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Abstract—User profiling allows product sellers to identify
users’ willingness to pay and enable personalized pricing. How-
ever, users’ information exploited in profiling is usually private
and hard to obtain accurately due to users’ privacy concerns.
With the increasing popularity of social networks, where users
reveal their private information through social interactions, more
sellers today profile users through their social data. This paper
is the first to study how a seller optimizes personalized pricing
through user profiling on social networks, where users proac-
tively react by controlling their social activities and information
leakage. We formulate and analyze a dynamic Bayesian game
played between users and the seller. First, users decide their social
activities by trading off the social network benefit against the
potential risk of revealing private information. Then, the seller
exploits users’ profiles to determine the personalized prices for
the profiled users and a uniform price for the non-profiled users.
It is challenging to analyze the Perfect Bayesian Equilibrium
(PBE) of this game due to i) the randomness in user profiling,
and ii) the coupling among users’ activity levels and that between
the seller’s pricing decisions and users’ social activities. Despite
the difficulty, we propose to alternate backward induction and
forward induction to successfully solve the PBE. We show the
surprising result that users’ activity levels do not monotonically
decrease as the profiling technology improves. Instead, when user
profiling is of high accuracy, the seller strategically chooses a
high uniform price to stimulate their increased social activities
to profile more users.

Index Terms—social networks, user profiling, personalized
pricing, dynamic Bayesian game

I. INTRODUCTION

Recent advances in information technology have enabled
user profiling, which is a data analytic tool to outline users’
preferences, demands, and other characteristics. As a conse-
quence, a product seller can identify (to some extent) how
much different users are willing to pay and offer personalized
prices to these profiled users. Otherwise, a product seller offers
a uniform price to users whom the seller fails to profile, i.e.,
the non-profiled users. For example, Orbitz was reported to
differentiate users based on their computers’ operating systems
and charge higher hotel prices to Mac users than Windows
users [1]. Uber also prices users based on their online/social
behaviors, which indicates their spatial and temporal patterns
of movements [2]. However, users’ information exploited in
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profiling is usually private; hence it is challenging to obtain
directly due to users’ privacy concerns.

With the ever-increasing penetration of social networks and
proliferation of user-generated data, a product seller can better
track users’ profiles through monitoring users’ social network
activities. For example, users reading sports news extensively
or sharing photos about fitness frequently tend to value sports
products and gym services more than average users. Therefore,
user profiling by extracting private information from social
media data has been gaining increasingly importance and
attention. Indeed, recent studies shed light on user profiling
in social networks. Reviews [3], [4] systematically surveyed
the techniques and methodologies involved. Specifically, some
studies used digital records of users’ behaviors in Facebook
[5], [6] and Twitter [7], [8] to successfully explore their private
traits.

Though the profiling technology is ready, how the seller
should exploit such technology to help their pricing decisions
is unclear. So far, there is no such analytical study in existing
studies between user profiling in social media and personalized
pricing. Such an interaction is complicated, as personalized
pricing can change users’ social behaviors and user profiling
efficiency. Moreover, users need to weigh between social
interaction satisfaction due to positive network externality and
the risk of being profiled. Our study aims at filling the gap
in the related literature by trying to answer the following two
key questions:

e Key Questions 1: How does the seller’s user profiling
technology in social networks affect users’ social activi-
ties?

o Key Questions 2: How will the seller optimize his pricing
schemes considering user profiling in social media?

To answer the above questions, we face the following
challenges in game theoretic modeling and analysis:

e Double Coupling in Decision-Making: On one hand,
users’ social activities are coupled with each other in
social media, as each user’s satisfaction level depends
on the others’ activity levels. On the other hand, there
is also a coupling between the seller and users. While
enjoying social interactions, the users should be aware of
the risk of being profiled and charged personalized prices
by the seller. The seller, correspondingly, should well
balance the uniform pricing to non-profiled users and the
personalized pricing to profiled users, as increasing the
former pricing motivates more users to be active (and can
be profiled) but will also lose some potential customers.
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e Randomness in User Profiling and Pricing-driven Infor-
mation Revelation: Even if a user exposes a significant
amount of personal information, the seller’s probability of
successfully profiling this user may still be random due to
the constraints in profiling technology or privacy-related
regulations. Furthermore, the seller needs to use proper
pricing to incentivize (instead of directly controlling) the
users’ activity levels.

Based on the above, we model and analyze the coupled
interaction between users and the seller under incomplete
information. Specifically, we aim to shed light on guiding
users’ social interaction activities under user profiling and the
seller’s pricing decisions to maximize the sale revenue.

The contributions of this work are summarized below.

o Novel Personalized Pricing through User Profiling in
Social Networks: To the best of our knowledge, this is the
first analytical study on how to set personalized pricing
by exploiting user profiling in social networks. Such an
interaction is complex as personalized pricing can affect
users’ social activities and user profiling efficiency.

o Dynamic Bayesian Game Formulation: We formulate the
interactions between users and the seller under informa-
tion asymmetry as a dynamic Bayesian game. First, users
decide their social activities by trading off the social
network benefit against the potential risk of revealing
private information. Then, the seller exploits users’ pro-
files to make price offers. It is challenging to analyze it
due to i) the randomness in user profiling, and ii) the
coupling among users’ activities as well as the coupling
between the seller’s pricing decisions and users’ social
interactions.

o Perfect Bayesian Equilibrium Analysis: By alternating
backward induction and forward induction to ensure
consistent belief updates over different stages, we fully
characterize the Perfect Bayesian Equilibrium (PBE),
revealing the threshold structure of users’ social inter-
actions and characterizing the seller’s optimal pricing
decisions. To our surprise, we show that users’ social
activity levels in social media do not monotonically
decrease as the profiling technology improves. Instead,
when user profiling is of high accuracy, users tend to
increase their activity levels since the seller chooses a
high uniform price to stimulate their social activities to
profile more users.

The rest of the paper is organized as follows. In Section
II, we review the related literature. In Section III, we present
the system model about a group of users and the seller with
a dynamic Bayesian game. In Section IV, we present the
Perfect Bayesian Equilibrium analysis in Stages I and II and
explain the results. In Section V, we explore the impact of
the user profiling accuracy on personalized pricing. Finally,
we conclude this paper in Section VI. Most of the proofs are
technically involved, thus presented in the online technical
report [9] due to space limitations.
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II. RELATED WORK

To enable personalized pricing, there is a growing literature
focusing on users’ product purchase behaviors in online market
considering the implication to reveal their private information
to product sellers (e.g., [10], [11], [12], [13], [14]). For
example, Conitzer ef al. in [10] analyzed a repeated purchases
scenario, where users could take some measures to hide their
past purchase records to hinder the personalized pricing. In
[12], Aron et al. analyzed users’ purchase behaviors by further
considering the benefit from product/service customization
through private information revelation. Koh ef el. in [13] also
considered the effect of privacy loss on users’ product purchase
decisions. Valletti ef al in [14] studied how users conceal their
private information, given the seller’s investment on consumer
profiling technology.

The existing studies did not consider the seller’s proactive
pricing strategy to profile users or affect their behaviors’ in
social networks. Overall, the linkage between user profiling in
social networks and personalized pricing is missing in current
studies. Thus, this paper faces unique challenges to analyze the
double coupled interactions among users in social networks
and between users and the seller under random user profiling.
This leads to a rather involved Perfect Bayesian Equilibrium
analysis of such dynamic Bayesian interactions.

Several works in personalized pricing studied the Perfect
Bayesian Equilibrium (PBE) of their models (e.g., [13], [14],
[15]). The standard procedure in analyzing PBE is as fol-
lows. First, a belief (usually of threshold structure) in certain
players’ strategies is proposed. Then, the remaining analysis
about PBE is derived using backward induction based on the
proposed belief. Finally, the equilibrium strategies and the
proposed belief are verified considering belief consistency and
sequential rationality. While in our work, to ensure consistent
belief updates, we propose to alternate backward induction
and forward induction to successfully analyze our dynamic
Bayesian game, as motivated by the advanced game theory
literature [16]. Specifically, we explicitly use forward induction
to characterize the structure of the equilibrium belief.

III. SYSTEM MODEL

STAGE I

STAGE 1T
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___________ Seller  Users
Decide Social Activities Leverage User Profiling & Offer a Price to Each User Make Purchase Decisions

STAGE III

User Profiling

Fig. 1. System Model

We consider the coupled interactions among the seller
and users in N/ £ {1,...,n} as a three-stage Bayesian
game, as illustrated in Fig. 1. The users’ social network is
a public platform to interact (e.g., Facebook and Twitter). The
shared data is monitored by the platform or even accessible
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by the public, and the seller exploits users’ private profiles
from their social activities to enable personalized pricing. For
convenience, without any gender bias, we hereafter use female
pronouns to refer to the seller and male (or plural) pronouns
to refer to each user (or users). The timing of the dynamic
game is illustrated below.

o In Stage I, each user 7 € N decides his (normalized)
social activity level x; in the normalized range [0, 1], by
trading off the social network benefit (through interacting
with the other users) and the potential risk of revealing
his private information to the seller. Here, x; of each
user ¢ indicates the time or attention he devotes to social
media. Specifically, the normalized maximum level of
social activity x; = 1 means user ¢ spends all his available
time using the social networks, and z; = 0 implies the
user is inactive to use the social media.

o In Stage II, the seller first leverages the profiling tech-
nology on users’ activities in the social network to figure
out their product valuations or willingness to pay (if
possible).! Once the seller receives an accurate signal
about a particular user ¢’s valuation of the product v;,
she would tailor the price for that user based on it,
offering a personalized price exactly the same as his true
valuation p; = v;. Then the seller turns to those users
that are not successfully profiled (due to their inactive
social behaviors or the profiling technology constraints)
by announcing a uniform price pg offered to them. Thus,
the price offered to each user ¢ is given by,

p; = Vi,
! Po,

« In Stage III, each user i € A/ makes his binary purchase
decision d; € {0,1} regarding whether to purchase the
product by comparing his valuation v; to the offered price
bi.

In the following, we first introduce the user model in the
social network and the seller model under user profiling, and
then formally formulate the dynamic Bayesian game between
the seller and the users.

if profiled by the seller,
otherwise.

(D

A. Users’ Model under User Profiling

In this subsection, we first model users’ social interaction
in Stage I and the product purchase benefit in Stage III (see
Fig.1), and then formulate the final payoff of each user.

1) Social Interaction in Stage I: Users enjoy the social
interaction on the platform, leaving traces or data online. Given
the risk of being profiled and charged personalized pricing,
each user ¢ € N needs to carefully decide his activity level
x; € [0,1] (e.g., sharing photos, videos, posts, and comments)
in social media. Let x_; summarize the social activity levels
of all other users except user i.

'We assume that the seller could not directly observe the social activity
levels of users. Instead, she only observes the user profiling results. This cor-
responds to the fact that the seller can only leverage the profiling technology
to mine users’ social media traces without accessing the raw data due to some
privacy regulations.
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Each user ¢ will gain a higher satisfaction level (e.g., feeling
connected, gaining empathy and identity, and strengthening
communication) in the social media if the social activity levels
(by himself and other users) are higher [17]. Then, user ’s
social network benefit is modeled as below,

gi(z;,x_;) = z;In Z;vj +wo |, 2)
J#i

where we consider the positive effect of the other users’
social activities on each user’s social network benefit. The
choice of logarithmic function is motivated by Zipf’s law [18],
which emphasizes that the marginal benefit that each user @
experiences is diminishing as the others intensify their social
activities.

Specifically, once user ¢ is totally inactive in social networks
(x; = 0), he would have zero social network benefit in (2) no
matter how active the others are. If x; is positive, even if all
the other users are inactive (x; = 0,V # 1), user 4 still has
positive intrinsic benefit in (2) with wy > 1 for using some
basic services in social media without interaction with others.

2) Purchase Benefit in Stage I1I: The seller sells products or
services to the users. Each user ¢’s valuation for the commodity
or service is v;. For analytic convenience, we assume that
users’ valuations are independent and identically distributed
(i.i.d.). Each user 7’s value v; is uniformly distributed in the
range [0, 7] with an upper bound ©. The uniform distribution
is assumed for ease of exposition of our results later, and our
analysis method can be applied to some other distributions
such as normal distribution.

We characterize users’ purchase decisions in Stage III
below, given the offered price p; in (1),

d; (vi,pi) = L(vi > pi), 3)

where 1(-) is an indicator function.
Hence, the final payoff m; of each user i is modeled as
below.
o If user ¢ does not purchase the product (d; = 0), he only
has social network benefit ¢;(z;,x_;) in (2). That is,

(2, T_i|d; = 0) = qi(xi, ;). 4

o If user ¢ decides to purchase (d; = 1), the final payoff
of user ¢ consists of both the social network benefit
qi(x;, ;) in (2) and the purchase surplus v; — p; given
by,

m—(;vi,w,ﬂdi = ].)

— { ql(x’m m—i)7
(%)

v; — po + qi(Ti, T—;),
Especially, when user 7 is successfully profiled by the
seller, he is left with zero purchase surplus (valuation-
pricing) due to the personalized pricing. Otherwise, he
can have a positive purchase surplus under the uniform

pricing pg.

if profiled by the seller,
otherwise.
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B. Seller’s Model under User Profiling

The seller employs user profiling technology (e.g., [6],
[7]) to mine users’ social activity data and statistically infer
their willingness to pay (if possible). The profiling technology
provides a signal about the user’s valuation v; (Vi € N) of
the product or service.

Similar to [11], [13], [14], we consider a typical binary
profiler which will output a signal about users’ true valuation
if and only if it is sure about the result. We assume that the
profiling result about user ¢ follows a Bernoulli distribution.
Specifically, user ¢’s valuation v; is revealed with a profiling
probability A; € [0,1]; otherwise, it is not revealed and non-
profiled. Here, the signal accuracy ); is increasing in user i’s
social activity level z;, i.e.,

Ai = bz, (6)

where 0 < a<land 0<§ <1.

Equation (6) is a concave function in z;, implying that
obtaining extra data from user i’s social activity becomes
less useful as the seller already harvests a lot of critical
data. Note that (6) is upper bounded by § (referred as user
profiling accuracy). This practically captures the fact that
due to the constraints in profiling technology or privacy-
related regulations (e.g., General Data Protection Regulation
(EU) [19]), whether a user will be successfully profiled is
probabilistic even though he is fully active in social networks.

One interpretation of such a profiler assumption is to
consider a binary hypothesis testing of user ¢’s valuation at a
value v; with a confidence level \;. Our analysis method is also
applicable for more general profiling models. For instance, we
can extend our analysis to the case of noisy observation, where
user 4’s valuation v; is a random variable over support [a;, b;]
following a CDF G(-). Instead of choosing price p; = v; in
(1), the seller in this more general case can choose the optimal
individualized price as p; = argmax,,>o pi(1 — G(p;)). For
the clarity of presentation, in this paper, we will focus on the
binary profiling model.

In Stage III of Fig.1, the seller gains (sale) revenue if users
purchase the product at the pricing vector p = (p;,Vi € N)
announced for all users. Denote the sets of users who are not
profiled and successfully profiled as Ny and N7, respectively.
As the seller charges pg for non-profiled users and p; = v; for
each user i € N;, we model the sale revenue of the seller as
follows,

U(p) = Z po - 1(User ¢ Purchase) + Z Vi (7
i€No 1EN]

C. Dynamic Bayesian Game Formulation

We model the interactions between the seller and users as
the three-stage dynamic model in Fig.1, where users and the
seller take turns to make their decisions. Besides the social
interaction coupling among users, there is also a coupling
between users and the seller. The users face the risk of
being profiled and charged personalized prices by the seller
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when enjoying social media. The seller needs to balance the
personalized pricing and the uniform price for non-profiled
users since a higher uniform price would encourage more users
to increase the activity levels but may discourage other non-
profiled users from purchasing the product.

As for the game incomplete information structure, in Stage
I, each user ¢ initially only knows the common distribution of
other users’ valuation (instead of the precise private values).
In Stage II, through user profiling, the seller obtains more
information regarding the valuations of those profiled users;
hence the level of incomplete information decreases in the
system.

In the analysis of dynamic games, a standard approach is
backward induction. However, if we only use the backward
induction method, we only manage to solve the following two
decisions.

o Users’ Purchase decisions in Stage III: Each user i’s
optimal purchase decision given the offered price p; is
characterized as (3).

e Seller’s Personalized Pricing Scheme in Stage II:
Given knowledge of any profiled user ¢’s valuation v;, the
seller’s optimal personalized pricing scheme is to offer a
personalized price exactly the same as the valuation, i.e.,
bi = ;.

Due to the double-coupled decision-making of users’ social
activities and the seller’s uniform pricing (for non-profiled
users) in Stages I and II, backward induction alone cannot
solve the equilibrium. Instead, to ensure consistent belief
updates over different stages, we further combine forward
induction motivated by the advanced game theory literature
[16]. That is, we propose to alternate backward induction
and forward induction in the next section to analyze the
Perfect Bayesian Equilibrium (PBE) of the dynamic game
under incomplete information.

IV. PERFECT BAYESIAN EQUILIBRIUM ANALYSIS IN
STAGE I & 11

After determining users’ purchase decisions in Stage III
and the seller’s personalized pricing schemes in Stage II, this
section continues to analyze the perfect Bayesian equilibrium
in Stage I and II.

We explain our PBE analysis as follows. First, in Section
IV-A, we use backward induction to analyze the seller’s
uniform price decision in Stage II, based on a belief of users’
social interaction structure. This belief is derived through
forward induction considering the users’ social activities in
Stage I, which we will elaborate on in Section IV-B. In
Section IV-C, we combine the analysis in forward induction
and backward induction to derive the PBE.

A. Backward Analysis of the Seller’s Uniform Price in Stage
1

This subsection explores the seller’s uniform pricing deci-
sion in Stage II. Specifically, we first propose a belief about
users’ social activity structure in Stage I, based on which we
analyze the seller’s uniform pricing.
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We cannot directly analyze the seller’s uniform pricing in
Stage II through traditional backward induction. Specifically,
a standard backward induction would depend on users’ social
interactions in Stage I. However, there exists a great diversity
of possible outcomes of users’ social activity decisions, which
brings great complexity to the uniform pricing discussion
through traditional backward induction in Stage II. To enable
the seller’s backward analysis of uniform pricing, we first
present the structural result of the users’ social decisions in
Stage I by using forward induction to be explained in detail
in Section IV-B.

Belief 1. (Belief of Social Interaction Structure) There exists
a common valuation threshold v* € [0,7] in Stage I,
o Any user i with a valuation v; > v* would be inactive,
i.e., xz(vz) = 0,'
o Any user i with a valuation v; < v* would be active, i.e.,

Belief 1 will be formally proved in Section IV-B. Intuitively,
users with higher valuations prefer to be non-profiled and
charged with a low uniform price py instead of the high
personalized prices v,;. Thus, he refuses to reveal his profile
and is inactive on the social network. If user ¢’s valuation
v; is less than v*, the user’s consideration of social network
benefit outweighs the potential of being profiled. Hence, he
will choose x; = 1, and the chance of being successfully
profiled is § according to (6).

In the backward induction analysis in Stage II, we will
consider an arbitrary value of threshold v*. Understanding this
threshold-based structure of users’ social decisions, the seller
in Stage II updates her belief of the profiled and non-profiled
users’ valuations below.

Initially in Stage I, the seller only has prior knowledge
about users’ valuation distribution (i.e., uniform distribution
in [0,7]). After user profiling, the seller’s posterior belief
(probability density function) for a profiled user f(v;|i € N7)
is,

1
f(vi|i€/\/1):;, if 0 <wv; <07, 3)

whereas the posterior probability density function for a non-
profile user’s valuation f(v;|i € Np) is,

10 for 0 < vy < v
vili € Ng) =4 T Svisvs 9
foliean ={ T USRS o

where v > dv* since v* < ¥ and § < 1. Noticed here, non-
profiled users include two types of users: inactive users and
active users whom the seller fails to profile.

Before we further derive the optimal uniform price pg in
the general case of random user profiling 6 € (0, 1), we first
introduce a benchmark of no profiling with 6 = 0.

Lemma 1. [f there is no user profiling (6 = 0), the seller only
considers the uniform price, which is

(10)

and the valuation threshold for users’ social interaction v* =
0.

Py =17/2,
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Next we analyze the general case of § € (0,1) and compare
with the benchmark with § = 0 in Lemma 1.

Proposition 1. Given any users’ valuation threshold v* in
Stage I, the seller’s optimal non-profiled pricing is

3 if vt < 3,
o) =q v g <vis55 (11)
STy i 55 < vt <0,

Proposition 1 suggests that, if relatively few users with
smaller valuation than v* prefer to reveal their profiles (i.e.
v* < g), the seller mainly cares about the non-profiled revenue
and the uniform pricing in (11) degenerates to (10) in Lemma
1. As v* increases and more users with valuations less than v*
can be profiled, the non-profiled users’ valuations under the
seller’s posterior belief increases according to (9). Thus, she
will charge a higher uniform price from those users as in the
second case of (11). Finally, as v* becomes close to v and
more users can be profiled, very few non-profiled users are
with high valuations. Hence, the seller will reduce the non-
profiled price to extract more sale revenue from users with
lower valuation, as in the third case of (11).

B. Users’ Social Activity Decisions in Stage I

In this subsection, we use forward induction to prove the
threshold structure of users’ social activity levels in Belief 1.
Specifically, we characterize the equilibrium of users’ social
interaction game in Stage I by predicting the platform’s
uniform price py.

In Stage I, users cannot completely control their chances
to be profiled due to randomness in (6). They also need to
estimate the seller’s pricing for the non-profiled case in Stage
II, which in turn depends on users’ social activities levels in
Stage 1. In this case, each user ¢ in Stage I would maximize
his expected utility as follows:

Ti(xg, x_y) = 1n(z zj+wo)+ (1 —0zf') max{v; — po,0}.
j#i
(12)
Recall Belief 1, describing the threshold structure of users’
social activity decisions. We prove it through the following
three steps:

(1) We first identify users’ social interaction in Stage I by
predicting the uniform price py as a static Bayesian
game with strategic complementarities [20]. This then
indicates the existence of Bayesian-Nash equilibrium in
users’ social activity levels.

(i) We then verify the convexity of users’ expected utility,

which means the best response of each user ¢ would be
either z; = 1 or z; = 0 instead of social activity level
somewhere between (z; € (0, 1)).

Finally, we prove that the social interaction equilibrium
has a threshold structure.

(iii)

Detailed proof is in the online technical report [9].
Based on the threshold structure of users’ social interaction
equilibrium, we further characterize the valuation threshold as
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below. Denote the cumulative distribution function (CDF) each
user i’s valuation follows as F'(-).

Theorem 1. The common equilibrium valuation threshold v*
satisfies,

n—1 n—1 1
v* =po + E ( m )gln(m—i—wo)
m=0

F(u*)™[1 — F(u")]" "™, (13)

Proof. (Sketch) To see why the equilibrium threshold is
characterized as in (13), we consider the two social activity
states in equilibrium: active (x; = 1) and inactive (x; = 0).
That is, for a user with a valuation equal to the threshold,
the expected utility (consisting of social network benefit and
purchase surplus) he will gain when he is active and the
expected purchase surplus he will gain if he is inactive would
be the same. It follows then that user would be indifferent
between active and inactive.

Detailed proof is in the online technical report [9]. O

Alternatively, the formulation above in (13) could be re-
written considering the expectation over the number of users
who choose to be fully active online except the user himself.
Such a number, denoted by n,, follows the binomial distribu-
tion b(n — 1, F(v*)).

N 1
v =po+E,, 5 In(n, + wp). (14)
Proposition 2. The Bayesian-Nash Equilibrium of users’
social interaction game in Stage I is unique.

Notice we are now using forward induction in analyzing
users’ social activity decisions in Stage I. Specifically, we
derive the valuation threshold v* given the seller’s uniform
price po in Stage II, i.e., v*(pg). We next study how the
equilibrium threshold v* would be affected by (how users
predict) the uniform price py in Stage II.

Proposition 3. The equilibrium valuation threshold v*(pg) is
nondecreasing in pg. Specifically,
1) If po <o —In((n—1)4wy)/d, v*(po) increases in py;
2) Ifpo >0 —1In((n—1)+wg)/d, v*(po) does not change
with py.

When the uniform price pg is below the threshold, the
potential loss in purchase surplus due to personalized pricing
is large, especially for high-valuation users, compared to
the social network benefit. Thus these high-valuation users
choose to be inactive to avoid being profiled. As the uniform
price increases, the difference in purchase surplus between
being charged by a personalized price and a uniform price
diminishes; hence high-valuation users gradually choose to be
active online.

C. Perfect Bayesian Equilibrium

In this subsection, we derive the perfect Bayesian equilib-
rium (PBE) of the whole three-stage game by combining users’
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social interaction equilibrium threshold v* in (13) and the
seller’s equilibrium uniform price pj in (11). In this way, we
can meet the two requirements of PBE: (i) belief consistency:
the seller’s belief in Stage II is derived using Bayes’ rule
based on users’ social activities in Stage I; (ii) sequential
rationality: the seller optimizes uniform pricing to maximize
her sale revenue given her belief in Stage II [21].

For illustration convenience, we now denote the expected
social network benefit of each user i as §(v*) given the
valuation threshold v*, i.e.,

Gw*) =E,, In(n, + wo)- (15)
Theorem 2. The perfect Bayesian equilibrium of the three-
stage game is as

e Case 1 (All Active in Social Networks) If

v 1
3 < 5 In((n — 1) + wo),
a) Users’ equilibrium valuation threshold is v* = v, i.e., all

users will be active online (v; = 1,Vi €¢ N);
©

b) The seller’s optimal uniform price is p; = 5.

o Case 2 (Partially Active in Social Networks) If

(16)

v 1
3 > 5 In((n —1) 4+ wp),

a) Users’ equilibrium valuation threshold is v* = ol < 5,

where vl is the unique solution to % + %T) =0.
i.e., there exist some users with high valuation choose to
be inactive;

b) The seller’s optimal uniform price is

a7)

A T 1
pé:vT—Q(;} ) <6—gln((n—1)r+w0). (18)
A
\
18 \
\
16 \
1 v <D
\;lwm \
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Fig. 2. Perfect Bayesian Equilibrium under Mean Valuation 2 and User

2
Profiling Accuracy &

Fig. 2 illustrates Theorem 2 which jointly considers the
mean valuation and the user profiling accuracy. The insights
are as follows.
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e In Case 1 (All active), with a small purchase surplus
(small mean valuation g), users are all going to fully
expose themselves z; = 1, without worrying too much
about the purchase loss when being profiled. This, in
turn, leads to the fact that non-profiled users would be
dispersing uniformly in valuation. Hence, the platform
maximizes the sale revenue from those non-profiled users
by setting the uniform price exactly the mean valuation.

e In Case 2 (Partially Active), where valuation for the
commodity is significant, being profiled brings a certain
extent of purchase surplus loss to the users so that some
high-valuation users would choose to be inactive. In this
case, the seller could set the uniform price higher than
the mean valuation g, in order to extract the sale revenue
from those non-profiled users with higher valuations.

We can show that under the perfect profiling case with § =

1, the equilibrium valuation threshold v* = v, similar as case 1
in Theorem 2 with small § (including the benchmark of § = 0).
It then indicates that v* does not monotonically changes in 4.
This is because the valuation threshold v* = ¥ for both § = 0
and 6 = 1, and v* < © for some § € (0,1). Hence, the
equilibrium valuation threshold cannot monotonically change
in 6.

Corollary 1. For perfect profiling with 6 = 1, the equilibrium
valuation threshold is v* = v, i.e., all users are just active
in equilibrium (x; = 1,Vi € N), and the platform’s optimal
uniform price is pf = v — In((n — 1) + wp).?

Compared with the no profiling case in Lemma 1, the
optimal price pj under § = 1 is different even though both
cases induce all users to be active v* = v. The difference
lies in the role of the uniform price set by the seller. In the
no profiling case § = 0, uniform price is designed purely to
maximize sale revenue, all from non-profiled users. However,
in the perfect profiling case § = 1, the seller sets the uniform
price not only to maximize the sale revenue from non-profiled
users but also to encourage more users to be active online.
The latter consideration would allow the seller to obtain more
revenue through personalized pricing. This accounts for the
higher optimal uniform price in the perfect profiling case.

V. SENSITIVITY ANALYSIS OF USER PROFILING
ACCURACY §

After characterizing the PBE, we are ready to provide the
sensitivity analysis on user profiling accuracy §. We are also
interested in examining how the seller’s revenue is affected by
profiling accuracy.

Proposition 4. Users’ equilibrium valuation threshold v* is
not monotonic in user profiling accuracy 6. Specifically,
(1) (All Active) If

d<=-In((n—1)+wo), (19)

SN

2Here any uniform price that is no smaller than & — In((n — 1) + wp)
is optimal. Without loss of generality, we will choose the lowest value, and
any value above it would not change the equilibrium payoff of the seller and
users.
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Fig. 3. Equilibrium Valuation Threshold v* and Optimal Uniform Price pg
under Different Users Profiling Accuracy §

both users’ equilibrium valuation threshold v* and the
seller’s optimal uniform price does not change with 0.
(2) (Partially Active) If
2
d>—-In((n—1) 4 wp), (20)
v
users’ equilibrium valuation threshold v* first decreases

and then increases in 6, whereas the seller’s optimal
uniform price increases in 9.

Proposition 4 shows that users’ activity levels first stay as
a constant, then decrease, and finally increase as the user
profiling § improves. We illustrate such a trend in Fig.3, where
the blue curve and the red curve denote users’ equilibrium
valuation threshold v* and the seller’s optimal uniform price
pg respectively. Based on Proposition 4, we further divide the
range of ¢ into three regimes, which are discussed below.

o Regime I (All Active): In this regime, J is so small that
it’s hard to profile users even when they are fully active in
social networks. Thus, all users choose to be active. This,
in turn, leads to the fact that non-profiled users disperse
uniformly in their valuations. Hence, the seller maximizes
the sale revenue from them by setting the uniform price
equal to the mean valuation as in the no profiling case
6 =0).

o Regime II (Partially Active with Decreasing v*): As ¢
continues to increase, users are more likely to be profiled,
leading to a higher risk of being charged personalized
prices when being active in the social network. Especially,
a user ¢ with a high valuation v; would suffer a great
loss in purchase surplus from it, motivating him to be
inactive z; = 0 to prevent from being profiled (v*
decreases). Hence, the seller would increase the uniform
price to extract revenue from those non-profiled users
with v; > v*, as the mean valuation of non-profiled users
increases with 4.
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o Regime III (Partially Active with Increasing v*): After
reaching the minimal equilibrium valuation threshold,
inactive users in Regime II suffer less from being profiled
due to the increasing of uniform price p§. Thus, those
users gradually choose to be active and enjoy the social
networks again. In turn, the seller will keep increasing
uniform price p{ to capture the sale revenue from those
remaining high-valuation non-profiled users as well as
motivate more users to share information online.

Although users’ social activities may decrease for a specific
range of profiling accuracy, as discussed for Regime II above,
we find through numerical studies that the size of profiled users
always increases in the accuracy.® Overall, the improvement
of user profiling accuracy makes it easier to profile users for
the seller.
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We finally explore how the profiling technology affects the
seller’s sale revenue. Fig. 4 numerically illustrates the seller’s
total sale revenue (including its non-profiled revenue part and
profiled revenue part) versus the profiling accuracy § at the
PBE, where we consider 100 users with uniformly distributed
valuations and fix the mean valuation g as 20. We can see
that the seller’s profiled sale revenue increases with the users’
profiling accuracy because the size of profiled users increases
in §. Meanwhile, the non-profiled sale revenue decreases in d.
To some extent, the total sale revenue is transferring from the
non-profiled part to the profiled part as the profiling technology
advances. The total sale revenue is still increasing, hence
benefits from the improvement of profiling accuracy.

VI. CONCLUSION

In this paper, we study personalized pricing through user
profiling in social networks. We formulate the interactions
between the seller and users as a dynamic Bayesian game. It
is challenging to analyze the game given the double coupled
structure and the randomness in user profiling. By alternating

3Details are in the online technical report [9] due to space limitations.
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backward and forward induction, we characterize the Perfect
Bayesian Equilibrium, and find the surprising result that users’
activity levels first decrease and then increase as the profiling
accuracy improves. Meanwhile, the uniform price is kept on
rising by the seller to stimulate users’ social activities.

For future work, we will investigate the case where the seller
will experience a cost when profiling users. We will see how
the seller will balance the tradeoff between the profiling cost
and the sale revenue from more profiled users.
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