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Abstract—Network densification has emerged as a powerful
paradigm to boost spectral efficiency and accommodate the
continual rise in demand for wireless capacity. In dense cell de-
ployments however, overlapping coverage areas may cause highly
varying interference conditions among different cells. Moreover,
denser networks experience more temporal load fluctuations due
to daily and hourly changing usage patterns. The currently
applied universal reuse frequency allocation is not suitable to
deal with these issues, and needs to be tailored to dense cell
deployments to ensure adequate performance in such scenarios.

In this paper we present a dynamic, load aware and self-
adapting frequency allocation scheme designed for dense cellular
networks: the DyCRA scheme (Dynamic Cost/Reward based
Allocation). The scheme makes decisions based on cost-reward
trade-offs: rewards arise in the form of capacity, and costs arise in
the form of interference (under spatial reuse). We quantify these
costs and rewards based on SINR, and use periodic load estimates
to determine if access points are in need of extra frequencies,
or can spare them, and the cost/reward structure is used to
determine which frequencies are allocated or released. Extensive
simulation results show that the DyCRA scheme provides efficient
resource allocations that adapt to changing traffic conditions
and yields significant performance gains in scenarios with non-
stationary traffic demands.

Index Terms—Self-organizing, frequency allocation, dense cel-
lular networks, dynamic load balancing

I. INTRODUCTION

Over the last years wireless networks have seen an immense
rise in demand, taxing the networks to the limits of their
capacity. Network densification is viewed as one of the key
options to boost capacity by reducing cell sizes and allowing
for higher spectral reuse and efficiency [1]-[3].

In dense cell deployments, physical constraints will typi-
cally make it hard to arrange the access points (APs) in an
ideal hexagonal pattern. This causes the natural cell regions
to be irregularly shaped and the coverage areas to significantly
overlap. Small and irregular shaped cell regions result in more
spatial variation of nominal traffic loads than in traditional
macro cell networks. Moreover, the current standard frequency
planning in cellular networks requires a (fairly) regular place-
ment of the APs and is based on universal frequency reuse [4].
In dense cell deployments however, the overlapping coverage
areas in combination with universal frequency reuse may
lead to highly varying and destructive interference conditions
among different cells [5].

To ensure adequate performance in dense cell deployments,
the frequency allocations will have to take the load imbalances
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into account and direct capacity towards APs where it is
most needed [6], [7], while keeping interference manageable.
In addition, dense networks experience more temporal load
fluctuations due to daily and hourly changing usage patterns,
which furthermore requires sub-band allocation schemes to dy-
namically react to changing load conditions, matching demand
and capacity in real time.

Despite the myriad research papers covering spectrum allo-
cation and (fractional) frequency reuse (FFR), frequency allo-
cation in dense cellular networks combines system character-
istics which have not been studied jointly: irregular cell sizes,
varying interference conditions and dynamic and imbalanced
traffic demands. Varying interference and dynamic traffic is
typically addressed by enhanced inter-cell interference coor-
dination (eICIC) and/or FFR, but their focus is usually on
a single macro cell that has to share its spectral resources
with embedded smaller cells (e.g. pico or femto cells). The
combination of irregular cell sizes and varying interference
is mostly covered by interference graphs, but these types of
results generally do not deal with dynamic traffic.

What furthermore adds to the complex operation of dense
cellular networks, is that with the massive numbers of APs
and the exact load conditions typically being hard to predict
under dynamic user behaviour, manual cell planning and
traffic engineering is highly impractical. This motivates the
use of self-organizing schemes; the frequency allocation can
be automatically adapted to match offered traffic loads with
spectral capacity. Such self-organizing schemes could also
be used to provide self-healing capabilities of the network:
automatic reconfiguration once APs shut down due to failures.

A. Contributions and results

In this paper we present a dynamic, load aware and self-
adapting frequency allocation scheme designed for dense
cellular networks. The scheme, which we call the DyCRA
scheme (Dynamic Cost/Reward based Allocation), has two
components: (i) a trigger component which determines when
to make a change in the frequency allocation, and (ii) a
decision component which decides what change to make.

We use a modified version of the single load interval (SLI)-
algorithm [8] as trigger. Using periodic load proxies, we
classify APs into three states: (a) in need of an extra frequency,
(b) no adaptation needed, (c) can spare a frequency. The
load estimates for APs determine in which states the APs are



classified, depending on whether a load estimate is (a) above,
(b) within, or (c) below a predefined load interval [pmin, Pmax]-
The decision component of the DyCRA scheme decides
which frequency to acquire/release, and can also decide not to
acquire a frequency. The decisions are based on cost-reward
trade-offs. Assigning a specific frequency to an AP brings a
reward, namely extra capacity for that AP, but also comes at
a cost: interference caused at surrounding APs. We quantify
these costs and rewards based on SINR values, and only if
the reward outweighs the cost by a certain margin will an
AP acquire a new frequency. An AP acquires the frequency
that comes with the best cost-reward trade-off. Combining the
two components (i) and (ii), we obtain a dynamic resource
acquisition (DRA) scheme for dense cellular networks.
Extensive simulation results show that the DyCRA scheme
indeed provides a highly flexible resource allocation that
adapts to changing traffic conditions and outperforms a static
allocation in scenarios with non-stationary traffic demands.

B. Discussion and related work

Resource allocation has been a major theme in wireless
networks research and hence there is a vast literature covering
resource allocation problems in many flavours. In this section
we will review the dominant research themes or directions of
resource allocation in wireless networks, and also explain how
our contribution goes beyond the state-of-the-art.

Surprisingly, there is hardly any literature covering fre-
quency re-use in dense cellular (4G) networks that does not
assume universal reuse among cells. A prevalent assumption in
4G networks is universal frequency reuse (or reuse 1) among
macro cells, based on regular positioning of the macro APs.
This universal reuse is mostly aided by dividing the cell into
three sectors and reusing the frequencies in three correspond-
ing subsets. When smaller cells come into the picture, the
focus is mostly on HetNets with a typical scenario of one
macro cell with several smaller cells in its footprint. Frequency
(or resource) allocation schemes then mostly concentrate on
sharing the spectral resources of the macro with smaller (pico)
cells, avoiding macro-pico interference as much as possible.
In this direction we find eICIC (e.g. [9]-[11]) and/or FFR (e.g.
[12], [13]), both of which typically work with dynamic traffic.

Frequency allocation also received significant attention from
a graph colouring point of view [14], [15], where vertices of
the graph represent APs, and two APs are connected by an
edge if they are not allowed to transmit on the same frequency.
These approaches are typically applied to stationary settings
[16], and obtaining such an interference graph may require
extensive field measurements [17]. When the network topology
changes (e.g. installing, removing, or malfunctioning APs), the
interference graph has to be adapted, possibly requiring more
field measurements.

Uygungelen et al. [18] proposed a method to construct
an interference graph based on SINR values of users. Their
method requires a centralized processing unit and knowledge
of SINR values of users, and both are perfectly possible in

dense cellular networks. However, the approach of Uygunge-
len et al. is very conservative: an edge is created between two
APs if there is at least one user whose SINR drops below
a predefined threshold. Thus, a whole AP may be restricted
from using the frequency set of another AP just because of
the position of a single user. In addition, the proposed method
does not deal with dynamic user populations. The interference
graph is only recalculated when the (active) AP set changes.
In our setting, we decide per frequency (and not per frequency
set) if an AP is allowed to use that frequency or not.

Several works have studied dynamic resource allocation
schemes in voice cellular networks. Ule and Boucherie [19]
proposed a channel borrowing strategy for road covering net-
works, using traffic predictions for optimal channel borrowing
strategies. Nanda and Goodman [20] proposed a DRA algo-
rithm where the decision for a specific AP which frequency to
acquire or release is based on a cost or reward function respec-
tively. For resource acquisition, the resource with the lowest
cost is selected, and for resource release, the resource with
the highest release reward is selected. Nanda and Goodman
based these rewards and costs on blocking probabilities for
voice cellular networks. We on the other hand do not consider
a channel based network or Erlang loss network, but a flow
based network (4G flows) with a proportional fair scheduling
policy at the APs. In addition, we do not work with a reuse
distance as [19], [20], but rather base our selection criteria
and reward/cost functions on SINR values. The fundamental
difference between our approach and the one of Nanda and
Goodman is that our cost and reward functions do not only
determine which frequency is best to assign, but they also
automatically (and dynamically) determine which frequencies
can be assigned, whereas Nanda and Goodman needed the
latter as input in the form of an interference graph or a reuse
distance.

C. Organization of the paper

In Section II we introduce our model assumptions and
some useful notation. We present our self-organizing scheme
in Section III. In Section IV we present results of extensive
simulation experiments, and finally in Section V we will end
with some concluding remarks and suggestions for future
research.

II. SYSTEM DESCRIPTION

We consider a system with L APs located in an area, and we
focus on downlink communication only. Within the considered
area, APs provide service to a time-varying set of users. For
each AP [, the set of associated users is denoted by Z;.

We assume that a sub-band is the smallest non-divisible
slice of spectrum that can be allocated to an AP. The set of
frequency sub-bands is given by F, with |F| = F. An AP
can transmit on multiple sub-bands, but on at most Fi.x < F
at any given time due to antenna and power restrictions. An
AP uses all its allocated sub-bands to serve users by applying
a proportional fair scheduling policy, as is also common in
current 4G base stations and will remain so in 5G. The rate at



which users are served depends on their experienced signal to
interference plus noise ratio (SINR) values on the sub-bands
they are being served on. Throughout service, a user may be
served on multiple sub-bands simultaneously, but it is served
by only one AP. We do not account for fast fading and consider
only average SINR values.

An AP [ transmits on each allocated sub-band f with equal
and fixed power. A user ¢ does not receive full power of
the AP but rather receives some factor of the power due to
path loss factors, for example distance. The Shannon formula
implies that user ¢ can receive a maximum communication rate
R(i,1, f) (in bits per second) on sub-band f from AP [ equal
to

R(i,1, f) =wlog (1 + SINR(i,1, f)), (1

where w is the fixed bandwidth of sub-band f, and where
SINR(i,l, f) is the signal-to-interference-plus-noise ratio
that user 7 experiences on sub-band f when served by AP .
We assume that if STNR(i,1, f) is below a certain minimum
value SIN R, then user ¢ which is in service at AP [ cannot
and/or will not be served on sub-band f.

The APs are operated through Radio-over-Fiber. That means
that at the AP site there is only a simple remote radio head
(RRH), and all AP intelligence is located at a centralized
entity. This has the advantage that a lot of information, e.g.
the current sub-band allocation, is known for the entire system,
and can be used in the dynamic operation of the network.

ITI. DYCRA: A SELF-ORGANIZING SCHEME

In this section we present the Dynamic Cost/Reward based
Allocation scheme (DyCRA scheme), which takes two types
of decisions: (i) when should an AP acquire/release resources,
and (ii) which resources to acquire/release. For (i) we use the
SLI-algorithm [8], which exploits load proxies for the APs.
For (ii), we will introduce cost and reward functions, and use
these functions to decide (a) if an AP is allowed to acquire a
sub-band, and if so, (b) which sub-band should be acquired.

A. The SLI-algorithm

The Single Load Interval (SLI) algorithm [8] determines
when an AP should (attempt to) acquire or release sub-
bands. In short, the concept is as follows: choose an interval
[Pmin, Pmax]. For each AP [, determine a load estimate p; ()
at decision time t; and attempt acquisition or release a
sub-band if the load estimate is above ppax Or below puin
respectively.

The idea is to keep the AP loads within the control in-
terval [pmin, Pmax)- The upper bound of the interval protects
against overloaded APs. The lower bound of the interval frees
capacity when possible. The decision times are specified by
deterministic intervals, and occur with a frequency of 1.
The o(t)) is defined as the percentage of time that AP
[ was busy in the time interval [tx_1,tx]. Then, the load
estimate p;(tx) of AP [ is determined by a moving average:
pi(te) = (1—¢e)pi(tp—1)+e(oi(ty)), where € > 0 determines
the magnitude of the updates and is typically small.

The eventual choice of the parameters 14, and € should
ensure that the load estimates are not too sensitive to the
temporal load variations, but that systematic changes in the
underlying load parameters are detected sufficiently fast.

Remark III.1. The SLI-algorithm is designed to deal with
scenarios where there is just enough capacity to deal with all
traffic, as it will try to operate the APs such that their loads
are in the interval [ppin, Pmax|- In scenarios with an abundance
of capacity, the SLI-algorithm will leave capacity unused,
while in scenarios with a significant shortage of capacity it
is impossible to sustain the traffic demands anyhow.

B. DyCRA: Sub-band acquisition

Governed by the SLI-algorithm, APs will attempt sub-band
acquisition based on an acquisition cost and an acquisition
reward. If the reward outweighs the cost, the AP will acquire
a sub-band. The acquisition reward should reflect how valuable
a specific sub-band is to an AP. The acquisition costs should
reflect the impact it would have on the rest of the system if
that sub-band were acquired.

We base our construction of the cost and reward functions
on user experienced SINR values. We assume that the users
in service at a specific AP only report SINR measurements
of the sub-bands that the AP has in use, as we cannot
expect users to listen to all potential sub-bands and report
all SINR measurements of these sub-bands. However, we do
assume that the users receive pilot signals from the APs on a
separate sub-band, and these pilot signals are such that they are
representative for the signal propagations that users can expect
from the APs. If the pilot signal is received with sufficient
strength, a user can identify from which AP it originated and
deduce the received signal strength from that AP.

1) Acquisition value: Suppose that the SLI-algorithm indi-
cates that AP [ should attempt to acquire a sub-band, and
consider sub-band f. We will now define the acquisition
reward of sub-band f for AP [. Using the pilot signals, suppose
we know for all users i € Z; the SINR, received from AP [
on sub-band f: SINR(i,l, f). Under the current sub-band
allocation, user i receives average service rate R(4,1) (in bits
per second). If AP [ acquired sub-band f, the least profit (in
terms of bits per second) that user ¢ would gain is

R*(i,1, f) = wlogy (1 + SINR(i, 1, f))/1;, 2)

where I; = |Z;|. This follows from the Shannon rate limit,
assuming that the sub-band is shared equally among all users.
The rate increase (2) is a lower bound, since once the scheduler
is going to include the new sub-band in its scheduling policy,
users may benefit more. Define the benefit factor ¢;(l, f) for
user i of AP [ acquiring sub-band f as

R*(i,1, f) + R(, 1)
7 la - 3
Then we define the acquisition reward v(l, f) for AP [ of sub-
band f by

3)
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The acquisition reward is the ratio between the (minimum)
rate a user would experience once AP [ acquires sub-band f,
and its current rate, averaged over all users. In other words,
it is an average of ratios of improvement. When v(l, f) = 1,
we expect no significant improvement, but we typically expect
v(l, f) > 1.

2) Acquisition costs: We will now focus on the cost for AP
l of acquiring sub-band f. The cost reflects the impact on the
system if AP [ acquires sub-band f. Let P(i,!) be the power
user ¢ receives from AP [ on the pilot signal. Assuming that
this indeed is representative for the signal propagation user
experiences from AP [, we can write the SINR as

Pli.1)
N+ Yvec POV)

SINR(i,1, f) = (5)

where L(f) is the set of APs that have acquired sub-band f
(i.e. sub-band f has been allocated to those APs). Note that
AP [ & L(f), since we assumed f is a candidate sub-band for
acquisition at AP [.

First let us consider the impact for a user ¢ in service at
AP [ # 1, if AP [ acquires sub-band f, where [ € L(f).
Before acquisition, user i experiences SINR(i,[, f). After
acquisition of sub-band f by AP [, user 7 will experience an
SINR of

P(i,0)
P(Z, l) + n + Zl’eﬁ(f)\{l} P(’L, l/)

ey -
P(i,0)

Let the impact ratio for a user ¢ in service at AP [ in terms of
rate, after AP [ acquires sub-band f, be given by

SINR; (i1, f) = (©)

1
= < — @)
SINR(i,1, f)

log, (1+ SINR] (3,1, f))
wi(lvla f) = LA .
log, (1 + SINR(,], f))

®)

We define the impact of acquisition ~;(l, f) of sub-band f by
AP [ on AP [ as

+ ez i1 ) itle L(f)

) _J) 7
,yl(l’f) {1 otherwise ©)

The impact of acquisition (9) will typically have a value in
[0, 1], and the closer to one, the less impact the acquisition of
sub-band f by AP [ has on AP [. The above-described impact
represents an impact per AP, but we need the impact on the
entire system. In line with the previous definitions, the cost
of acquisition ¢(l, f) (the impact on the system) will be the
average of the impacts per AP:

=517 Ol f). (10)

lec\{1}

3) Acquisition rule: Considering the acquisition cost and
reward as defined above we set a threshold Ay, and AP [
can acquire sub-band f if and only if

’U(l,f)C(Lf) ZAAcqy (11

i.e. when the reward outweighs the cost by a certain threshold.
If there are multiple candidate sub-bands that satisfy (11), the
AP acquires the sub-band with the highest value for v(l, f) -
¢(l, f), breaking ties at random.

C. DyCRA: Sub-band release

When the SLI-algorithm signals that an AP has to release
a sub-band, we wish to release the sub-band which brings
relatively low capacity to the AP. Hence, AP [ releases the sub-
band f which minimizes v(l, f) among all sub-bands allocated
to AP [, where we compute v(l, f) as if AP [ had not acquired
sub-band f yet.

D. Choosing the acquisition threshold

The threshold Aacq has a similar influence as the inter-
ference radius in an interference graph model: setting the
threshold too high results in no re-use of sub-bands across
the entire system.

Lemma IIL.1. Assume that the rates R*(i,l, f) and R(i,l)
are lower and upper bounded by R,,;, and R, respectively.
Then there exists a threshold A}, such that

,U(l, f) : C(l, f) < A.Zcqv
for all APs | € L, and al sub-bands f € F.
Proof. By (7) we have SINR; (i1, f) < SINR(i,I, f). It
then follows that c(l, f) < 1, which means we only still have
to upper bound v(I, f). To do so, first consider (R™ (3,1, f) +
R(i,1))/R(i,1), which is maximized for R (i,l, f) = Rmax
and R(i,l) = Ruy,. That implies

1 R*(i,l, f) + R(i,1
3 (.1, f) + R(i, 1)

12)

v(l.f) =1 R (13)
liEIL )
1 Rmax + Rmin Rmax
gEZT:urR = (14
lEIz min min
Hence, v(l, f) - c(l, f) < Ajgcq =1+ Ruax/Rumin- O

Lemma III.1 indicates that if the threshold is too high, i.e.
AACq > A:Cq, sub-bands will never be reused, not even over
larger distances. On the other hand, if the threshold is too low
(say O in the extreme case) then sub-bands will be re-used too
often, resulting in strong interference conditions. In Section IV

we will present simulation results for different values of A .

IV. NUMERICAL RESULTS

In this section we present various results of numerical ex-
periments we conducted to gain insight in the performance of
the DyCRA scheme. We considered an area of 1000m x 500m
with 10 APs where users appear uniformly at random accord-
ing to a two-dimensional Poisson process with rate v = 10
users per second. The file sizes of users are independent



and exponentially distributed with a mean of u = 2.5 M B.
These chosen arrival and service distributions are not essential
for the DyCRA scheme to operate, but are primarily used
for convenience in the simulations. The decision times of
the SLI-algorithm (see Section III-A) occur with frequency
Vs = 0.1/, i.e. once every 10 seconds. For the AP positions
we used two configurations that were generated uniformly at
random, see Figures 1 and 2 (interference graphs are plotted
as explained in Section IV-A).

5007

1000m

Fig. 1. Configuration 1, with an interference graph based on r = 400m.

500my

1000m

Fig. 2. Configuration 2, with an interference graph based on r = 400m.

Users are assigned to the AP that provides them with the
strongest signal. In free space that means that the areas in
which users are assigned to the same AP are Voronoi cells,
with the AP acting as cell center. These Voronoi cells are
also drawn in Figures 1 and 2, in order to give insight in the
approximate offered traffic that an AP experiences.

Each AP transmits with equal power of 24 dBm (on each
sub-band that it transmits on). The signal propagation and path
loss follows the 3GGP urban micro model defined in 3GPP
36.814 v9.0.0, where the path loss (in dB) from AP [ to user
¢ is given by PL(i,l) = 140.7 + 36.7log,,(d(7,1))/1000),
and d(i,1) is the distance in meters between user ¢ and AP
{. Furthermore, each sub-band has a bandwidth of 180 kH 2
(similar to the bandwidth of an LTE resource block), and we
assume a thermal noise of —174dBm/Hz.

The number of users that can be in service at an AP
simultaneously is limited by 100 users. If there are 100 users
in service and a new user initiates a connection, then that user
will be denied service, and leave the system directly without
receiving service. One way to measure the performance of a
system is to consider the number - or fraction - of service

denials. A lower fraction of service denials implies a more
efficient resource allocation.

Based on the two configurations shown in Figures 1 and 2,
we consider three different scenarios. Scenario 1 and 2 have
APs positioned as in Configuration 1. Scenario 3 has APs
positioned as in Configuration 2. Scenario 1 has all other
system parameters as described above, but Scenarios 2 and
3 have additional user arrivals in the form of a non-stationary
hotspot. The hotspot is a 200m x 100m area, and moves over
time. It starts with its south-west corner at (200, 100), then
it moves to (400,100), (600,100), back to (400,100) and
finally returns to (200, 100), after which this pattern repeats.
The hotspot has a relative arrival rate of 10 times the normal
arrival rate.

A. Benchmark systems

We compare the DyCRA scheme against two benchmark
systems which both operate under a static sub-band allocation.
The first benchmark system allocates to each AP all sub-bands,
and we refer to this system as the full re-use (FR) system.

The second benchmark system applies a sub-band allocation
based on an interference (or conflict) graph, and we will
refer to this as the interference graph (IG) system. The IG
benchmark is constructed in three steps, described in the
following three paragraphs.

First, given an interference radius r, we construct an inter-
ference graph on the APs by connecting two APs with an edge
if the distance between them is less than r meters. When two
APs are connected by an edge, they can not use the same sub-
band. Two examples of interference graphs have been plotted
in Figures 1 and 2.

In the second step, we use a discretization of the area
into unit squares to estimate the offered traffic at each AP
as follows. For each unit square, we determine the expected
offered traffic in bits per unit time. In a uniform setting such as
Scenario 1, this is vp/(1000-500). For Scenarios 2 and 3, the
HotSpot zone has to be averaged in time over the unit squares
it is covering. The offered traffic from the unit square is then
assigned to the AP from which the received signal, received at
the center of the unit square, is strongest. To obtain a notion of
demand at the AP, the assigned offered traffic is divided by the
rate at which the AP can serve the center of the unit square,
where the rate is in turn obtained by applying the Shannon
rate formula (1). The resulting demand for an AP can then
be interpreted as the number of sub-bands that the AP needs
to sustain the offered traffic, i.e. to serve all traffic offered
to the AP per unit time in expectation. For the interference
conditions that influence the rates following from (1) we use
the following approximation. For an AP [, we assume that
no other AP within radius r is using the same sub-band, but
all other APs are transmitting on the same sub-band. This
assumption gives an upper bound on the interference that we
can expect in an interference graph model in free space.

Third and last, we apply a graph colouring heuristic that
finds a sub-band allocation that respects the interference graph,
and allocates to each AP the number of sub-bands as described



in the previous step. The output of the heuristic is thus a sub-
band allocation, which implies a set of sub-bands F needed
to realize this allocation.

To obtain fair comparisons, we first initialize the IG systems
as described above, and provide all other systems with the
same set (or rather the same number) of sub-bands F.

Remark IV.1. Note that we only use the interference graph
to create a good sub-band allocation as a benchmark. Once
the allocation has been found, we “forget” the interference
graph and all service rates of users are again determined by
the SINR model described in Section Il. In particular, when
r =0, the IG and FR systems are the same.

Remark IV.2. In simulations, we need to solve a proportional
fair scheduling problem in order to know at what rates users
are served, at what time the next user will finish service, and
hence to determine the end of the time interval in which these
rates are valid. The simulation time is primarily influenced by
the time to solve these scheduling problems.

B. Performance

We consider two performance indicators: service denials (in
percentages, as explained above) and experienced throughput
in Mbit/s. The user-experienced throughput is defined as the
size (in bits) of the file that the user downloaded, divided by
the time it took the system to deliver the file to the user.

All results are based on a sequence consisting of 50000
users, where the sequence was randomly generated, but the
same sequence was presented to each system to gain useful
comparisons. In Table I we present the percentage of service
denials for scenarios with r = 300m and r = 400m. Due to
long simulation times, we do not present results for Scenario
3 with » = 300.

TABLE I
PERCENTAGE OF SERVICE DENIALS.

r = 300m r = 400m
System N S2 S1 S2 S3
AAcq =09 1.61 3.82 | 1.55 3.80 5.75
AAcq =1.0 1.64 394 | 1.60 3.71 475
AAcq =125 | 1.76 392 | 1.66 3.71 9.13
AAcq =15 1.76 392 | 1.66 3.71 9.83
1G 0 401 0 430 5.03
FR 299 730 | 085 634 13.39

Remark IV.3. The difference between r = 300 and r = 400
is in the initialization of the IG benchmark, which also
determines the eventual number of available sub-bands in the
system. In Scenario 2 with v = 300, the number of available
sub-bands was 194, while with r = 400 it was 212, and in
Scenario 3 with r = 400 it was 141.

Remark IV.4. We do not present results for Aoy < 0.9, as
we observed that this was (in many cases) equivalent to the
FR benchmark. We also do not present results for Ag., > 1.5,
since in most cases (that we considered) no frequencies were

re-used by the DyCRA scheme (in line with Lemma IIlI.1 and

existence of AL ).

First notice that the choice for A,y may depend on the AP
positions. In Scenario 2, all considered values result in better
service denial performance than the IG benchmark, while in
Scenario 3 only Asq = 1.0 performs better. We observe
that with dynamically changing demand conditions such as
in Scenario 2 or 3, the DyCRA scheme can serve more users
than both the benchmarks (assuming Aacq = 1.0 in Scenario
3). In statistically stable demand conditions, like Scenario 1,
we do not expect the DyCRA scheme to outperform (with
respect to service denials) the IG benchmark for the following
reason. The DyCRA scheme, through the SLI-algorithm, re-
leases frequencies at APs when the APs experience low load
conditions. In other words, the DyCRA scheme operates (or
at least tries to operate) the APs at load levels that fall in the
interval [pmin, Pmax). Hence, in times when the loads happen
to be low for the moment, the scheme releases frequencies,
meaning that the users that are in service at the AP at that
moment do not reap the full benefits of the momentarily low
load conditions. The IG scheme on the other hand has a fixed
number of sub-bands allocated to each AP at all times, such
that users that are in service at APs with temporarily low
load conditions get a lot of resources. The DyCRA scheme
is designed to relieve APs that are facing high demands, and
therefore outperforms the IG system in scenarios where APs
are suddenly faced with a demand they cannot meet.

Looking at Table I it looks like the DyCRA scheme is
only doing a marginally better job than the IG system. How-
ever, not only is the DyCRA scheme realizing lower service
denial percentages, it also realizes a better user-experienced
throughput, as can be seen in Figures 3 to 5, where we
plotted the cumulative fraction of users as a function of their
received throughput, for several values of Axcq (Cyan curves)
and the two benchmarks IG and FR (red and black curves
respectively).
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Fig. 3. User-experienced throughput for Scenario 2, with » = 300m.

In Figures 3 and 4, if for a specific throughput value T
one curve is lower than the other, it means that in the first
case more users experienced a higher throughput than T
than the users of the system belonging to the second curve.
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Fig. 4. User-experienced throughput for Scenario 2, with r = 400m.
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Fig. 5. User-experienced throughput for Scenario 3, with » = 400m.

Hence, a lower curve implies a better performance. We observe
that the DyCRA scheme outperforms the IG system in the
lower throughput region, which is typically where we expect
users from highly loaded APs. This confirms that the DyCRA
scheme indeed moves frequencies from APs with lower load
towards APs that face high traffic demands.

C. Stability

Now that we have established the effectiveness of the
DyCRA scheme when it comes to matching frequencies with
demand, we will consider “stability”. We do this by looking
at the frequency allocations provided by the DyCRA scheme,
and looking at the load proxies for APs.

To be able to meet capacity with demand is a desirable
property, but it is undesirable to completely change the fre-
quency allocation all the time. In Figures 6 and 7 we plotted
the number of changes in the frequency allocation at each
decision epoch of the DyCRA scheme, for Scenarios 1 and
2, and for different values of Aacq. The number of changes
is given by the sum of the number of acquisitions and the
number of releases, over all APs in the system. For example,
when one AP acquired a frequency, and one AP released a
frequency (and all other APs do not change their frequency
set) the number of changes is two.
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Fig. 6. Number of sub-band acquisitions and releases per update moment for
Scenario 1, with IG based on » = 400m.
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Fig. 7. Number of sub-band acquisitions and releases per update moment for
Scenario 2, with IG based on r = 400m.

Figure 6 shows that the DyCRA scheme provides quite
stable frequency allocations in a setting where the demands
are stable: after some warm up-period it mostly performs
none to two changes. In Figure 7, with changing demand
characteristics, we see that the DyCRA scheme has more peaks
in the number of changes, following to the (structural) changes
in demand.

In Figure 8 we plotted the load proxies p;(ty) for APs 1, 5
and 7, whose cells overlap with the HotSpot at various times.

We can clearly observe the peaks in loads due to the
moving HotSpot, and we can also observe that the DyCRA
scheme tries to operate the APs in the (estimated) load regime
[0.5,0.8]. Figure 8 shows that the DyCRA scheme actively
reacts to the changing demand conditions and effectively
pushes the AP loads into the desired range.

V. CONCLUSION

In this paper we presented a dynamic, load aware and self-
adapting frequency allocation scheme, the DyCRA scheme,
specifically designed for dense cellular networks. The Dy-
CRA scheme relies on load measurements at APs and SINR
measurements from users, to make favourable changes in the
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Fig. 8. Load proxies for AP 1 in Scenario 2 with » = 300.

frequency allocations, moving surplus capacity towards APs
that face a (too) high demand. We introduced cost and reward
functions for assigning a frequency to an AP, and only assign
a new frequency to an AP if the reward outweighs the cost by
a tunable parameter AACq.

Extensive simulations demonstrated the effectiveness of the
DyCRA scheme to dynamically match capacity with demand,
allowing service to more users that would otherwise have
been denied service. The DyCRA scheme realized both less
service denials and better throughputs for users, compared
to a benchmark allocation that is optimized to deal with
the average traffic demands. We furthermore demonstrated
that even though the DyCRA scheme dynamically adapts the
frequency allocation, it does so with only a small number of
changes, leading to a quite stable frequency allocation.

To the best of our knowledge, it is the first self-adapting
frequency allocation scheme specifically designed for all chal-
lenges that arise in dense cellular networks. We wish to stress
the fact that the DyCRA scheme realizes good performance
without the need of prior optimization, field measurements, or
the knowledge of an interference graph. The DyCRA scheme
could be improved by further tuning the algorithm parameters
and studying more advanced scenarios. Also, for specific
properties of frequency allocations it may be necessary to
develop other cost/reward trade-offs, opening up interesting
directions for future research.
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