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Abstract—Data freshness, measured by Age of information
(AoI), is becoming an increasingly significant metric for data
valuation. However, most existing data trading markets ignore
the impact of such a metric. In this paper, we study a fresh
data market, where users with heterogeneous valuations for
AoI stochastically arrive over time. The platform decides data
sampling (which affects the AoI) and pricing policies (to the
users), to maximize its profit. We consider three types of pricing
policies with increasing flexibility, i.e., a uniform pricing policy, a
dual pricing policy, and a dynamic pricing policy. The joint data
sampling and pricing optimization is a non-smooth mixed integer
programming problem, which is challenging to solve. Despite
the difficulty, we derive the closed-form solutions of the optimal
data sampling policies and pricing policies for all three cases.
Our analysis yields several interesting practical insights. First,
the optimal data prices decrease in the unit sampling cost and
increase in the users’ arrival rate. Second, for all three pricing
policies, the equal-spacing data sampling policy is optimal. Third,
numerical results show that the optimal dual pricing policy
significantly outperforms the optimal uniform pricing policy.
Specifically, the optimal dual pricing policy produces up to 280%
of the profit that is achieved by the optimal uniform pricing
policy.

Index Terms—Fresh data market, age of information, data
sampling and pricing.

I. INTRODUCTION

A. Motivation and Key Questions

As data-driven technologies are becoming essential for
numerous applications, data become a new type of valuable
digital asset for trading. To facilitate data exchange, the data
trading market has recently emerged a new business paradigm
(e.g., crowdsensing data trading markets [1]–[3] and IoT data
trading markets [4], [5]). With the rapid proliferation of some
real-time applications, data freshness, measured by Age of
information (AoI), is becoming an increasingly significant
metric of data valuation [6]–[8]. Examples of real-time data
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include traffic conditions, news, sales promotion, and air
quality index.

Existing traditional data markets [1]–[5] often ignore the
freshness dimension of the data, and the design of fresh
data market requires several unique considerations. First, the
platform can acquire fresh data via random or periodic data
sampling. However, data sampling often incurs cost due to
the need of obtaining and processing data. Second, traditional
markets assume that users’ valuations of data are fixed over
time. However, in the fresh data market, users’ valuations
change with data freshness. The above considerations motivate
us to ask the following key question.

Key Question 1: How does the platform decide the data
sampling and pricing policy to maximize its profit, considering
the impact of AoI?

More specifically, we will consider three types of pricing
policies.
• Uniform pricing policy. The platform adopts a uniform

price over the whole time horizon. Many existing data
trading markets use such a pricing policy [1]–[3].

• Dual pricing policy. The platform decides a full price,
a discounted price, and an AoI threshold. The platform
charges the full price for data that are fresh enough (i.e.,
if the AoI is lower than the threshold); otherwise, the
platform charges the discounted price. The dual pricing
policy is the simplest AoI-aware pricing scheme.

• Dynamic pricing policy. The platform determines the
price as a real-time function of the ata AoI.

Considering the above three types of pricing policies, it is
natural to ask the following question.

Key Question 2: How do different pricing policies affect
the platform’s profit in fresh data markets?

B. Challenges and Key Contributions

In this paper, we study a fresh data market where a platform
provides data with different freshness to dynamically arriving
users. We propose a two-stage game model to study the
interactions between the platform and the users. In Stage I,
the platform decides the data sampling and pricing policy to
maximize its long-term profit, achieving a balance between
the revenue and the incurred sampling cost. In Stage II, each
user decides whether to purchase the data upon arrival, based
on current data price and AoI.

It is challenging to maximize the platform’s profit in such
a fresh data market. Since the platform needs to jointly op-
timize the number of updates, the corresponding sam-
pling time, and the prices, the problem is a non-smooth
mixed integer programming problem, which is hard to
solve. Despite these challenges, we are able to derive the
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analytical solutions for the optimal data sampling policy and
the optimal three pricing policies. We tackle the challenges
by analyzing an appropriate relaxed problem and proving that
the optimal solution of the relaxed problem is also optimal for
our original problem.

Our key results and contributions are summarized as fol-
lows:

• Fresh data market model. We propose a new analytical
model for the fresh data market, considering users’ het-
erogeneous valuations for AoI. To the best of our knowl-
edge, this is the first work that jointly studies platform’s
data sampling and pricing policy in the AoI literature. Our
model captures the practical scenario where the platform
can repeatedly sell the same data to dynamically arriving
users.

• Optimal data sampling policies. We derive the closed-
form optimal sampling policies for all three pricing
policies. An interesting result is that for all three pricing
policies, the optimal sampling policy is equal-spacing,
which is attractive for practical implementation. The
specific optimal numbers of updates are different under
different pricing policies.

• Optimal three data pricing policies. We derive the closed-
form solutions of three pricing policies. An important
insight is that the optimal uniform price and optimal dual
prices decrease in the unit sampling cost and increases
in the users’ arrival rate. The reason behind this counter-
intuitive result is the data freshness. As the unit sampling
cost increases or the users’ arrival rate decreases, the
platform chooses to update data less frequently and users
are less willing to pay for the stale data. Hence, the prices
decrease. For the dynamic pricing policy, the optimal data
prices are the real-time function of the AoI and change
periodically over time.

• Technical contributions. To get the optimal uniform and
dual pricing policies, we first define a proper relaxed
problem. Then we optimize the platform’s profit of the
relaxed problem, which serves as an upper bound of the
maximum profit of the original problem. After that, we
derive the optimal solution of the relaxed problem and
prove that it is also optimal for our original problem.
For the dynamic pricing policy, by utilizing the special
structures of the problem, we sequentially optimize the
data sampling and pricing policy to get the optimal
solution.

• Profit comparison among different pricing polices. We
show that the optimal dual pricing policy significantly
outperforms the optimal uniform pricing policy. Specif-
ically, the optimal dual pricing policy produces up to
280% of the profit that is achieved by the optimal uniform
pricing policy.

The rest of the paper is organized as follows. In Section
II, we review the literature. Section III introduces the system
model and problem formulation. Section IV develops the
optimal data sampling and uniform pricing policy. Section V

develops the optimal data sampling and dual pricing policy.
Section VI investigates the optimal data sampling and dynamic
pricing policy. Section VII gives the numerical results. Finally,
Section VIII concludes the paper.

II. RELATED WORK

Related works can be classified into two categories, AoI
minimization and economic issues in AoI.

AoI Minimization: Existing works along this line mainly
focus on minimizing time-average AoI under a variety of
system settings (e.g., [9]–[20]). Kaul et. al. [9] used queuing
theory to optimize the average AoI in the queuing systems. Sun
et. al. [10] proposed optimal sampling policies to minimize the
average AoI for a single-source system, which was extended
to a multiple-source system in [11]. There are some works
studying AoI-aware scheduling for information freshness in
the networks [12]–[17]. Hsu et. al. [12] and Kadota et. al.
[13] proposed scheduling policies to minimize the average
AoI in wireless broadcast networks. Lu et. al. [14] considered
the problem of scheduling real-time data traffic with hard
deadlines. Bastopcu et. al. [15] studied information freshness
in a cache updating system. Considering the energy harvesting,
Bacinoglu et. al. [18], [19] proposed optimal status sampling
schemes to minimize the average AoI. Arafa et. al. [20]
proposed optimal status update policies for energy harvesting
sensors in an online setting. However, this line of work ignores
the economic issues of controlling AoI.

Economic Issues in AoI: Most existing works study how
content platforms incentivize data sources to generate fresh
data updates (e.g., [21]–[25]). Li et. al. [21] designed efficient
reward mechanisms to incentivize mobile users to report fresh
data in time, with the goal of keeping the AoI low. Wang et. al.
[22] studied how the platform minimizes the expected AoI and
total payment to the data sources. On the other hand, in work
[23], the data sources designs the pricing schemes, and the
destination decides the sampling policies. Zhang et. al. [24]
and Wang et. al. [25] studied the information asymmetry in the
fresh data acquisition. However, this line of work focused on
how the platform acquires fresh data from sources. It remains
an open problem regarding how platform should jointly sample
fresh data and sell them to users. We will further consider
the possibility that the same copy of data can be sold to
different users over time (with different AoI values). This
further couples the decisions of the data sampling, data pricing,
and AoI in the temporal dimension.

III. SYSTEM MODEL

In this section, we first introduce the fresh data market,
including the data sampling policy and pricing policy. Then,
we formulate a two-stage Stackelberg game to study the fresh
data trading between the platform and the users.

A. Fresh Data Market

We consider a fresh data market as shown in Fig. 1, where
a platform sells data (e.g., traffic data of a particular region or
the noise data of a community) to interested users over a time
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Fig. 1. System model

horizon T = [0, T ]. Users dynamically arrive at the fresh data
market according to a Poisson Process with an arrival rate λ.
Each of the users has unit demand of the data. The platform
decides how to sample fresh data and sell them to users.

1) Data sampling policy: We study a generate-at-will up-
dating model [7], [10]. Once the platform decides to sample a
data packet, it will arrive at the platform immediately without
any delay. Let N denote the set of all natural numbers. The
platform’s sampling policy S includes the number of updates
and a sequence of sampling time, i.e., S = {s1 ≤ s2 ≤
... ≤ sK}, where K ∈ N is the total number of updates and
sk ∈ [0, T ] is the time instance when the platform receives the
k-th data update.

To facilitate the analysis, we use an equivalent way to
express the sampling policy S. We first define s0 = 0 and
sK+1 = T , such that 0 = s0 ≤ s1 ≤ s2 ≤ ... ≤ sK ≤
sK+1 = T . Given a sampling policy S with K updates, we
can divide the total time horizon [0, T ] into K+1 inter-update
periods, with the k-th period length satisfying xk = sk−sk−1.
Denote x = {x1, x2, ..., xK+1}, and a sampling policy can be
expressed as S = (K,x).

Definition 1 (Age of information [7], [10], [23]): The age
of information ∆(S, t) at time t is

∆(S, t) = t−Ht(S), (1)

where Ht(S) denotes the time stamp of the latest update
before time t, so that

Ht(S) = max
k∈N\{0}

k∑
j=1

xj , s.t.

k∑
j=1

xj ≤ t.

2) Data pricing policy: After the platform samples data, the
same data could be sold repeatedly to different dynamically
arriving users without additional cost. However, the data
freshness decreases as time goes by. The platform can choose
to price data with different freshness differently. Let p(t)
denote the data price at time t and a data pricing policy is
denoted as P , {p(t) ≥ 0,∀t ∈ T }.

We formulate the interactions between the platform and the
users as a two-stage Stackelberg Game, as shown in Fig. 2.
In Stage I, the platform decides data sampling and pricing

Stage I:

The platform decides data sampling policy 𝐾𝐾,𝒙𝒙 and price 𝑝𝑝(𝑡𝑡)

Stage II:

Each newly arrived user decides its data purchasing strategy

Fig. 2. Two-stage Stackelberg game

policy to maximize its long-term profit. In Stage II, each
user decides whether to purchase the data upon arrival. Next,
we introduce the details of the two-stage Stackelberg game
through backward induction.

B. Stage II: Users’ Data Purchasing

Users wish to get the data upon arrival instantaneously and
their valuations about data are freshness-sensitive. Users value
the freshest data most and their valuations decrease in AoI
[26]. To make the analysis tractable, we model the users’ data
valuations as a decreasing function with AoI,

vi(t) =
ϑi

∆(S, t) + 1
,

where ϑi is the coefficient. We assume that ϑi follows a
uniform distribution [0, ϑmax], where ϑmax ≤ 1 [27].

Given the data price p(t) and the AoI ∆(S, t), user i arriving
at time t decides its purchasing strategy bi(t) ∈ {0, 1} to
maximize the payoff:

b∗i (t) = argmax
bi(t)∈{0,1}

bi(t)

(
ϑi

∆(S, t) + 1
− p(t)

)
. (2)

It is easy to see that user i’s optimal data purchasing strategy
has a threshold structure. Due to the limited space, all the
proofs are provided in the online appendix [28].

Lemma 1 (Threshold-based Purchasing Strategy): Given a
data pricing policy P and current AoI ∆(S, t), user i’s optimal
data purchasing strategy is

b∗i (t) =

{
1, if ϑi ≥ p(t) (∆(S, t) + 1) ,

0, otherwise.
(3)

C. Stage I: Platform’s Data Sampling and Pricing

In Stage I, the platform needs to decide the data sampling
and pricing to maximize its long-time profit, considering
the impact on users’ data purchasing decisions in Stage II.
We consider the incomplete information scenario, where the
platform only knows the distribution of users’ valuations but
not the specific valuation of each user. By using Lemma 1, we
can show that from the platform’s perspective, the probability
that a user i arriving at time t buys the data is

Pr{b∗i (t)=1} = 1−min

{
1,
p(t)(∆(S, t) + 1)

ϑmax

}
.

The purchasing probability is non-increasing in p(t) and
AoI ∆(S, t), as users become less willing to pay due to high
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prices and lower valuations of the stale data. When users’
arrival rate is λ, the expected revenue of the platform is

R(S,P) =

∫ T

0

λp(t)Pr{b∗i (t)=1}dt. (4)

The integral term on the right-hand-side of (4) can be
written as

∑K+1
i=1 Φ(xk,P), where Φ(xk,P) is the k-th period

revenue given by

Φ(xk,P)

=

∫ sk

sk−1

λp(t)

(
1−min

{
1,
p(t)(∆(S, t) + 1)

ϑmax

})
dt.

(5)

Let KK+1 denote the set {1, 2, ...,K + 1} and c denote
the unit sampling cost. The joint data sampling and pricing
problem is formulated as

max
(K,x),P

K+1∑
i=1

Φ(xk,P)− cK (6a)

s.t.
K+1∑
k=1

xk = T, (6b)

var. xk ≥ 0, ∀k ∈ KK+1, (6c)
K ∈ N, (6d)
p(t) ≥ 0, ∀t ∈ T . (6e)

To study how different pricing policies affect the platform’s
profit in fresh data markets, we will solve Problem (6) under
three types of pricing policies. Different types of pricing
policies result in users’ different data purchasing strategies by
adjusting data prices, thereby affecting the platform’s profit.
Formally, we define three types of pricing policies as follows,
• A uniform pricing policy Puniform. The platform charges

the uniform price p, i.e., p(t) = p,∀t ∈ T .
• A dual pricing policy Pdual. The platform decides a full

price ph, a discounted price pl, and an AoI threshold
∆̄. The platform charges the full price if the AoI is
lower than the threshold, and charges the discounted price
otherwise. In others words, in a dual pricing policy, the
price at time t is

p(t) =

{
ph, if 0 ≤ ∆(S, t) ≤ ∆̄,

pl, otherwise.

• A dynamic pricing policy Pdynamic. The platform can ad-
just the data price p(t) at any time t.

IV. OPTIMAL DATA SAMPLING AND UNIFORM PRICING
POLICY

This section aims to study the simplest pricing model: the
uniform pricing policy, which uses a single price for the
whole horizon T . We first define the profit maximization
problem under the uniform pricing policy, which is difficult
to solve directly. Then we study a general relaxed uniform
pricing policy optimization problem, and show that its optimal
solution corresponds to the optimal uniform pricing policy of
our original problem.

A. Profit Maximization Under Uniform Pricing Policy

The platform will decide the data sampling policy (K,x)
and the uniform pricing policy Puniform to maximize its total
profit as follows,

max
S=(K,x),Puniform

K+1∑
k=1

Φ(xk,Puniform)− cK (7a)

s.t. (6b), (6c), (6d), (6e), (7b)

where the k-th period revenue is given by

Φ(xk,Puniform) =

∫ xk

0

λp

(
1−min

{
1,
p · (t+ 1)

ϑmax

})
dt.

Since the platform seeks to jointly optimize the num-
ber of updates, the sampling time, and the price, Problem
(7) is a mixed integer program. Furthermore, the objec-
tive function is non-smooth due to the min operation. Under
a fixed sampling policy, it is difficult to derive the closed-
form expression of the optimal uniform pricing policy to
Problem (7). However, by exploiting the special structures
and features of Problem (7), we can characterize the optimal
solutions analytically.

B. Profit Maximization Under General Uniform Pricing Policy

In this subsection, we will study a relaxed version of
Problem (7). We first generalize the uniform pricing policy
by considering a multi-period uniform pricing policy that sets
different prices for different periods. Then, we derive the
maximum profit under the proposed general policy, which
provides an upper bound of the maximum profit under the
uniform pricing policy. Finally, we will show the equivalence
relation between the derived optimal multi-period uniform
pricing policy and the optimal uniform pricing policy.

Formally, given an arbitrary sampling policy S, a multi-
period uniform pricing policy PuniRelax(S) sets the data price
pk for the k-th period, i.e.,

PuniRelax(S) , {p(t) = pk, if t ∈ [sk−1, sk],∀t ∈ T }.

Instead of directly solving problem (7), we will study the
profit maximization problem for the multi-period uniform
pricing policy as follows,

max
S=(K,x),PuniRelax(S)

K+1∑
k=1

Φ(xk,PuniRelax(S))− cK (8a)

s.t. (6b), (6c), (6d), (6e), (8b)

where the k-th period revenue is given by

Φ(xk,PuniRelax(S))

=

∫ xk

0

λpk

(
1−min

{
1,
pk · (t+ 1)

ϑmax

})
dt.

The maximum profit in Problem (8) provides an upper
bound over the maximum profit under a uniform pricing
policy. The advantage of considering the multi-period uni-
form pricing policy is as follows. When fixing the sampling
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policy, we can derive the closed-form expression of the optimal
multi-period uniform pricing policy in terms of the sampling
policy. Then, we can optimize the sampling policy to get the
analytical form of the optimal solution.

Proposition 1: The platform’s optimal sampling policy
S∗uniRelax = (K∗uniRelax,x

∗
uniRelax) and optimal multi-period uni-

form pricing policy P∗uniRelax satisfy

K∗uniRelax = argmax
K∈N

λϑmax

2

(K + 1)T

T + 2(K + 1)
− cK, (9)

x∗k,uniRelax =
T

1 +K∗uniRelax
, ∀k ∈ KK∗

uniRelax+1, (10)

p∗k =
ϑmax

T
K∗

uniRelax+1 + 2
, ∀k ∈ KK∗

uniRelax+1. (11)

An interesting insight from Proposition 1 is that the optimal
prices p∗k is the same across different periods, and hence cor-
responds to a uniform pricing policy. Further, since Problem
(8) is the relaxed version of Problem (7), while (9)-(11) is a
feasible solution to Problem (7), it is optimal to Problem (7)
as well.

C. Optimal Uniform Pricing Policy

Theorem 1: For Problem (7), the platform’s optimal sam-
pling policy is S∗unifrom = S∗uniRelax in (9)-(10) and the optimal
uniform price is p∗uniform = p∗k in (11).

Theorem 1 leads to some important insights. First, the opti-
mal uniform data price is non-increasing in the unit sampling
cost c. This is counter-intuitive, as when the marginal cost c
of data acquisition increases, we would expect the platform
to increase the data prices in order to recover the increasing
costs. However, such an intuition is derived from the traditional
data market. In our fresh data market, when the sampling cost
is high, the platform chooses to update data less frequently,
causing lower data freshness. Due to users’ freshness-sensitive
data valuations, users are less willing to pay for the stale
data, hence the platform needs to reduce the price accordingly.
Second, as users’ arrival rate λ increases, the optimal uniform
data price increases. This suggests that when facing a larger
market, the platform can raise the data price to gain more
profit, which seems to go against pricing rules for data goods.
Intuitively, the supply of data goods is unlimited due to low
costs of duplicate. Hence, the data price should have nothing
to do with the market size. However, in the fresh data market,
when facing a larger number of users, the platform can get
larger revenue and afford a larger number of updates. As a
result, the average AoI decreases, and users are willing to
pay more for the fresher data. Therefore, the platform can
raise the data price. Third, the optimal sampling policy is an
equal-spacing one, which is simple and attractive for practical
implementation.

Nevertheless, the maximum profit under the uniform pricing
policy may be relatively low due to its simplicity. This
motivates us to consider a dual pricing policy, which is the
simplest AoI-aware pricing scheme.

V. OPTIMAL DATA SAMPLING AND DUAL PRICING POLICY

In this section, we study a more sophisticated pricing policy:
the dual pricing policy. To derive the optimal data sampling
and dual pricing policy, we study a general relaxed dual pricing
policy. Then we show that the optimal general dual pricing
policy is equivalent to the optimal dual pricing policy.

A. Profit Maximization Under Dual Pricing Policy

The platform will optimize the sampling policy (K,x) and
dual pricing policy Pdual to maximize its total profit as follows,

max
S=(K,x),Pdual

K+1∑
k=1

Φ(xk,Pdual)− cK (12a)

s.t. (6b), (6c), (6d), (6e), (12b)

where

Φ(xk,Pdual) =

∫ ∆̄

0

λph

(
1−min

{
1,
ph · (t+ 1)

ϑmax

})
dt

+

∫ xk

∆̄

λpl

(
1−min

{
1,
pl · (t+ 1)

ϑmax

})
dt.

Similar to the profit maximization problem under the uni-
form pricing policy, we cannot solve Problem (12) explicitly.
Furthermore, unlike the uniform pricing policy, the joint
optimization of the full price ph, the discounted price pl, and
the AoI threshold ∆̄ makes it more hard to analyze the non-
smooth objective function.

B. Profit Maximization Under General Dual Pricing Policy

In this subsection, we first define a general dual pricing pol-
icy, which is a multi-period dual pricing policy. The platform
can use different dual pricing policies during different periods.
Then we will study the profit maximization under the general
dual pricing policy.

Given an arbitrary sampling policy S, a multi-period dual
pricing policy is denoted by PdualRelax(S), where the price

p(t) =

{
ph,k, if 0 ≤ ∆(S, t) ≤ ∆̄k, t ∈ [sk−1, sk],

pl,k, if ∆̄k < ∆(S, t) ≤ xk, t ∈ [sk−1, sk].

Instead of directly solving Problem (12), we will study profit
maximization problem under the multi-period dual pricing
policy as follows,

max
S=(K,x),PdualRelax(S)

K+1∑
k=1

Φ(xk,PdualRelax(S))− cK (13a)

s.t. (6b), (6c), (6d), (6e). (13b)

The optimal solution of Problem (12) is a special case of the
multi-period dual pricing policy. Hence, the maximum profit
in Problem (13) provides an upper bound over the maximum
profit in Problem (12). Next, we will optimize Problem (13)
to get the upper bound. Similarly, we find that the optimal
multi-period dual pricing policy also establishes a feasible dual
pricing policy. Since Problem (13) is the relaxed version of
Problem (12), we can get the optimal solution for Problem
(12).
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C. Optimal Dual Pricing Policy

Before presenting the following theorem, we first define a
function

G(xk) =
λϑmaxxk

√
xk + 1

(
√
xk + 1 + 1)(

√
xk + 1 + 1 + xk)

.

Theorem 2: The platform’s optimal sampling policy S∗dual =
(K∗dual,x

∗
dual) and optimal dual pricing policy P∗dual satisfy

K∗dual = argmax
K ∈ N

∑K+1
k=1 G

(
T

K+1

)
− cK, (14)

x∗dual,k = x∗dual =
T

K∗dual + 1
,∀k ∈ KK∗

dual+1, (15)

p∗h =
ϑmax

∆̄ + 2
, p∗l =

ϑmax

x∗dual + ∆̄ + 2
, (16)

∆̄ =
√
x∗dual + 1− 1. (17)

Theorem 2 reveals some important insights. The optimal full
price p∗h and the optimal discounted price p∗l decrease in the
unit sampling cost and increase in the users’ arrival rate. This
insight is similar as that from Theorem 1. A new observation
here is that the ratio ∆̄/xdual = (

√
x∗dual + 1 − 1)/xdual also

decreases in the unit sampling cost and increase in the users’
arrival rate. This means that the platform is more likely to sell
fresh data at the discounted price, when facing a higher unit
sampling cost or a smaller users’ arrival rate.

Although a dual pricing policy can provide price discounts
for users, the data prices are limited to two scalars. This
motivates us to consider a dynamic pricing policy, where the
platform can arbitrarily change data prices at each time.

VI. OPTIMAL DATA SAMPLING AND DYNAMIC PRICING
POLICY

In this section, we aim to study the optimal data sampling
and the most flexible dynamic pricing policy.

The platform optimizes the sampling policy S = (K,x) and
dynamic pricing policy Pdynamic to maximize its total profit as
follows,

max
S=(K,x),Pdynamic

K+1∑
k=1

Φ(xk,Pdynamic)− cK (18a)

s.t. (6b), (6c), (6d), (6e). (18b)

Problem (18) is a non-smooth non-convex problem due to
the min operation in the objective function and the integer
decision variable K. We will use the following three steps to
solve it. First, we fix the sampling policy (K,x) and compute
the optimal dynamic pricing policy P∗dynamic(K,x). Second,
under the optimal dynamic pricing policy P∗dynamic(K,x), we
fix K and compute x∗(K). Finally, we derive the optimal
number of updates K∗.

A. Step 1: Optimizing the Dynamic Pricing Policy

Given the sampling policy (K,x), the optimal dynamic
pricing policy is to decide price at time t so that the integrand
in (5) is maximized.

Lemma 2: Given fixed sampling policy S = (K,x), the
optimal dynamic price at time t is

p∗dynamic(t) =
ϑmax

2(1 + ∆(S, t))
. (19)

From Lemma 2, we can see that the optimal dynamic price
p∗dynamic(t) increases with ϑmax, and decreases with the AoI
∆(S, t).

B. Step 2: Optimizing the Inter-update Periods

Based on Lemma 2, we can rewrite Problem (18) as

max
S=(K,x)

K+1∑
k=1

λϑmax

4
ln(1 + xk)− cK (20a)

s.t. (6b), (6c), (6d). (20b)

Given the total number of updates K, Problem (20) is a
convex problem with respect to x = {x1, ..., xK+1}. Hence,
we can derive the following result.

Lemma 3: Given the number of updates K, the platform’s
optimal inter-update periods x∗ in Problem (20) satisfies

x∗k,dynamic(K) =
T

K + 1
,∀k ∈ KK+1. (21)

We can see that the inter-update period x∗k,dynamic(K) in-
creases in T and decreases in K.

C. Step 3: Optimizing the Number of Updates

By substituting x∗k,dynamic(K) into the objective function of
Problem (20), we can write Problem (20) as the following
problem:

max
K∈N

λϑmax

4
(K + 1) ln

(
T

K + 1
+ 1

)
− cK.

Theorem 3: The platform’s optimal sampling policy
S∗dynamic = (K∗dynamic,x

∗
dynamic) and optimal dynamic pricing

policy P∗dynamic satisfy

K∗dynamic = argmax
K∈N

λϑmax

4
(K + 1) ln

(
T

K + 1
+ 1

)
− cK,

x∗dynamic,k =
T

K∗dynamic + 1
,∀k ∈ KK∗

dynamic+1,

p∗dynamic(t) =
ϑmax

2(1 + ∆(S∗dynamic, t))
.

Theorem 3 implies the following results. Although data
prices vary over time, the optimal sampling policy is still
equal-spacing. Hence, the AoI changes periodically and the
optimal dynamic price also changes periodically.

VII. NUMERICAL RESULTS

In this section, we perform experiments to study the pro-
posed pricing polices. We consider a time interval of T = 100
(days) and normalize the maximum valuation to ϑmax = 1.

In Fig. 3, we plot the price evolution under three types
of optimal pricing policies with different parameters. Fig. 3(a)
shows that under the optimal uniform pricing policy, as the unit
sampling cost c increases, the optimal uniform price decreases
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(a) Optimal uniform pricing policy.
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(b) Optimal dual pricing policy.
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(c) Optimal dynamic pricing policy.

Fig. 3. Price change under three types of pricing policies.
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Fig. 4. Profit ratio under unit sampling cost c.

to a fixed value. This is because when the unit sampling cost
is too high, the platform will choose the zero-update policy. In
Fig. 3(b), as the unit sampling cost c, the optimal dual price
decrease to two different values. In Fig. 3(c), as the arrival rate
λ increases, the lowest price in the optimal pricing policy and
the number of price change cycles increase. This is because
the platform will choose more updates as users arrive more
often.

Next, we compare the maximum profits under the three
optimal pricing policies. The platform’s profit is affected by
both the sampling policy and the price flexibility of the pricing
policies. Let Π∗uniform, Π∗dual, and Π∗dynamic denote the maximum
profit under the uniform pricing policy, the dual pricing policy,
and the dynamic pricing policy, respectively. We first define
the profit ratios as follows:

κuniform
dynamic =

Π∗uniform

Π∗dynamic
and κdual

dynamic =
Π∗dual

Π∗dynamic
.

Fig. 4 shows how the profit ratios change with the varying
value of unit sampling cost c. The results are as follows.
• When c approaches 0, both κuniform

dynamic and κdual
dynamic will

converge to 1. This is because the optimal number of
updates goes to infinity, and the data will keep the freshest
for all the time. This suggests that when facing a near-
zero sampling cost, the platform can get almost the
maximum profit by just using the simple uniform pricing
policy.

• When c increases from 0, both κuniform
dynamic and κdual

dynamic
initially decrease. In this case, the platform updates the
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Fig. 5. Profit ratio under user arrival rate λ.

data less frequently due to a higher sampling cost. The
optimal dynamic pricing policy with the highest price
flexibility can better exploit the AoI-sensitivity of users’
valuations. Hence, it can produce more profit compared
to the uniform policy and the dual policy. After κuniform

dynamic
and κdual

dynamic reach the lowest points, they will rise as
c increases. This happens when the data freshness is
relatively low and the difference of data prices under the
three types of optimal pricing policies narrows. Hence,
the profit gaps of three optimal pricing polices also
narrow.

• When c is large (more than 10 in Fig. 4), both κuniform
dynamic

and κdual
dynamic no longer change in c. This is because the

platform will choose a zero-update sampling policy under
all three pricing policies due to the high sampling cost.
Since the data is not always the freshest, different pricing
policies produce different profits and the ratios are not
equal to one.

Fig. 5 shows how the profit ratios change with the arrival
rate λ, with results shown as follows.

• When λ is close to 0, both κuniform
dynamic and κdual

dynamic do not
change with λ. This is because the platform will choose
a zero-update sampling policy under all three pricing
policies.

• When λ increases from 0, both κuniform
dynamic and κdual

dynamic
decrease. This is because the platform can make more
profit by selling the same fresh data to more users. Hence,
the platform can afford to have more updates, and the data
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freshness increases. Since the optimal dynamic pricing
can better exploit users’ time sensitivity and make more
profit, two ratios keep decreasing.

• When λ further increases to infinity, both κuniform
dynamic and

κdual
dynamic will increase and approach 1. As the optimal

number of updates goes infinity, the data will almost
always keep the freshest. The maximum profit under the
three types of pricing policies will converge to the same
limit.

Moreover, Fig. 4 and Fig. 5 show that the optimal dual
pricing policy significantly outperforms the optimal uniform
pricing policy. Specifically, the optimal dual pricing policy
produces up to 280% of the profit that is achieved by the
optimal uniform pricing policy.

VIII. CONCLUSION

In this paper, we proposed a fresh data market, where a
platform sells data with different AoI values to dynamically
arriving users. We proposed three types of pricing policies, i.e.,
the uniform pricing policy, the dual pricing policy, and the dy-
namic pricing policy. The joint data sampling and pricing prob-
lem is a challenging non-smooth mixed integer programming
problem. For the uniform pricing and dual pricing, we tackle
the challenge by analyzing a relaxed problem, and we prove
that the optimal solution of the relaxed problem is also optimal
for our original problem. Several interesting practical insights
emerge. First, the optimal data prices decrease in the unit
sampling cost and increase in the users’ arrival rate. Second,
for all three pricing policies, the equal-spacing data sampling
policy is optimal. Third, numerical results show that the op-
timal dual pricing policy significantly outperforms the opti-
mal uniform pricing policy.

In the future work, we will study how multiple data sources
affect the platform’s data sampling and pricing polices, as
well as the users’ data purchasing behaviors. Multiple data
sources decide how much the platform should pay for each
update. The platform decides which sources to choose, the data
sampling policy, and the data pricing policy, considering the
unit price decided by the data sources and the users purchasing
behaviors. Furthermore, we can consider the scenario where
the platform does not know the sources’ update generating
costs and use the contract theory to deal with such information
asymmetry.
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