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Abstract—With the advent of low-power Internet of Things
(IoT), there is an increase in interest for designing inference sys-
tems in the cloud that aggregate and perform machine learning
tasks from the low-power sensor data. Yet, unlike traditional
mobile devices, low-power clients are too battery constrained to
transmit large amounts of data within short time spans, as needed
for many complex inference models.

In this paper, we present a vision for bridging the gap
between the power-starved low-power clients and the data-
starved inference engines in the cloud. We present a mechanism
that takes into account the battery life of these clients and how
it affects the traditional inference models.

Index Terms—LP-WANs, Machine Learning, data aggregation

I. INTRODUCTION

Low-Power Wide-Area Networks (LP-WANs) are empow-
ering the urban and rural environments by enabling various
applications such as metering, asset tracking and smart ir-
rigation on farms. These networks connect ten-year battery
powered devices to base stations several miles away, with
each device transmitting a few kbps at maximum. These low-
power sensors have created a new opportunity for leveraging
compute in the cloud to develop novel inference models for
various tasks. For e.g. ”Which areas in the city are flooded?”,
”Is the air pollution sufficiently low outside for a patient with
breathing difficulties?”, ”Should I irrigate my farm today?” are
some questions that can be answered by deploying multiple
inexpensive sensors across a city (or a farm) and using the
data to make recommendations.

However, as the number of LP-WAN sensors scale, it
becomes increasingly challenging to get frequent information
from each and every sensor. Indeed, our recent work [1]
has shown that querying 10,000 clients using traditional ap-
proaches may even take several hours. Despite recent ad-
vances [2] in developing novel MAC layers for LP-WAN
technologies, the high latency in data retrieval at scale remains
an issue.

Another important issue when dealing with low-power
clients is the energy burden of communicating the information.
Typically, these clients can provide a 10 year battery life on
an AA battery albeit transmitting small amount of data every

This work is funded by NSF grants 1837607, 1942902, IoT@CyLab and
Kavcic Moura Endowment Fund.

15 minutes. This becomes worse as the range of the clients
increases, lowering their data rate and in turn worsening their
battery life. Thus, there is an important need to rethink the
physical layer of low-power clients with a focus specifically
on rapid machine learning inference.

In this paper, we present a vision for developing inference
solutions in the era of low-power IoT clients and address the
above issues in developing machine learning models in the
cloud. We build on our recent work, QuAiL [1], on developing
a PHY-layer for aggregating weighted linear combinations
from low-power clients. This work develops a PHY-layer
mechanism for low-power clients at scale to respond to various
aggregate spatial, statistical and inference queries within the
duration of a single packet. While our prior work [1] is
primarily focused on data aggregation for statistics, this paper
specifically expands on its impact on the performance and
battery-drain when performing Machine Learning inference.
While our approach is broadly applicable across various Ma-
chine Learning algorithms (e.g. SVM, naive Bayes, etc.), we
focus on neural networks – one of the most general of such
approaches.

The key idea behind our approach is to replace one of the
layers of neural networks with a process that occurs naturally
in wireless networks. To better understand our approach, recall
that neural networks first construct linear combinations of
the inputs before deriving useful inferences. Our solution
replaces this linear combination phase of the first layer by
a natural wireless phenomenon - how signals combine in
the air. We force LP-WAN clients to transmit their signals
concurrently following a query from the base station. The
base station receives a linear combination of the overlapping
signals weighted by wireless channels. Since transmissions
from a large number of clients transmit concurrently, their
signal powers add up at the base station. This allows clients
to save precious battery-life by addressing key bottlenecks
– lower air time and transmit power [3], [4]. The received
signals are then passed along through the remaining layers of
the neural network for performing the required inference task.
The rest of this paper describes the various considerations in
making such a design practical.

The first of those considerations is the ability of machine
learning models such as neural networks (NNs) to be trained
to maximize the robustness at the first layer. Indeed, while
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Fig. 1: Our approach co-optimizes the PHY layer and machine
learning for inference on sensed data in LP-WAN to conserve
client battery.

measuring these weighted linear combinations in the presence
of noise, the received measurements suffer from additional
errors reducing the accuracy of the inference models trained
assuming ideal data. We present how these errors can be
modeled and optimized for high-fidelity inference on sensor
data despite the error overheads of quick aggregation schemes.

Another key consideration is that of client battery life –
specifically the trade-off between system performance and
battery-drain of the low-power clients. We analyze this trade-
off and demonstrate how by reducing the transmit power can
enable clients to even enable 7× their typical battery life1.

The rest of the paper is organized as follows: Sec. II presents
related work on machine learning for low-power IoT, Sec.
III gives a brief outline of our system, Sec. IV presents
how machine learning can be trained differently to optimize
for our approach, and Sec. V highlights the energy-accuracy
tradeoff for machine learning applications leveraging the above
approach. Sec. VI presents experimental results.

II. RELATED WORK

Related work falls broadly in three categories:

LP-WANs: LP-WAN deployments in both licensed (NB-
IoT [5]) and unlicensed (LoRaWAN [6]) frequencies have
witnessed rapid deployment globally [7], [8]. Towards de-
veloping these technologies, there has been much work done
on developing novel approaches for synchronization [9], [10],
association [11], [12], power optimization [3], [13], com-
munication technology [2], [14], and power adaptation [15].
Despite these advances, it has been experimentally observed
that the 10 year battery life is only achievable at extremely low
reporting rates [3], [4], [13] with the synchronization overhead
as the key bottleneck for smaller data reporting intervals.
There has also been much work done on developing other
LP-WAN technologies such as LoRaWAN [6] and SigFox
[16], which provide significantly larger battery lives due to
lack of requirement of backward compatibility with cellular
infrastructure.

Our work aims to reduce the power burden of LP-WAN
clients without sacrificing it altogether, when performing ma-
chine learning inference. We achieve this via a novel approach

1Assuming inference is the typical operation of these clients.

to send aggregate information across clients in the network,
each transmitting at a reduced power.

Machine Learning with Sensors: There has been much work
on machine learning inference based on sensed data [17]–
[21]. The emergence of smart cities and LP-WANs have
enabled city scale sensing applications such as environmental
monitoring [22], precision irrigation for parks [23], parking
management [24], and other participatory sensing applications
[25]. Many of these applications use of data from widely
deployed sensors to make predictions about the state of the
system. We specifically focus on tasks that can be posed as a
probabilistic classification problem [26] over sensed data. This
framework can answer both statistical questions, e.g. ”what
fraction of homes are cold today?” as well as more intricate
inference questions, e.g. ”is this home occupied based on its
electricity and water usage?”. Our objective is to complement
existing work on statistical inference on wide-area IoT data
with a new approach to significantly reduce the time and
battery-drain needed to collect this data.

Wireless coding in the air: Coding in the air using wireless
signals has been deeply studied by wireless researchers over
multiple decades [27] including leveraging MIMO [28], both
in the WiFi [29] and LP-WAN contexts [13]. There has
also been extensive work done on developing novel data
accumulation techniques by clever encoding mechanisms [30]
and optimal forwarding to minimize energy expenditure [31].
However, prior work in this space aims to retrieve individually
sensed data at the base station, while our work aims to perform
an inference task over aggregated sensed data.

There has also been much work done on developing
compressive sensing in wireless sensor networks [32] where
clients perform pre-processing to reduce communicated infor-
mation. Other researchers have used various other lossy coding
schemes [33] to optimize for energy by cutting redundancy.
While our approach builds upon these solutions, it specifically
optimizes neural-network based probabilistic classification on
a low-power wide-area network.

III. PHY LAYER DESIGN OVERVIEW

This section provides a brief overview of how our archi-
tecture (see Fig. 1) can perform probabilistic neural-network
based classification and regression on sensed values from LP-
WAN clients while lowering their power consumption. Most
LP-WAN clients are battery-starved, low data-rate transmitters
deployed over a wide-area motivating the need for a time and
energy efficient solution.

Our architecture (Fig. 2) has three steps: (1) The base station
queries the network, addressing the clients that must transmit
messages concurrently – either their sensed information (e.g.
temperature, humidity) or diagnostics (e.g. queue size). The
base station provides parameters dictating the timing and
power scaling of the user’s transmission; (2) Our approach
then designs a transmission mechanism that allows clients to
transmit their sensed information rapidly and at a fraction
of their typical battery overhead. We do so while remain-



Fig. 2: System Architecture

ing compatible with the architecture of LoRa and NB-IoT,
two common LP-WAN technologies. (3) Upon receiving the
transmissions, our system runs the probabilistic classification
algorithm and outputs the probability of different classes
inferred by the neural network classifier.

Our key innovation is the co-optimization of neural-network
based classification model and the LP-WAN client transmis-
sions to minimize client battery-life and airtime. Traditionally,
one would perform neural network inference by first collecting
data individually from LP-WAN clients and later performing
classification in the cloud. In contrast, our system replaces
the very first layer of the neural network responding to the
query by another natural linear process – collisions in the
air. Specifically, our approach: (1) First requests LP-WAN
clients to transmit synchronously within a single frame but
at a reduced transmit power; (2) Next, in doing so, collisions
from a large number of clients will add up in power over the
air. This allows each client to save battery-life by reducing
transmit power. Further, it delivers desired data in a time
and spectrum efficient manner (within a few milliseconds of
a frame). (3) Finally, we show how processing the resulting
linear combination of signals at the base station can still solve
a wide range of learning problems with minimal impact on
accuracy. While the main challenges and solution to those
challenges have been detailed in [1], some of the salient
features, particularly of significance to machine learning are:

Compatibility with NB-IoT and LoRaWAN: While colli-
sions are typical in LoRaWAN, cellular technologies such
as NB-IoT are explicitly designed to avoid them. In light
of these observations, our approach engineers collisions of
NB-IoT clients in a unique part of the cellular PHY which
is purely distributed and where collisions are common – the
random access channel (RACH). Recall that to transmit any
data, a client first needs to advertise its existence and request
for time-frequency resources. Clients do this by sending a
(randomly chosen) identifier on the random access channel,
following which they are allotted resources by the base station.
Each identifier is a unique frequency hopping code among a
set of well-defined orthogonal codes [11]. Traditionally, two
transmitters that transmit concurrently only collide when they

Fig. 3: Error in Occupancy detection reduces with larger
number of clients

choose the same (random) identifier. Typically, this leads to
packet loss and retransmission by both clients.

Our system chooses to re-use the random access channel to
engineer collisions between NB-IoT clients. Specifically, each
client modulates the power of the codes it transmits on the
RACH, based on sensed data. Each client chooses the set of
codes to transmit as well as any weights applied to them based
on a predefined set of weights supplied by the base station.
The base station therefore receives a linear combination of the
clients’ signals weighted by the wireless channels.

Dealing with negative weights (typical in most inference
models even at the first layer): Our system strives to make
collisions of signals over the air emulate this very first layer of
the neural network. To do so, it intelligently sets the weights of
applied to each client’s transmission per-code wij to emulate
the precise linear combination that occurs in a neural network.
In effect this makes the resulting output equivalent to the
desired linear combination from a neural network’s first layer,
modulo noise. A key advantage of this approach is that it does
not require the neural network to be re-trained each time on
the wireless channels.

However, an important problem remains in making the
above design practical: while weights trained by a neural
network can be positive or negative real numbers, weights
used in our approach can only be positive. Recall that our
solution relies on the linear combination of signal power,
which is an inherently positive number. We address this
challenge by moving the burden of subtraction from the air
to the base station. Specifically, our system subdivides the
codes of the RACH into two sets: positive codes and negative
codes. It then asks each client to transmit using a positive
code should the learned neural network weight be positive and
the corresponding negative code otherwise. At the receiver,
our approach simply subtracts the power received over each
negative code from the positive code to retrieve the desired
input for the neural network.



IV. IMPACT ON MACHINE LEARNING INFERENCE

In this section, we discuss how the design of a machine
learning model can influence the accuracy of our distributed
PHY-layer aggregation scheme.

A. Training Optimizations:

Traditional machine learning algorithms are trained to min-
imize classification/estimation error. While this works well
where the input features are clean and without noise, doing so
over low-power sensors may make the model highly volatile to
variance in these cheap sensors. Further, many of these sensor
behaviors change across environments, temperature and wear-
and-tear.

There are two ways, training of machine learning model can
be improved, to make the system robust to noisy aggregates:
(a) Prioritize gap over margin for classification: Traditional
machine learning approaches attempt to maximize the clas-
sification margin for all training samples retrieved from the
training dataset. For example, support vector machines are
developed keeping in mind that the only points that govern the
decision boundary between the two classes are those on the
border between the two classes. This is then extended to non-
linearly separable classes by using a higher dimension kernel
to make these classes separable in that domain. However, there
is an inherent assumption that accuracy is the only metric of
interest.

Another critical metric is robustness to noise. Indeed, much
of the information retrieved from these data retrieval ap-
proaches can highly vary rendering almost all training data
highly noisy. While mapping it to a higher domain is the
right approach for a hundred percent linear separability, it is
more important to maximize the gap for the most points as
well. Achieving this would require adding an additional term
in the optimization function that penalizes the inverse of the
gap for all training points classified correctly given a margin.
This would provide an effective tradeoff parameter that can be
controlled to estimate resilience to error in linear aggregates.
(b) Evolved Backpropagation in Neural Networks: Another
important impact of our approach is upon multi-layer inference
models such as neural nets or convolutional neural networks.
The traditional assumption is that inside the network there is
no additional noise being added. However, atypical approaches
such as our own break that assumption. Indeed, if we use
our solution to retrieve the linear combinations at the first
layer of the neural network, there is an additional noise being
added to the input of the next layer due to additive wireless
noise. To address this additional challenge, the neural network
optimization function will need to be designed to maximize
robustness at the input of the second layer instead of the first
layer.

B. Communicating models for Federated Learning:

An important question to address would be how does
one learn models remotely with recent work on low-power
machine learning enabled hardware and aggregate them at
the base station. Indeed, federated machine learning is being

touted as a leading approach for many tasks involving mobile
nodes.

Fortunately, our approach can assist the server in aggre-
gating these small models learned at the end devices by
providing weighted linear aggregates as a service. Further,
many complex aggregations can be mapped to linear addition
by a simple transform (for example, multiplication by log
addition) enabling even non-linear aggregation for the client
models.

V. ENERGY VS. ACCURACY TRADE-OFF

In this section, we study how we can retrieve major power
savings for these low-power IoT clients while maintaining a
low-error threshold for many applications involving complex
machine learning models, including neural networks.

Power Savings At this point, should multiple clients trans-
mit codes, the received signals may add-up constructively
or destructively in-phase. However, it is well-known that as
the number of interfering clients increases the power of the
received signals will asymptotically add up [34], while the
noise values will not. As a result, the net signal-to-noise ratio
at the receiver along any code j is:

SNRj =

∑
i |hi|2|si|2wij

σ2

Where σ2 denotes noise power. It is easy to see that on
average, signal-to-noise ratio scales linearly in the number
of clients. Conversely, increasing the number of clients by
any factor f allows each client to also reduce its transmit
power by the same factor f without any loss in signal quality,
reducing battery drain. This means that clients can dynamically
scale down their transmit power in proportion to the number
of clients in the network, as indicated by the base station,
leading to significant battery benefits (See Sec. VI). Additional
improvements in power savings are incurred by avoiding
synchronization overhead. This effectively ensures that client
spends an extremely small duration of time in transmit mode,
and as a result, achieving significant battery life gains.

VI. EVALUATION

We implement our approach using FSK radios on Semtech
SX1276 radios to communicate with an Ettus USRP N210
emulating the base station. We collect more that 150,000
GPS-location and time stamped channel measurements across
3 km2 area including geographical obstacles such as large
buildings, hills, rivers in the City of Pittsburgh. We then
emulate collisions using the collected channels to evaluate our
system at scale.

We build a light-weight NB-IoT stack including the NP-
RACH in C++/Gnuradio on the USRP base station. Our
experiments first train weights (wij) of the machine learning
model under consideration based on raw data. These weights
are then provided to the clients for transmitting the appropriate
energy across codes. Note that all the random matrices (M )
applied to the weights are initialized using a seed provided
during association. The base station receives the signals at



Fig. 4: Battery Life Improvement for various categories of
clients

the base stations and measures the power for all the codes to
decode them. This decoded vector is then passed on to the
neural network for performing the desired inference task.

We measure three quantities of interest: (1) Quality of
the solution against the ground-truth (pre-labeled data); (2)
Battery-savings using the battery model in [13] and (3) Air-
time. As a baseline, we consider a machine learning model
that uses raw sensed data transmitted over NB-IoT.

We evaluate the battery benefits provided by our system as
the number of clients increase. We evaluate the system for
emulated collisions of 100, 1000 and 10000 clients with the
occupancy dataset to estimate the average number of rooms
occupied. This statistic is of interest to assess the impact in
case of an emergency in a large urban space. Our evaluation
is based on three publicly available datasets for sensor-based
inference – the Gait dataset [35], Occupancy dataset [36] and
Intel-Berkeley dataset [37].

Effect on Quality: As shown in Fig 3, when we increase the
number of clients, the average quality of occupancy detection
improves with an error of just 0.3% at 10,000 clients. This is
due to the fact that as a greater number of clients participate,
you have more information to estimate the number of occupied
rooms and lesser room for error.

Effect on Battery Life: As shown in Fig 4, when we increase
the number of clients, the average battery life improvement
increases (albeit modestly) and is up to 3.13× for 10,000
clients. We note that the majority of the power savings of
our approach stems from the absence of need for uplink
synchronization and the short airtime. Any remaining benefits
seen across number of clients is due to the lower transmit
power per-client as more clients participate.

Battery Life Benefits across applications: We evaluate our
system’s ability to perform weighted aggregation for three
real world neural-network applications: (1) Estimating the
distribution of activities being done by 100 users wearing

Fig. 5: Battery Life gains and effect on quality of estimation
for various neural network applications

various sensors. (2) Estimating the occupancy of rooms using
a client with four sensors in each room providing data. (3)
Estimating the mean temperature of a room based on the
voltage fluctuations in the sensors in that same room. Note
that the above applications do not have simple models which
can be applied and hence the models must be learned.

As shown in Fig 5, we achieve a substantial increase in
the battery lives by up to 3.25× of the clients involved in
all three tasks at modest performance cost. We see that for
the occupancy task, we are able to assess the number of
occupied rooms with a precision of five rooms instead of one
room as the neural network does. In Gait identification of 100
clients, we are able to estimate the distribution of clients in
each category to within 1%. Finally, our solution demonstrates
about a 0.1% error in estimating the mean temperature of a
room based on voltage fluctuations of 100 clients.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a vision for developing inference
solutions in the era of low-power IoT clients and address
the above issues in developing machine learning models in
the cloud. Our solution builds upon our recent work on
developing a machine learning friendly PHY-layer for re-
trieving information from the clients. We then show how we
can cleverly design machine learning models to optimize for
lower errors over such schemes where the error likelihood
is significantly larger at the first layer. We show how by
designing our models correctly, we can optimize for energy
trade-offs in the client demonstrating significant power benefits
over näive approaches for inference from LP-WAN clients.
While this paper focuses on LP-WAN technologies, we believe
that developing a general purpose low-power PHY layer co-
optimized for machine learning in the IoT context remains an
important open problem.
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