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Abstract—We consider a node where packets of fixed size
are generated at arbitrary intervals. The node is required to
maintain the peak age of information (AoI) at the monitor
below a threshold by transmitting potentially only a subset
of the generated packets. At any time, depending on packet
availability and current AoI, the node can choose the packet
to transmit, and its transmission speed. We consider a power
function (rate of energy consumption) that is increasing and
convex in transmission speed, and the objective is to minimize
the energy consumption so as to satisfy the peak AoI constraint
at all times. For this problem, we propose a (customized) greedy
policy and derive an upper bound on its competitive ratio (CR)
that depends on the power function, but is independent of the
packet generation times as well as the time horizon. We also
derive a lower bound on the CR of all causal policies, and show
that the dependence of the CR of the proposed greedy policy on
the system parameters (such as packet size, peak AoI and power
function) is similar to that of an optimal causal policy.

Index Terms—Age of information, speed scaling, energy con-
sumption

I. INTRODUCTION

In the times of COVID-19 pandemic, real-time networked
applications such as autonomous vehicles, immersive gaming,
telemedicine and telesurgery played a vital role in enabling
people to maintain social-distancing while minimizing the
loss in lives and productivity [1]. However, such applications
need to maintain data-freshness at the nodes, which requires
minimizing the age of latest data-packet (formally called the
age of information (AoI) [2]) at the nodes.

In practice, AoI minimization is a complicated task. Factors
such as limited energy, unavailability of fresh data-packets,
etc., often restrict the control options for minimizing AoI. For
example, to maximize the operational life, devices with limited
energy need to restrict the number of data-packets that they
transmit, as well as their transmission rate (speed), thus leading
to large AoI. Hence, there is an inherent AoI-energy tradeoff
that any transmission policy must consider. In this paper, we
consider a particular instance of AoI-energy tradeoff, where
the objective is to minimize the energy consumption subject
to a peak AoI constraint at all times, over a fixed horizon of
time.

We acknowledge support of the Department of Atomic Energy, Government
of India, under project no. RTI4001.

To be precise, we consider a node where data-packets (in
short, packets) of fixed size (say, W bits) are generated at
arbitrary time instants, with bounded inter-generation time.
The node requires that by transmitting a subset of these
packets, the peak AoI at the monitor is maintained below a
threshold at all times, while consuming minimum energy. We
consider a speed scaling model, where the node can choose its
transmission speed, and operating at speed s consumes power
P (s) that is a convex and increasing function of s. Thus, for
every generated packet, the node needs to decide whether to
transmit it or not, and at what speed. At any time, the node can
also preempt a packet being transmitted. If the node transmits
a packet, the AoI drops to the age of the transmitted packet,
at the instant the node finishes transmitting the entire W bits
of the packet.

A. Prior Work

In past, in the context of AoI, the speed scaling model has
been considered in [3], [4]. In particular, in [3], a node controls
the number of bits of packet delivered to the monitor in a fixed
time slot by adjusting the transmission power. In [4], a node
can control the transmission delay of packets by adjusting the
transmission power at the instant the packets are transmitted.
The speed scaling model has also been considered in context
of AoI-distortion tradeoff [5]–[7], where a node controls the
number of bits it transmits for each packet. Transmitting fewer
bits take less time, and is assumed sufficient for minimizing
AoI, but this results in distorted information at the monitor,
where the level of distortion increases with decrease (increase)
in the number of bits transmitted (transmission time).

The closest work to the considered problem is in the non-
AoI setting, for problem called as job scheduling with dead-
lines [8], [9], where jobs arrive at a server sequentially, and
the server needs to process all the arriving jobs (with adaptive
speed) before their corresponding deadlines, while consuming
minimum energy. When power function is P (s) = sα (α > 1),
[8] proposed a causal policy for which the competitive ratio
(i.e., the ratio of the energy consumed by the causal policy to
the energy consumed by an optimal offline policy that knows
the generation time of all the packets in advance, maximized
over all inputs) is at most αα [9]. In the special case when
the power function is P (s) = 2s − 1, and all the packets
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are of equal size, with a common deadline, [10], [11] gave a
3-competitive policy for the job scheduling problem.

The problem considered in [8], [9] differs from what we
consider in this paper in one key aspect. In [8], [9] every job
that arrives at the server needs to be processed completely,
while in the considered problem, there is only a peak AoI
constraint which could be satisfied by transmitting only a
subset of the generated packets. Since the objective is to
minimize total energy subject to peak AoI constraint, an
additional challenge compared to [8], [9] (where only speed
and the order of processing is to be decided) is to identify the
subset of packets to transmit.

B. Our Contributions

1) We derive a lower bound on the competitive ratio of
all causal policies, and thus characterize the dependence
of the competitive ratio of an optimal causal policy on
the system parameters such as packet size, peak AoI
and power function. For example, for power function
P (s) = sα (where α > 1, and s denotes speed), we
show that the competitive ratio of any causal policy π
is CRπ ≥ cα (where c ≥ 1.07 is a constant). So, CRπ
increases exponentially with increase in α.

2) We propose a simple causal greedy policy πg that at any
time t, transmits the latest available packet with a speed
s(t) (that depends on the AoI at time t), and show that
for convex power function P (s(t)), the competitive ratio
of the proposed policy has similar order of dependence
on the system parameters as the lower bound discussed
in point 1. For example, for P (s) = sα (α > 1), we
show that the competitive ratio of πg is CRπg ≤ 2·3α+1.

II. SYSTEM MODEL

Consider a node where data-packets (in short, packets), each
of size W bits are generated intermittently1. In particular,
the ith packet at the node is generated at time ti, where ti
is determined by external factors (possibly adversarial), with
inter-generation time Xi = ti − ti−1. A packet i is said to
be delivered (at the monitor) at time τi if the node finishes
transmitting the W bits of packet i at time τi.

At any time t, the age of information (AoI) at the monitor
is equal to ∆(t) = t−µ(t), where µ(t) is the generation time
of the latest packet that has been delivered to the monitor
until time t. Further, in an interval [0, T ], peak AoI at the
monitor is defined to be maxt∈[0,T ] ∆(t). We consider a peak
AoI constraint, i.e., for any given time horizon T , the node
requires that the peak AoI at the monitor in the interval [0, T ]
is less than D, where D is a known constant.

Remark 1: If inter-generation time Xi > D for any i,
then the peak AoI constraint is infeasible. Therefore, for the
problem to be meaningful, we need the inter-generation time
of packets to be bounded, and in particular, less than D.
Therefore, we assume that there exists some ε > 0, such that
∀i, Xi < D−ε. Further, without loss of generality, we assume

1The case of non-identical packet sizes has been considered in the com-
panion paper [12].

that the first packet is generated at time t = 0, and the initial
AoI ∆(0) < D − ε (required for the problem to be feasible).

Remark 2: At any time t, the peak AoI constraint only
requires that µ(t), i.e., the generation time of the latest packet
delivered to the monitor until time t is less than D time units
old. Therefore, to satisfy the peak AoI constraint, it is not
necessary to transmit every generated packet. For example, at
time t, if packets i and j (with generation times ti and tj
respectively) are available at the node, and ti < tj , then for
satisfying the peak AoI constraint, it is sufficient to transmit
packet j only, without transmitting packet i.

Definition 1: A policy that at any time t, can interrupt
an ongoing transmission of a packet, and begin transmitting a
newly generated packet, is called an interruptive policy2. Note
that the class of interruptive policies, by definition, includes
all non-interruptive policies, that never interrupts transmission
of any packet.

We consider a speed scaling model, where at any time
t, the node can transmit a packet at speed s(t) ≥ 0 (in
bits/sec) adaptively, i.e., the node can choose s(t) using causal
information available at time t. Also, transmitting a packet at
speed s(t) consumes power P (s(t)), which is an increasing
and convex function of speed s(t), e.g., P (s) = sα (α > 1),
or P (s) = 2s − 1, motivated by Shannon’s rate function.
Therefore, if the node transmits packets at high speed, it incurs
low AoI, but consumes large amount of energy.

In this paper, we consider the problem of finding a causal
policy that chooses the subset of packets to transmit (where
interruption is allowed), the time interval over which the
packets are transmitted, and their instantaneous transmission
speed s(t), so that the peak AoI is maintained below D at
all times over a time horizon T , while consuming minimum
energy. Formally, the objective can be stated as follows.

min
π∈Π

Eπ(σ) =

∫ T

t=0

P (s(t))dt (1a)

s.t. ∆(t) < D, ∀t ∈ [0, T ], (1b)

where Π is the set of all causal policies for packet scheduling
and the choice of speed s(t), and σ = {t1, t2, ...} is the
sequence of packet generation times (we assume that the time
horizon T is known in advance). Note that the choice of packet
being transmitted by a policy π at any time t is inherently
captured by (1a).

Remark 3: In this paper, the set of all causal policies
implicitly refers to the set of all interruptive causal policies
that may interrupt ongoing packet transmission (Definition 1).

Remark 4: For simplicity, we assume P (0) = 0, which
appears as an offset term in (1a), and does not affect the causal
policy that solves the optimization problem (1a).

Definition 2: A policy π? is said to be offline optimal
if it satisfies the peak AoI constraint (1b), and there exists
no other policy π̃ that can simultaneously satisfy the peak

2In literature (e.g., [13]), an interruptive policy is also known as a
preemptive policy. However, a non-interruptive policy can discard a packet
upon generation, whereas a non-preemptive policy transmits every generated
packet.
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AoI constraint (1b), and consume less energy than π?, even
if π̃ knows the generation time of all the packets in advance.
Optimal offline policies are useful as they provide a lower
bound on the energy consumed by any causal policy π.

From prior work [8], [10], [11], it is known that finding
an optimal causal policy for energy minimization problems
under hard constraints (such as individual/common deadline
for packets) is a challenging task. Hence, a usual approach is
to find a causal policy π whose competitive ratio, defined as
the ratio of the energy Eπ(σ) consumed by a causal policy π
(to satisfy the peak AoI constraint) and the energy Eπ?(σ)
consumed by an optimal offline policy π? (Definition 2),
maximized over all possible sequence of packet generation
times σ, is small. Mathematically, the competitive ratio of
policy π is

CRπ = max
σ

Eπ(σ)

Eπ?(σ)
. (2)

By definition, a policy with small competitive ratio is close
to optimal offline policy (the strongest benchmark), as well
as robust to input variations. In the rest of this paper, we
will consider a particular non-interruptive causal policy, and
show that its competitive ratio is at most 2P (3ŝ)/P (ŝ) + 1,
where ŝ = W/D. We will also derive a lower bound on the
competitive ratio of any causal policy π, and show that for dif-
ferent power functions of interest, the competitive ratio of the
considered policy has similar characteristics (dependence on
parameters) as the derived lower bound. For a non-interruptive
causal policy which is much simpler to implement than a
general interruptive causal policy, this is a significant result.

A. An Equivalent Deadline Constraint Problem
The peak AoI constraint (1b) can also be interpreted as a

deadline constraint, where a deadline is defined as follows.
Definition 3: At any time t, if µ(t) is the generation time

of the latest packet that has been delivered to the monitor
until time t, then the deadline at time t is defined as d(t) =
µ(t) +D, which is the earliest time instant at which the peak
AoI constraint (1b) will be violated if no packet is delivered to
the monitor after time t. Equivalently, d(t) = t+ (D−∆(t)).

Remark 5: Note that d(t) = µ(t) +D is a non-decreasing
function of t. In fact, deadline d(t) increases in steps whenever
a fresh packet j (tj > µ(t); see Definition 4 below) is
delivered to the monitor. This happens because µ(t) (i.e., the
generation time of the latest packet delivered until time t)
increases discontinuously to the generation time tj of packet
j, at the instant packet j is delivered to the monitor.

Definition 4: At any time t, a packet i is defined to be fresh
if its generation time ti ≤ t is greater than µ(t), i.e. ti > µ(t).
Otherwise, the packet is stale.

Note that the peak AoI constraint (1b) is satisfied if and
only if D − ∆(t) > 0, for all t ∈ [0, T ]. Also, at any time
t, d(t) = t + (D − ∆(t)) is greater than t if and only if
D − ∆(t) > 0. Therefore, the peak AoI constraint (1b) is
equivalent to the following deadline constraint:

d(t) > t, ∀t ∈ [0, T ]. (3)

In other words, the peak AoI constraint (1b) is equivalent
to the constraint that at any time t ∈ [0, T ], the current
deadline d(t) must be in future. Hence, hereafter we consider
the deadline constraint (3) (instead of peak AoI constraint (1b))
while minimizing the objective function (1a).

Remark 6: As we show in Section V, considering peak AoI
constraint (1b) as deadline constraint (3) reveals several key
properties of an optimal offline policy π?, and simplifies the
overall analysis in this paper.

Definition 5: A policy π is defined to be feasible if it
satisfies the deadline constraint (3) at all times t ∈ [0, T ].

Proposition 1: At any time t ∈ [0, T ], if d(t) ≤ T , then for
any feasible policy π (Definition 5), at least one fresh packet
has to be delivered to the monitor in interval [t, d(t)).

Proof: If the deadline at time t ∈ [0, T ] is d(t) ≤ T , and
no fresh packet is delivered to the monitor in interval [t, d(t)),
then the deadline constraint (3) will be violated at time d(t)
(follows from the definition of d(t); Definition 3). Hence, a
feasible policy must deliver at least one fresh packet to the
monitor in interval [t, d(t)), for all t ∈ [0, T ], if d(t) ≤ T .

Remark 7: In order to satisfy the deadline constraint (3),
note that only fresh packets are needed/useful. Hence, in rest
of the paper, we only consider packets that are fresh, and at
any time, the term ‘packet’ implicitly means a fresh packet.

Definition 6: For each packet i generated at time ti, we
define di = ti +D.

B. Property of Convex Power Function

Convexity of power function implies the following results.
Lemma 1: Energy consumed in transmitting w bits in a

fixed time interval [p, q) is minimum if for t ∈ [p, q), the bits
are transmitted at a constant speed sw(t) = w/(q − p). Also,
the minimum energy consumed for transmitting the w bits in
interval [p, q) is P (w/(q − p))(q − p).

Corollary 1: For fixed w, P (w/y)y decreases with increase
in y.

III. LOWER BOUND ON THE COMPETITIVE RATIO OF ALL
CAUSAL POLICIES

Before we discuss a particular causal policy for minimizing
the energy consumption (1a) (under the deadline constraint
(3)), it is important to note the fundamental limitations of any
causal policy π. Towards that end, Theorem 1 provides a lower
bound on the competitive ratio of any causal policy π, and
shows (in Corollary 2) that for certain power functions P (·),
the competitive ratio of any causal policy π is an increasing
function of W/D.

Theorem 1: For any causal policy π, its competitive ratio

CRπ ≥
c1P (c2W/D)

P (c3W/D)
, (4)

where c1, c2 and c3 are finite positive constants, c2−c3 ≥ 0.14,
and c2/c3 ≥ 1.07.

Proof Sketch: Recall that competitive ratio of a causal
policy π is defined to be the worst case ratio of the energy
consumed by the policy π to the energy consumed by an
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optimal offline policy π? over all inputs. Thus, to derive the
lower bound (4) on the competitive ratio of all causal policies
(i.e., to prove Theorem 1), we consider a particular scenario
where the AoI at the monitor at time t = 0 is ∆(0) = D/2,
the time horizon T = 3D/2 − δ (for δ → 0+), and the
packets are generated according to one of the two instances of
packet generation times σ: (i) σ1 = {0, D/4, D/2}, and (ii)
σ2 = {0, D/4, 5D/6}. In this scenario, for indexing all causal
policies, we consider different cases based on the packet(s)
that any causal policy may transmit in interval [0, D/2), and
for each case, we compute the competitive ratio (2), where the
maximization is with respect to σ ∈ {σ1, σ2}. Finally, we take
the minimum over the competitive ratio obtained for different
cases considered above, and obtain (4), where c1, c2 and c3
are finite positive constants, c2−c3 ≥ 0.14, and c2/c3 ≥ 1.07.
For the detailed proof, see Technical Report [12].

Corollary 2: For any causal policy π, (i) if P (s) = sα

(α > 1), the competitive ratio CRπ ≥ c1(c2/c3)α ≥ c11.07α

increases exponentially with increase in α, while (ii) for
P (s) = 2s − 1, the competitive ratio CRπ ≥ 2(c2−c3)W/D ≥
20.14W/D increases exponentially with increase in W/D.

Although the lower bound (4) in Theorem 1 is for
all interruptive policies, in the next section, we propose
a simple non-interruptive causal greedy policy πg , and
show that its competitive ratio (2) is upper bounded by
c′1P (c′2W/D)/P (c′3W/D) + 1 (where c′1 = 2, c′2 = 3, and
c′3 = 1). Thus, we show that the dependence of the competitive
ratio of πg on the system parameters is similar to the policy-
independent lower bound (4).

IV. A GREEDY POLICY πg

Consider a greedy policy πg (Algorithm 1) that at any time
t, if the node is idle (i.e., not transmitting any packet) and the
deadline d(t) < T , transmits the latest available (fresh) packet
with constant speed sg(t) (5), starting at time t, throughout
until the W bits of the chosen packet are delivered to the
monitor (and waits otherwise),

sg(t) = max

{
W

d(t)− t
,
W

D/3

}
. (5)

Remark 8: Note that the greedy policy πg never interrupts
any ongoing packet transmission. However, this is not a
constraint, and in general, a policy is allowed to interrupt
ongoing packet transmission to solve (1a).

Algorithm 1 Greedy Policy πg .

t← current time;
if d(t) ≤ T and node idle and packet available then

transmit the latest packet with constant speed sg(t) (5)
throughout the time interval [t, t+W/sg(t));

end if

Theorem 2: Let ŝ = W/D. Then, the competitive ratio
(CRπg ) of greedy policy πg is bounded as follows.

CRπg ≤ 2P (3ŝ)

P (ŝ)
+ 1. (6)

Remark 9: In (6), if P (s) = sα (α > 1), CRπg ≤ 2 ·3α+1,
while if P (s) = 2s−1, CRπg ≤ 2(23W/D−1)/(2W/D−1)+1.
Note that this dependence of CRπg on the parameters is similar
to that of the lower bound in Theorem 1 for all causal policies.

Although greedy policy πg may appear natural, the speed
sg(t) (5) has been chosen carefully such that (i) πg is feasible
(since sg(t) ≥ W/(d(t) − t), if πg begins to transmit a
packet at time t, the packet will be delivered to the monitor
before deadline d(t)), and (ii) speed sg(t) cannot be arbitrarily
large (in fact, sg(t) cannot be greater than 3W/D), unless a
particular event happens (defined in Proposition 2) with regard
to the sequence of packet generation times, and for which we
can lower bound the energy consumed by an optimal offline
policy π? (Lemma 4 in Appendix C).

Proposition 2: If πg begins to transmit a packet j at time t,
then the speed sg(t) > 3W/D only if no packet was generated
in interval [t− 2D/3, t).

Proof: See Appendix A.
We next provide some intuition for the choice of speed sg(t)

(5) used by the greedy policy πg , that is at least equal to
3W/D. For a greedy policy such as Algorithm 1, it is critical
to have sg(t) ≥ 3W/D, because as shown in Example 1
below, a smaller value of speed such as 2W/D may require
πg to transmit some packets at much higher speed (compared
to an optimal offline policy π?), thus consuming large amount
of energy (compared to the offline optimal policy π?).

Example 1: Let at time t = 0, ∆(0) = 0, D = 2, and
T = 3 + δ/2, where δ → 0+. Also, let three packets be
generated at time t = 0, t = δ, and t = 1 + δ, respectively.
Then, an optimal offline policy π? will only transmit the
third packet, with constant speed W/(1− δ) for (1− δ) time
units, whereas the greedy policy πg (Algorithm 1) with speed
sg(t) = max{W/(d(t) − t), 3W/D} will transmit all three
packets with constant speed 3W/D (each for D/3 time units).

However, if the speed choice sg(t) (5) for πg is replaced
with ŝg(t) = max{W/(d(t)− t), 2W/D} (where t is the time
when transmission of packet begins), then πg will still transmit
all three packets, but the third packet will be transmitted with
a constant speed W/δ →∞.

In the rest of this paper, we prove Theorem 2 in two steps.
In step 1 (Section V), we derive some structural results for
an optimal offline policy π?, and then in step 2 (Section VI),
we use the derived results for the optimal offline policy π? to
derive the upper bound (6) on the competitive ratio CRπg .

V. PROPERTIES OF AN OPTIMAL OFFLINE POLICY π?

Consider an optimal offline policy π?. In this section,
without loss of generality, we only consider the packets that
are transmitted by π? in interval [0, T ], and index them as
1, 2, 3, ... in ascending order of their generation times (i.e.,
t1 < t2 < t3 < ...). Therefore, between the generation time
of (transmitted) packets i−1 and i, many other packets might
have been generated, however, they are not transmitted by π?.

Lemma 2: If π? chooses to transmit packet i, and di ≤ T
(where di = ti + D), then in interval [ti, di), π? transmits at
least two packets completely (i.e., 2W bits).
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Fig. 1: Periods and Frames.

Proof: If π? delivers packet i at time τi, then the deadline
at time τi is d(τi) = di (where di = ti + D). Since di ≤ T ,
from Proposition 1, it follows that π? delivers packet i+ 1 in
interval [τi, di) (i.e., τi+1 ∈ [τi, di). Thus, in interval [ti, di),
π? transmits at least two complete packets i and i + 1 (i.e.,
2W bits), as shown in Figure 1(a) (for i = 2).
Thus, Lemma 2 implies that for π?, the intervals [ti, di) are
special, and hence, we call them periods, defined next.

Definition 7: With respect to π?, the interval χπ
?

i = [ti, di)
(where di = ti +D) is called period i.
By definition, a period starts at the generation time of a
packet transmitted by π?, and in each period i, π? transmits at
least two packets (from Lemma 2). Thus, consecutive periods
overlap as shown in Figure 1(b). Hence, it is difficult to
generalize Lemma 2 directly to the whole interval [0, T ].
Therefore, we further define frames (that are non-overlapping)
with respect to π? as follows.

Definition 8: With respect to π?, the interval Ii = [di−1, di)
(where di−1 = ti−1 +D and di = ti +D) is called frame i.

Remark 10: As shown in Figure 1(b), consecutive frames
partition the time-axis between [0, T ] (assuming the initial
frame I0 starts at time t = 0). Therefore, ∀i 6= j, Ii ∩ Ij = φ,
and there exists consecutive frames 0, 1, ...,m, such that T lies
in frame m, and [0, T ] ⊆ ∪mi=1Ii. So, the properties of π? in
a frame can be easily generalized to the entire interval [0, T ].

Remark 11: In Definition 7 and Definition 8, note that
periods and frames are defined with respect to the packets
transmitted by an optimal offline policy π?. Also, frame i
(interval [di−1, di)) is always a proper subset of period i
(interval [ti, di)), with di−1 > ti. Hence, length of frame i
is always less than di − ti = D.
Figure 1(a) shows a typical relation between periods and
frames, where at time t2, the deadline is d0, and packet 1
is delivered to the monitor at time τ1 < d0. Thus the deadline
is updated at time τ1 to d1. Then, the interval I1 = [d0, d1)
is called frame 1. Similarly, within interval I1, packet 2 (with
generation time t2) is delivered to the monitor at time τ2 < d1.

Therefore, at time τ2, the deadline gets updated to d2, and the
interval I2 = [d1, d2) is called frame 2.

Remark 12: Although Figure 1(a) shows typical properties
of frames and periods defined with respect to the packets
transmitted by π?, the speed profile shown in Figure 1(a) is
not necessarily the speed chosen by π?, since that (π?) is
unknown. We show in Proposition 3 that within a frame, speed
of π? exhibits several structural properties.

Proposition 3: The optimal offline policy π?

1) transmits the W bits of a packet with constant speed,
2) never interrupts an ongoing packet transmission,
3) delivers packet i+ 1 in frame i (∀i), and
4) never decreases the transmission speed within a frame.

Proof: See Appendix B.

VI. PROOF OF THEOREM 2
Consider an arbitrary sequence of packet generation times

σ. From Remark 10, we know that the time axis can be
partitioned into frames defined with respect to π? (Definition
8). Therefore, consider the consecutive frames 0, 1, ...,m such
that the total time horizon interval [0, T ] is a subset of the
union of frames 0 to m, and time horizon T lies in frame m
(as shown in Figure 1(b) for m = 5). Note that if m = 0
(i.e., T is less than the initial deadline d(0)), then neither πg ,
nor π? transmits any packet because the deadline constraint
(3) is trivially satisfied in the interval [0, T ]. Hence, we only
consider the case where m ≥ 1.

Since length of a frame is always less than D (Remark 11),
the time horizon T < (m+ 1)D. Therefore, in interval [0, T ],
if πg transmits xg ≥ 0 number of packets with speed 3W/D
consuming Egx units of energy, then Egx < P (3W/D)(m+1)D
(product of power consumption and upper bound on the length
of time interval [0, T ]). Let yg ≥ 0 denote the number of
packets that πg transmits with speed greater than 3W/D (πg

transmits an entire packet at a constant speed; either equal
to 3W/D, or greater than 3W/D), and Egy denotes the total
energy consumed by πg in transmitting these yg packets. Then,
the total energy consumed by πg in interval [0, T ] is

Eπg = Egx + Egy ≤ (m+ 1)P (3W/D)D + Egy . (7)

Remark 13: Since πg transmits each of the yg packets at
a constant speed greater than 3W/D, the energy consumed
by πg in transmitting the yg number of packets is Egy >
ygP (3W/D)D/3.

From Proposition 3 (Property 3), it follows that π? delivers
exactly one packet in each frame i = 0, 1, 2, ...,m− 1. Thus,
π? transmits m complete packets in interval [0, T ]. Also, the
length of each frame is less than D (length of a period). Hence,
the energy consumed by π? in transmitting each of these m
packets is at least P (W/D)D. Next, we show in Lemma 3
that out of these m packets that π? transmits completely, there
exists a subset Z consisting of yg number of packets such that
π? consumes at least Egy units of energy in transmitting the
packets in Z (where yg and Egy are defined as in Remark 13).

Lemma 3: There exists a subset Z consisting of yg number
of packets such that π? transmits all the packets in Z , and
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consumes at least Egy units of energy while transmitting the
packets in Z .

Proof: Note that for yg = 0, the claim is trivially satisfied.
So, for the rest of the proof, we assume yg ≥ 1. Recall that πg

transmits yg number of packets at speed greater than 3W/D,
consuming Egy units of energy. Without loss of generality, let
these packets be indexed as 1, 2, ..., yg . Also, let πg transmit
a packet j ∈ {1, 2, ..., yg} over a contiguous time interval
Uj (πg always transmits packets over contiguous intervals),
and consumes energy ej (in transmitting packet j). Since πg

transmits only one packet at a time, Ui ∩ Uj = φ for i 6= j.
Therefore, to prove Lemma 3, it is sufficient to show that
in each interval Uj (where j ∈ {1, 2, ..., yg}), π? transmits
at least one packet completely (entire W bits), consuming at
least ej units of energy. Hence, to conclude the proof, we
show in Lemma 4 (in Appendix C), that for each packet j
that πg transmits with speed greater than 3W/D, π? transmits
at least one packet ĵ (where packet j and ĵ may be same)
completely during the time interval when πg transmits packet
j, at a constant speed that is at least equal to the constant
speed with which πg transmits packet j.

Remark 14: π? transmits a total of m packets in interval
[0, T ] (exactly one packet in each of the frames 0, 1, 2, ...,m−
1). Also, from Lemma 3, it follows that π? transmits at least
yg number of packets. Therefore, yg ≤ m.
Hence, the total energy consumed by π? in interval [0, T ] is

Eπ? ≥ (m− yg)P (W/D)D + Egy . (8)

From (7) and (8), we obtain an upper bound on the
competitive ratio (2) for πg as follows.

CRπg ≤
(m+ 1)P (3W/D)D + Egy
(m− yg)P (W/D)D + Egy

,

(a)

≤ (m+ 1)P (3W/D)D

(m− yg)P (W/D)D + ygP (3W/D)D/3
+ 1,

(b)

≤ (m+ 1)P (3W/D)

mP (W/D)
+ 1, (9)

(c)

≤ 2P (3W/D)

P (W/D)
+ 1, (10)

where in (a), we have used the fact that Egy >
ygP (3W/D)D/3 (Remark 13), (b) follows because
P (3W/D)D/3 ≥ P (W/D)D (transmitting W bits at
speed 3W/D consumes more energy than transmitting W
bits at speed W/D), and we get (c) by maximizing the
R.H.S. of (9) with respect to m ≥ 1. With ŝ = W/D, we get
the result.

VII. NUMERICAL RESULTS

Figure 2 shows the AoI plot for πg when size of packets is
W = 1 Mbit, peak AoI is D = 3 msec, and inter-generation
time X of packets follow uniform distribution with values in
interval (0, 2.5). Also, the stem plot in Figure 2 shows the
generation time of packets, and the speed with which they
were transmitted by πg . The transmission speed of a packet
is 0 if it is not transmitted, otherwise the speed is at least
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Fig. 2: AoI plot and transmission speed of packets.
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Fig. 3: Energy consumption as a function of inter-generation time.

3W/D = 1 Gbit/sec. Note that the speed is greater than 1
Gbit/sec only if inter-generation time of packets is greater than
2D/3 = 2 msec.

To further understand the effect of inter-generation time of
packets on energy consumption, Figure 3 plots the energy
consumed by πg as a function of inter-generation time X
(where X is deterministic, packets are of size W = 1 Mbit,
and peak AoI and time horizon are D = 5 msec and T = 100
msec respectively). When X ≤ D/3 ≈ 1.7 msec, πg always
has a fresh packet to transmit, and hence, remains busy
throughout the interval [0, T ] transmitting packets with speed
3W/D = 3/5 Gbits/sec. So, as long as X ≤ D/3, energy
consumption remains constant. When X ∈ (D/3, 2D/3], πg

transmits fewer packets, but with same speed 3W/D, and
hence, consumes lesser energy. However, when X > 2D/3,
πg transmits fewer packets, but at speed larger than 3W/D.
So, energy consumption starts to increase with increase in X ,
and becomes unbounded at values of X close to D.

Next, for any policy π (causal or offline), consider the
universal lower bound (ULB) (11) on Eπ (total energy con-
sumption in interval [0, T ] under policy π), derived in [12].

Eπ ≥ max{0, P (2W/D)(T −D)}. (11)

From (11), it follows that the energy consumption of any
causal policy increases with increase in W/D. So, to visualize
this numerically, Figure 4 plots the energy consumption of πg

against values of W/D (when initial AoI ∆(0) = 0, time
horizon T = 100 msec, and inter-generation time of packets
is uniformly distributed in interval [0, 4.5] msec.). Note that
for varying W/D, we fixed D = 5 msec, and varied W .
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Fig. 4: Dependence of energy consumption of πg on the ratio W/D,
and the universal lower bound (ULB) (11).

Clearly, the energy consumption of πg increases with increase
in W/D, and it grows exponentially when the power function
is P (s) = 2s − 1.

VIII. CONCLUSION

In this paper, we considered a node where packets of
fixed size are generated with arbitrary (but bounded) inter-
generation time. The node is required to maintain peak age
of information (AoI) at the monitor below a given thresh-
old (throughout a given interval of time) by transmitting
these packets and controlling their transmission speed, and
the objective is to minimize the total energy consumption.
We proposed a (customized) greedy policy, and bounded its
competitive ratio (CR) by comparing it against an optimal
offline policy by deriving some structural results. Importantly,
for polynomial power functions, the CR upper bound is
independent of the system parameters (such as packet size,
peak AoI, time horizon, and number of packets generated).
For exponential power functions, we showed that the CR of
any causal policy grows exponentially with increase in the
ratio of the packet size and the peak AoI, and showed that the
proposed greedy policy has CR of similar order as a lower
bound on the CR of all causal policies.
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APPENDIX A
PROOF OF PROPOSITION 2

Consider time t, when πg begins to transmit a packet j
with speed sg(t) > 3W/D. To prove Proposition 2, we need
to show that no packet must have been generated in interval
[t − 2W/D, t). For this, let at least one packet be generated
in the interval [t − 2D/3, t). Then we must have one of the
following two cases:

a) There exists a packet i 6= j generated in interval [t−
2D/3, t) that πg begins to transmit at time ri < t: Recall that
πg is a non-interruptive policy (Remark 8). Hence, πg must
have delivered packet i (to the monitor) until time t. Also, by
hypothesis, πg begins to transmit packet j at time t with speed
sg(t) > 3W/D. Thus, from (5), it follows that d(t)−t < D/3.
This implies that d(t) < t + D/3, which is possible only if
no packet (including packet i) that was generated in interval
[t − 2D/3, t) was delivered to the monitor until time t. This
contradicts the fact that packet i was generated in interval
[t−2D/3, t), and delivered until time t. Hence, there cannot be
a packet generated in interval [t− 2D/3, t) that is transmitted
by πg starting at time ri < t.

b) No packet generated in interval [t−2D/3, t) is trans-
mitted by πg starting at any time t̂ < t: Since πg never idles
if a fresh packet is available, this case is possible only if πg

remains busy in the entire interval [t− 2D/3, t), transmitting
packets that were generated before time t− 2D/3. However,
such an event cannot happen. To show this, let packet i be
the latest packet generated before time t− 2D/3 (say, at time
ti = t− 2D/3− δ, where δ > 0). Because πg only transmits
a fresh packet, in interval [t − 2D/3, t), πg may transmit at
most two packets generated before t− 2D/3 : (i) a packet î
that was being transmitted by πg when packet i was generated
at time ti, and (ii) packet i itself. Since πg transmits a packet
with speed at least 3W/D (Eq.(5)), it takes at most D/3 time
units to completely transmit (deliver) a packet. Therefore, πg

would finish transmitting both packet î and packet i before
ti+2D/3 = t−δ, and hence, must begin to transmit a packet
generated in interval [t − 2D/3, t) in sub-interval [t − δ, t),
thus proving that this case is not possible.
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Thus, we conclude that none of the above two cases are
possible. This contradicts the assumption that a packet was
generated in interval [t− 2D/3, t).

APPENDIX B
PROOF OF PROPOSITION 3

a) Proof of Property 1: Let π? transmits the W bits of
a packet i with speed that varies with time. Now, consider
another policy π′, identical to π?, except that it (π′) transmits
the W bits of packet i with constant speed over the same time-
interval where π? transmits packet i. But, due to convexity
of power function P (·) (Lemma 1), we know that over any
given interval of time, transmitting a packet with constant
speed consumes minimum energy. Therefore, π′ consumes
less energy than π?. But this cannot be true, because π? is
an optimal offline policy. Hence, π? must transmit the W bits
of each packet i with constant speed.

b) Proof of Property 2: Since π? knows the generation
time of all the packets in advance, it never transmits any packet
partially (because transmitting a packet partially consumes
energy, without meeting the deadline constraint (3)). Also, π?

only transmits fresh packets (Remark 7). Therefore, it never
interrupts a packet’s transmission to transmit it later. Hence,
π? never interrupts an ongoing packet transmission.

c) Proof of Property 3: Note that when π? begins to
transmit packet i + 1 at time ri+1, the deadline is di (the
latest delivered packet at ri+1 is packet i). Therefore, τi+1 <
di, where τi+1 is the time when packet i + 1 is delivered.
Therefore, packet i + 1 is delivered in one of the frames 0
to i. Hence, for i = 0, the only possibility is that packet 1
is delivered in frame 0. Next, using induction, we show that
for all i, πg delivers packet i + 1 in frame i. Let packet i is
delivered in frame i − 1. Then, there are two possible cases:
(i) packet i+1 is delivered in frame i, and (ii) packet i+1 is
delivered in frame i− 1 (since packet i is delivered in frame
i − 1, packet i + 1 cannot have been delivered in a frame
previous to frame i− 1). Note that if packet i+ 1 is delivered
in frame i− 1, then there would be two packets (packet i and
packet i+ 1) that are delivered in frame i− 1, at time τi and
τi+1 respectively. However, in this case, transmission of packet
i will be redundant because at the start of frame i − 1 (i.e.,
time di−2), the deadline is di−1, and due to Proposition 1, we
know that delivery of a single packet is sufficient in interval
[di−2, di−1). Hence, π? being an optimal offline policy, will
not waste energy delivering both packets i and i+ 1 in frame
i− 1. Thus, for all i, π? delivers packet i+ 1 in frame i.

d) Proof of Property 4: From Property 3, we know that
exactly one packet (packet i+1) is delivered in frame i. Also,
packet i + 1 is transmitted with constant speed (Property 1).
Therefore, transmission speed may decrease only after packet
i+1 is delivered. However, π? being an optimal offline policy,
instead of delivering packet i+ 1 before the deadline di (end
of frame i), and decreasing the speed, it (π?) would transmit
packet i+ 1 itself at lesser speed, over a larger interval. This
follows due to convexity of power function P (·) (Lemma 1).

APPENDIX C
In this section, let the packets be indexed in the order they

are generated, irrespective of whether they are transmitted by
π? or not. Also, in this section, let the deadline d(t) at any
time t be defined according to πg .

Let πg transmits a packet j with constant speed greater
than 3W/D. Proposition 4, shows that πg must have begun to
transmit packet j at time tj (where tj is the generation time of
packet j), and got the transmission completed at time d(tj).

Proposition 4: If πg transmits a packet j with speed greater
than 3W/D, then it must have begun to transmit packet j
immediately after it was generated at time tj , and completed
the transmission at time d(tj).

Proof: Let transmission of packet j begins at time t. So,
tj ≤ t, where tj is the generation time of packet j. From
Proposition 2, we know that no packet is generated in interval
[t−2D/3, t). Also, it has been shown in proof of Proposition
2 that the transmission of packets generated before t− 2D/3
(that are transmitted by πg) gets completed before time t, and
hence, tj cannot be less than t− 2D/3 (because transmission
of packet j begins at time t). Hence, we must have tj = t.

Further, πg transmits packet j with constant speed
W/(d(t) − t) = W/(d(tj) − tj) starting time t = tj . So,
transmission of packet j completes at time d(tj).
Therefore, in interval [tj , d(tj)), πg transmits packet j with
constant speed greater than 3W/D, which is precisely equal to
W/(d(tj)−tj). Lemma 4 shows that the optimal offline policy
π? also transmits an entire packet (of size W bits) in interval
[tj , d(tj)), with constant speed at least equal to W/(d(tj)−tj).

Lemma 4: For each packet j (W bits) transmitted by πg

in interval [tj , d(tj)) with constant speed sg(t) = W/(d(tj)−
tj) > 3W/D, there exists a packet ĵ such that π? transmits
the W bits of packet ĵ in interval [tj , d(tj)), with constant
speed at least equal to W/(d(tj)− tj).

Proof: Let πg transmits a packet j with speed greater
than 3W/D. From Proposition 2, it follows that no packet is
generated in interval [tj−2D/3, tj), where tj is the generation
time of packet j. Without loss of generality, let packet ` be the
latest packet that is generated before time tj−2D/3. Since no
packet is generated in interval (t`, tj), packet ` remains fresh
until time tj . Also, note that πg takes at most D/3 time units to
deliver W bits (because sg(t) ≥ 3W/D), and tj−t` > 2D/3.
Therefore, even if πg was transmitting a previous packet when
packet ` was generated at time t`, it (πg) delivers packet `
before time tj . So, the deadline at time tj for πg is d(tj) = d`.

Since no packet is generated in interval (t`, tj), the genera-
tion time of latest packet delivered by π? until time tj can at
most be t`. Hence, the deadline for π? at time tj is at most
equal to d`. Due to Proposition 1, π? must deliver a packet
(i.e., transmit W bits) in interval [tj , d`). Since d` = d(tj),
this implies that π? must transmit at least W bits of some
packet ĵ in interval [tj , d(tj)). From Proposition 3 (Property
1), we know that that π? transmits the W bits of a packet with
constant speed. Therefore, π? transmits packet ĵ within some
sub-interval of interval [tj , d(tj)), with constant speed at least
equal to W/(d(tj)− tj).
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