, m =
,
n = 0,

K-*y9
=

This is quite general whatever the value of c, or of &K~l

y , may be. But as

c = b usually, (27) can be used in this case, and then

K~l

y = (A (1 + A) - rffa (3 4- 2A)K + vjffa (5 + 3A) JP- ...}*.. .(34)

When the second summation column is based on (34) and the first on (27)

x = a,-ir\w is the common lower limit for the double integration. When

(29) and (32) are used in forming these columns, x = a is the common lower

limit. In either case (30) and (31) give the values of the double integrals

to the upper limits x = a + nw and x a + (n + ^) w respectively.

No attention has been given here to the limitations of the method which

are imposed by the conditions of convergence of the expansions employed.

In general the question is settled in practice by obvious considerations. But

for a critical estimate of the accuracy attainable it is clearly important.

294. There is also a trigonometrical form of interpolation, otherwise

known as harmonic analysis, which is of great importance. This is intimately
related to Fourier's series, and indeed amounts to the calculation of the

coefficients of this expansion. It will be well to recall the principal pro-

perties of the series, which may be stated thus :

The sum of the infinite series

a + 2 (an cos nx + bn sin nx)
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(n a positive integer), where

1 i~2ir J riv ^ rlir

ao
= o~ f(x)dx, an = -\ f(x)cosnxdx, bn = -\ f(x)sinnxdx

/7T Jo TJO TTJo

is /(a;) throughout the interval <x< ZTT, provided /(a?) is continuous.

At any point x in the interval where f(x) is discontinuous, the sura of

the series is 1
{f(x

-
0) +f(x + 0)}.

It is assumed that the number of finite discontinuities and the number of

maxima and minima of f(x) are finite. These conditions are more than

sufficient and are always satisfied by the empirical functions of practical

computation.

The expansion is unique in the sense that no other coefficients can make

the given series represent the same function over the stated interval so long

as n remains integral.

If the series is absolutely convergent for all real values of x it is also

uniformly convergent. Its sum has then no discontinuities and has the

same value at x = and x = 2?r.

The sum of the series is a periodic function, with the period 2?r. If f(x)
is also periodic with the same period, it coincides with the sum of the series

for all values of x, but otherwise the functions coincide only in the interval

< x < 2?r. If f(x) =/(#) =f(x + 2-jr), f(x) is represented by a Fourier

series containing cosine terms only (bn
=

0). If f(x) = /( x) =f(x + 2?r),

f(x) is represented completely by a series containing sine terms only

(a
= an = 0). Similarly an arbitrary function can be represented within

the interval to TT either by a sine series or by a cosine series when one of

the functions +/(27r x) is assigned to the interval TT to 2?r.

295. When the function is given and the term function has here an

exceptionally wide meaning the coefficients in its expression as a Fourier's

series can be calculated by a special kind of integrator, known as an Harmonic

Analyser, of which several forms have been invented. But here the equivalent
arithmetical processes will be considered.

When the function is represented by a definite number of distinct values

it is obvious that only a finite number of terms in the series can be deter-

mined, and it is necessary to assume that the practical convergency of the

series is such that the remainder after a certain point is negligible. Let the

finite series be

u = a + 2 (a,i cos iff + b; sin id}
i= l

with 2w+l corresponding pairs of values, u=ur ,
= r . From the linear

equations
ur
= Oo + 2 (aj cos i0r + bi sin i8r)
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the coefficients a
,
ait 6; can be found in the ordinary way. It is also easy to

represent the result by a formula analogous to Lagrange's formula of inter-

polation (15). But when 6r = 2?-7r/(2n + 1) the solution can be effected in a

very simple way.

It is necessary to consider the sums of two very simple series. In the

first place
*-l s-l

2 sinra = 2 {cos(r- |)a - cos (r + )a}/2 sin^a
r=0

=
(cos a cos(s |-)a}/2 sin^a

= sin \SOL sin %(s 1) a/sin a

and this is if a = 2p-7r/s. Even when p =p's, p and p' being both integers,

and therefore sin o = 0, this remains true, for every term of the series is then

zero. Similarly
*-i s-i

2 cos ra. 2 (sin (? + ) a sin (r ) a} / 2 sin ^a
r=0

=
{sin (s ) a + sin |a}/2 sin ^a

= sin ^sa cos (s 1) a/sin a

and this is also if a = 2p-jr/s, unless^ = p's. In the latter case each term of

the series is 1 and the sum is s. Thus both the series vanish for a = 2jp7r/s,

except the cosine series when a = 2joV.

296. Let u = ur be the value of the function corresponding to the value

of the argument 6 = ra. The series will not now be limited to a finite number
of terms. Then

s-l

2 ur cosjra = a 2 cosjra + 22 (a (

-

cosjra cos ira. + bt cosjra. sin ira)
r=0 r i r

= a 2 cosjra + 22j {cos (i +j) ra + cos (i j) ra}
r i r

*-l

2 ur sinjra = a 2 sin jra -f 2 2 (a (

- sin jra cos ira + 6j sinjra sin ira)
r=0 r i r

= |226t
-

(cos (i j) ra cos (i +j) ra}
i r

when a = 2?r/s, for all the sine terms vanish immediately in the sum with

respect to r. The cosine terms also vanish in the sum unless j, i+j or i j is

a multiple of s (including zero). Thus, j having in succession all values from

1 to |(a-l), or $s,

(35)
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When s equidistant values, u
, ..., us_lt (ug = w

),
are known the operations

indicated on the left are easily performed. Then, if the series converges so

rapidly that the higher coefficients can be neglected, an , a>i, 61, ... are deter-

mined, as far as a ^-1} , b^ (s
-

1}
if s is odd, and as far as a^ s , 6j g_a if s is even.

The lower coefficients will naturally be calculated much more accurately than

the higher, for there is little reason to suppose a$ 8+1 small in comparison with

aj_!. But it is well to compute the higher coefficients as a practical test of

convergence.

297. It is usually convenient to make s an even number, and indeed a

multiple of 4, so as to divide the quadrants symmetrically. Let s = 2w and

let the terms of higher order than an ,
6M_a be neglected. Then (35) become

1 2V 1 1 v jrtr 1 ^ . jr-n-a = 2, u r , a,-
= -ZMr cos- , bj

= - Zur sin- ......(36)2n r=0 n n n n

(j=l, 2, ..., n-1). Whenj = w,

so that an is determined, but not bn ;
and this is natural, for 2w coefficients in

addition to a cannot be derived from 2n values ur .

Let n j be written for j in (36). Then

an_, =
l
- "S vr cos (nr

-j
}
= 1 2 (- 1? ur cos^J n

,.=0 \ n ) n n

1 ^ / jrTT\ 1 ^ , , . . jrir
bn-j = -

2, ur sin rtr
J

)
= -- 2, ( l}

r ur sm j-
.J n \ n / n n

Hence

-j)
-

j

M + M2 cos -*- + . . . + u^,_2 cos Si.

= -
|
M + (UZ + W2n_2) COS -^ + (Ut + ?<2W_4) COS -^ + . .

fv I / v 7t

1
( J7T , 3J7T (2W- 1)771-1

n-j)
= -

S^i COS^--h W3 COS -!=--1- . . + Wgrt-j COS
71 I ft 71 11

J

COS
1^ + (M3 + Man-a) COS

-^ + ... I

W W
J

f + ^ sin^
(w3

- w ' )sm^ +
n (^

-

n n

1 f . 2?7T . 4>J7T . 2j (n 1 ) 7T= - <u2 sm - + u4 sm -^~- + ... + w2B_2 sm J

If, . 2/7T . 4?7T= -
\(U2 Uvn-z) Sin -* + (UA Urn-*) SU1 -*

(- . . .

w w n
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(j
=

l, 2, ..., n 1); and

= ~
("0 + M2 + 1*4 +

337

By this arrangement an_j, &_/ are calculated together with a/, bj
with scarcely

more trouble than
a,j, bj

alone. As a practical check on the convergence of

the series these higher harmonics should be found.

298. The arrangement can be greatly simplified in special cases. For

example, in the case s = 12, n = 6, let the data be arranged thus :

U U,,

Sums : .

Differences :

Sums:

Differences :

The equations for the coefficients are

(O; + OB-;)
= $ (V + V2 COS \J1T + Vt COS |/7T + V6 COSJTr)

(a, a6_;)
=
^ (Vj cos ^V + V3 cos ^JTT + V5 cos fJTT)

(fy + 6g_j)
= $ (M! sin ^JTT + w3 sin ^;V + ws sin |JTT)

i (6,-
- 66_j)

= i (wa sin JTT + w4 sin fJTT).

Hence two cases, according as j is even or odd :

j even j odd

TT)

H%
J (as

- a6-j)
= i (p1 cos

^ (bj + 6e_j)
= & ! sin ^

^ (bj bs j)
= ^ s2 sin ^

t
and these forms can easily be made more general.

COS TT

n sin j?r + rs sin

22
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Then, for j=2,

i (p
-
^2), | (&2 + 64)

=K cos 30

i(a,-0=.
forj=l,

65)
= i (

% (a,
-

a.)
= i g, cos 30, (6,

- bs)
= i r2 cos 30

forj = 3,

3
= i (go

-
gs),

&3
= i (n - r,)

and finally, for ^ = 0,

+p3).

The calculation of the required terms is therefore extremely simple. The

case when s= 24, n= 12, is almost equally so, but would require more space

to exhibit in detail.

299. The mode of solution for the harmonic coefficients can be con-

sidered from another point of view. Let the s equidistant values u
,
M

X ,
. . .

,
ut_l

be given as before, and let the first p harmonics including ap , bp be

required. If 2p =s 1, the number of unknowns is equal to the number of

values and the solution is unique. . If 2p < s 1, the number of equations is

in excess of the number of coefficients to be determined. The latter can

then be found by the rule of least squares, that is, so as to make the sum of

the squared residuals a minimum. The equations being of the form

/ Zirir . 2ir7r\
ur
= a +Z

{
at cos

----h bi sin-
i=l\ S S J

the quantity which is to be made a minimum is

TT *z,if ,8 / 2tnr , . 2w-7r\
)

2

U= 2, <a + 2 I a^cos ---h OjSin-- 1 ur > .

r=0 ( i=l\ S S / )

The conditions are

which, being 2p + 1 in number, determine a and the 2p coefficients. They

give in fact

^ f
/ Zinr , . 2inr\

}2 {
a

fl + 2 (a/ cos - + bi sin - wr > =
r=o ( <=A s * / j

^
J

2jr7r (
/ 2zr7T , . 2tW\

) n2 cos \a,o+ 2 I ai cos ---h bi sin- wr > =
r=0 *

i i=1 \ S S / J

"- 1
. 2?>7r f / 2inr , . 2irw\

) rt2 sin -^
i + 2 a-; cos ---f- Ov sin- I ur \

= 0.

r=o I i-i\ * s / j
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But since 2p<s-l, 0<j<p + I and 0<i<p + l, neither i nor i+j is

a multiple of s (including 0). Hence the only terms which do not vanish in

the sum with respect to r arise when ij=Q, and therefore the equations
become

*-i

sa - 2 ur =
r =

s
^

1
2JT7T . ,

s
^

1
. 2jr7T

$8dj 2, u r cos 3=0, ^sbj 2 ur sin =
r=0 s r=0 s

(j
=

1, ..., ja).
But these are identical with the earlier equations of the group

(35) when the distant harmonics are omitted. Hence the harmonics to any
order p derived by the general rule (36) from 2?i equidistant values (p < n)

are the same as would result from a least-square solution. Thus if the

function is represented by a curve and the coefficients are calculated by the

rule, a gives the best horizontal straight line, a + a^ cos 6 + 6, sin the

closest simple sine curve, and so on, in the sense denned. This important

property emphasises the independence with -which the several coefficients

are determined. Each apart from the rest is found with the greatest possible

accuracy from the data according to the principle of least squares.

300. The method can be extended to the development of a periodic

function in two variables,

F= 2 Oij sin (id +J6' + a).

For this may be written

F= a + 2 (a cos id + b{ sin id}

where a
, a^, b{ are each of the same form as F with & in the place of 6.

With any particular value of ff and 2n equidistant values of F in respect

to 6, a , di, bi can be determined according to the rule expressed by (36). Each

of these is a function of the chosen value of ff, and if the process is repeated

with 2n equidistant values of &, each coefficient can be expressed in the

form

a-j
a + S

(fltj-
cos iff + /3; sin iff)

by the same rule. When these expressions are inserted in the second form

of F, the first form is readily deduced. This method was employed by
Le Verrier in his theory of Saturn.
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