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Abstract—We find ‘strict’ Pareto inefficiency of Nash equilibria
(NE) in prisoners’ dilemma and Braess paradox, wherein the util-
ities of ‘all’ players degrade in NE. The strict Pareto inefficiency is
a narrower concept than (usually mentioned) Pareto inefficiency.
In this paper, we present a measure that shows the magnitude of
strict Pareto inefficiency, abbreviated as MoS. MoS distinguishes
strict Pareto inefficiency of a state (an allocation/a strategy
profile), say, a Nash equilibrium (NE). We present examples
wherein the widely-used measure of ineffectiveness based on the
social optimality, like price of anarchy (PoA), does not always
distinguish strict Pareto inefficiency whereas MoS does.

Furthermore, we show that, if there exists a Pareto optimum
that is proportional to a state, MoS of the state is obtained as
the constant of proportionality between the Pareto optimum and
the state. Then, if the Pareto optimum is socially optimal, PoA
of the state is identical to MoS of the state. We show that the
magnitude of strict Pareto inefficiency, MoS, of NE can increase
without bounds in a networking game, even though the network
has a finite amount of resources and a small number of non-
cooperative players.

Keywords: strict Pareto inefficiency, weak Pareto optimality,
atomic and non-atomic Nash equilibrium, networking game, price
of anarchy, prisoners’ dilemma.

I. Introduction

Decision makers in many systems can be regarded as

players in games. Non-cooperative decisions which lead to

Nash equilibria (NE) have the advantage of independence and

distribution of decision making. Non-cooperative decisions,

however, may not always be beneficial. That is, NE may be

Pareto inefficient (e.g., Dubey [1]). Among the possible inef-

ficiency of NE, we are strongly impressed by such examples

as prisoners’ dilemma and Braess paradox on transportation

and communication networks [2], [3], [4], [5], [6]. In these

examples, the utilities of all non-cooperative players degrade

in the NE. In contrast, consider an example of the NE with

two players, where one player’s utility degrades whereas the

other player’s utility is not worse off. The situation does not

seem to be so impressive. That is, what impresses us strongly

is not mere Pareto inefficiency but strict Pareto inefficiency.

In this article, we present a measure that shows the magnitude

of strict Pareto inefficiency (abbreviated as MoS) of a system

state (an allocation/a strategy profile) that distinguishes strict

Pareto inefficiency.

To measure the ineffectiveness of an NE, it looks that many

researchers (starting with e.g., Roughgarden [7]) have been

using the measure of social optimality of the NE, represented

by the price of anarchy, PoA. In this article, we mean, by

the price of anarchy (PoA) of a state, the ratio of the social

(overall) optimum to the social utility of the state. We note that

PoA (as used herein) does not seem to reflect the definition

of strict Pareto inefficiency directly. In fact, we show in some

examples that PoA does not always distinguish strict Pareto

inefficiency from weak Pareto efficiency whereas MoS does.

The Braess paradox is strongly counter-intuitive in the sense

that the utility of every non-cooperative player degrades after

network resources are augmented. We note, however, that

being strictly Pareto inefficient implies being not socially

optimal, but the reverse does not necessarily hold true. We

note, however, that there exist counter-intuitive phenomena

observed only w.r.t. (with respect to) social optimality but

not observed w.r.t strict Pareto inefficiency. We call such

phenomena observed only w.r.t. social optimality anomalous
[8], [9], instead of paradoxical.

Furthermore, in this article, we show that, if there exists

a Pareto optimum that is proportional to a state, i.e., if the

ratio of the utility of a Pareto optimum to that of the state is

identical for every player, then MoS of the state is obtained

as the constant of proportionality between the Pareto optimum

and the state. Moreover, we see that, if the Pareto optimum

is socially optimal, PoA of the state is identical to MoS of

the state. We then show an atomic networking game wherein

the MoS of NE can increase without bounds, even though the

network has a finite amount of resources and a small number

of non-cooperative players.

In section II, we recall some definitions related to this

article. In section III, we present the definition of a measure of

the magnitude of strict Pareto inefficiency (MoS) of a system

state. We show some properties of MoS in relation to PoA.

In section IV, we show examples. We present discrete games

like prisoners’ dilemma in subsection IV-A and two kinds of

networking games in subsection IV-B. In partcular, subsection

IV-B2 shows the atomic networking game wherein the MoS

of NE can increase without bounds. Section V concludes this

article.

II. Definitions

We recall some definitions related to this article.

[Strict Pareto superiority and inferiority]: We consider a

system that consists of a number of users or players n, where n
denotes the set {1, 2, · · · , n}. Denote by S the system state [an

allocation/a strategy profile] (s1, s2, · · · , sn) where si denotes

the decision/strategy chosen by player i, i ∈ n. Denote by

S the set of feasible system states each of which presents a

realizable combination of player decisions. For each state S
of the system, each player i has his/her own utility Ui(S ).

Denote the combination of utilities of all players in a system

state S ∈ S by �U(S ) = (U1(S ),U2(S ), . . . ,Un(S )). In general,

we consider the cases where Ui(S ) has a positive real value,

Ui(S ) > 0, for all i ∈ n, S ∈ S. (When we need the value of the

function that depends on Ui(S ) in the case where Ui(S ) = 0 for

some i ∈ n, we may use the converged value of the function

with Ui(S )→ 0, if applicable.)



Consider an arbitrary pair of two (achievable) states of the

system, S a and S b, ∈ S. If Ui(S a) ≤ Ui(S b) for all i ∈ n
and U j(S a) < U j(S b) for some j ∈ n, then S a is Pareto
inferior to S b and S b is Pareto superior to S a. Furthermore,

if Ui(S a) < Ui(S b) for all i ∈ n, then S a is strictly Pareto
inferior to S b and S b is strictly Pareto superior (or strongly

Pareto dominant) to S a.

Consider the case where Ui(S a) = KS aS b Ui(S b) (S a, S b ∈ S),

for all i ∈ n and for some constant of proportionality

KS aS b > 0. We call state S a proportional to state S b.

Consider, furthermore, the case where Ui(S ) = U(S ) (S ∈ S)

for all i ∈ n. We call such a state S symmetric.

If S a is proportional to S b, the degree of Pareto inferiority

of S a to S b can simply be defined to be, for example, KS aS b .

In general, however, system states may not always be pro-

portional to each other, and the Pareto superiority/inferiority

relations induce partial ordering among system states and

are not subject to total ordering or single scalar measure

straightforwardly.

[Strict Pareto inefficiency] If there exists some system state

that is strictly Pareto superior to a system state, we call the

latter state a strictly Pareto inefficient state. If there exists no

system state that is strictly Pareto superior to a system state,

the latter state is called a weakly Pareto optimal or efficient
state1. Both atomic and non-atomic Nash equilibria can be

strictly Pareto inefficient as we see in the Braess paradox and

in prisoners’ dilemma.

[Price of Anarchy] Denote the sum of the utilities of players

in state S ∈ S (the social utility of S ) by

O( �U(S )) =
∑

p

Up(S ). (1)

We may have one or more than one maximum S̄ such that

O( �U(S̄ )) = maxS∈S O( �U(S )). We call S̄ a social optimum.

It looks that many researchers use as the measure of
ineffectiveness of a state (allocation), say S , the ratio of the
social optimum to the social utility (the sum of the player-
utilities) of the state, O( �U(S̄ ))/O( �U(S )). It also appears that

the term ‘price of anarchy (PoA)’ is often used in this context.

1We note that there are coined the terms strong and weak Pareto
optima. Commonly used ‘Pareto optima’ are the same as strong
Pareto optima. The state to which no state is Pareto superior is
a strong Pareto optimum. No state can be Pareto superior to a
strongly Pareto optimal state. The state to which no state is strictly
Pareto superior is a weak Pareto optimum. Being strictly Pareto
superior implies being Pareto superior, but not vice versa. Thus,
strong Pareto optima are also weak Pareto optima, but not vice
versa.

In contrast, we note that there exist terms strong and weak
Pareto inefficiency. It looks to be defined such that strongly Pareto
inefficient states are the states that are not strongly Pareto optimal,
and that weakly Pareto inefficient states are not weakly Pareto
optimal. Then, since strong Pareto optima are also weak Pareto op-
tima, weakly Pareto inefficient states must also be strongly Pareto
inefficient, which sounds unnatural. We therefore use the term
strict Pareto inefficiency, instead of weak Pareto inefficiency,
in this article. We keep to use, however, the term weak Pareto
optimum/efficiency.

Although the term ‘anarchy’ may imply the situation of non-

cooperation that leads to NE, in this article, as the price of
anarchy, PoA, of a state (allocation), S , we refer to the

following:

PoA(S ) � O( �U(S̄ ))/O( �U(S )) =
∑

p

Up(S̄ )/
∑

p

Up(S ). (2)

III. Magnitude of Strict Pareto Inefficiency

Given the definition of the degree of strict Pareto inferiority

Q(S a, S ) of system state S a to S , naturally, we have the

magnitude of strict Pareto inefficiency of a system state S a

(S a ∈ S), by

MoS (S a) � max
S∈S

Q(S a, S ) � Q(S a, S̈ a) (3)

(the larger magnitude for the greater inefficiency). It shows

the maximum degree in which the strict Pareto inferiority can

be improved by moving from state S a to some other state S̈ a.

As the base of MoS, we use such a measure of strict Pareto

inferiority Q(S a, S b) of system state S a to S b as follows:

Q(S a, S b) = Qmin(S a, S b) � min
p∈n

Up(S b)/Up(S a). (4)

If Qmin(S a, S b) > 1 and ≤ 1, respectively, then S a is strictly

Pareto inferior and not so to S b. We note that Qmin(S a, S b) = 1

for �U(S a) = �U(S b).

Proposition 1: If MoS (S ) > 1 then S is strictly Pareto

inefficient (S ∈ S). If MoS (S ) = 1 then S is weakly Pareto

optimal.

[Proof] Clearly, from the definitions (3) and (4), MoS (S ) ≥ 1

since Q(S , S ) = 1. If MoS (S ) > 1, then Q(S , S ′) > 1 for

some S ′ (S ′ ∈ S), and thus S is strictly Pareto inefficient. If

MoS (S ) = 1, then Q(S , S ′) ≤ 1 for all S ′ (S ′ ∈ S), and thus

S is not strictly Pareto inefficient. �

We thus have the following definition in this article:

MoS (S a) = max
S∈S

min
p∈n

Up(S )/Up(S a) for the utility base and

max
S∈S

min
p∈n

Cp(S a)/Cp(S ) for the cost base, (5)

where Ci(S ) denotes the cost for player i in system state S .

If S is a Nash equilibrium, MoS (S ) is closely related to

‘Selfishness Degradation Factor (SDF)’ [10]. We note that the

current measure MoS has clear emphasis on the strictness
of Pareto inefficiency distinguished from usual Pareto ineffi-

ciency.

[Proportionate Cases] Consider a system state S̀ with play-

ers’ utility �U(S̀ ) = (U1(S̀ ),U2(S̀ ), . . . ,Un(S̀ )).

Condition 1: There exists such a Pareto optimum, S̆ , that is
proportional to S̀ , �U(S̀ ).

Theorem 1: Assume that condition 1 is satisfied. That is,
Ui(S̆ )/Ui(S̀ ) = KS̆ ,S̀ , i ∈ n, for some constant KS̆ ,S̀ , with
a Pareto optimum, �U(S̆ ). (I) MoS (S̀ ) is obtained such that
MoS (S̀ ) = KS̆ ,S̀ . In this case, MoS (S̀ ) > 1 and = 1, respec-
tively, if S̀ is strictly Pareto inefficient and Pareto optimal.
(II) Thus, MoS (S̀ ) distinguishes the strict Pareto inefficiency
/ Pareto optimality of state S̀ .



[Proof] Note that we can find such a Pareto optimum �U(S̆ )

that satisfies Ui(S̆ )/Ui(S̀ ) = KS̆ ,S̀ , i ∈ n. Consider another

state S ′ ∈ S. Since S̆ is a Pareto optimum, then there must

exist some i (i ∈ n) such that Ui(S ′) ≤ Ui(S̆ ) and, thus, such

that Ui(S ′)/Ui(S̀ ) ≤ Ui(S̆ )/Ui(S̀ ) = KS̆ ,S̀ . Then, Qmin(S̀ , S ′) =
minp Up(S ′)/Up(S̀ ) ≤ KS̆ ,S̀ . Then

MoS (S̀ ) = max[{maxS∈S,S�S̆ Qmin(S̀ , S )},Qmin(S̀ , S̆ )] =

KS̆ ,S̀ (by noting that Qmin(S̀ , S̆ ) = KS̆ ,S̀ ). Thus, MoS (S̀ ) is

given by KS̆ ,S̀ .

Naturally, MoS (S̀ ) = KS̆ ,S̀ > 1 means that S̀ is strictly

Pareto inefficient, and that MoS (S̀ ) = KS̆ ,S̀ = 1 means that S̀
is Pareto optimal. �

Note that, if condition 1 holds true for state S̀ , S̀ is Pareto

inefficient iff S̀ is strictly Pareto inefficient and S̀ is weakly

Pareto optimal iff S̀ is (strongly) Pareto optimal.

If S̀ is an NE, we call S̆ Nash-proportionate fair [11].

[MoS and PoA]

Condition 2: We can find such a social optimum S̄ that is
proportional to a system state S̀ that satisfies Ui(S̄ )/Ui(S̀ ) =

KS̄ ,S̀ , i ∈ n, for certain KS̄ ,S̀ .

Since a social optimum is Pareto optimal, we have the

following:

Corollary 1: PoA of a state (denoted by S̀ ), say an NE, is
identical to MoS of the state under the condition 2, although
other feasible states may not be proportional to the NE. In
that case, PoA(S̀ ) = MoS (S̀ ) > 1 and = 1, respectively, if S̀
is strictly Pareto inefficient and Pareto optimal. Thus, in this
proportional case, PoA of the state, distinguishes the strict
Pareto inefficiency of the state.

Note also that, among the states S̀ for which condition 2 holds

true, there exists no state that is Pareto inefficient but not

strictly Pareto inefficient and no state that is weakly Pareto

optimal but not (strongly) Pareto optimal.

We then have:

Proposition 2: For an arbitrary state S , PoA(S ) ≥ MoS (S )

where the equality holds true if condition 2 is satisfied.

[Proof] We note that
∑

p∈n Up(S )/
∑

p∈n Up(S a)

≥ minp∈n Up(S )/Up(S a). Then, from (2) and (5), we

have PoA(S ) ≥ MoS (S ). It is clear from the corollary 1 that

the equalities hold true if condition 2 is satisfied. �

We have the following:

PoA(S ) = 1 iff S is socially optimal. PoA(S ) > 1 iff S is

not socially optimal.

MoS (S ) = 1 iff S is weakly Pareto optimal (not strictly

Pareto inefficient). MoS (S ) > 1 iff S is strictly Pareto

inefficient.

IV. Examples

We present case studies on one kind of discrete games and

on two kinds of networking games.

A. Discrete Games: Distinction of strict Pareto inefficiency
from weak Pareto efficiency by MoS and PoA

We present below examples of games with two players and

two strategies for each player. These examples show some

relation between the price of anarchy (PoA) and the magnitude

of strict Pareto inefficiency (MoS). Denote by S kl (∈ S) the

state wherein players 1 and 2, respectively, choose strategies

k and l, where k, l ∈ {1, 2}. In the following frameworks of the

two-player games, “(U1,U2) for S kl” means that the utilities

of players 1 and 2 are, respectively, U1 and U2 in state S kl,
k, l ∈ {1, 2}. In all of the following examples, S 11 is an NE, S̃ .

Note that MoS (S 11) =

max{min
{U1(S 11)

U1(S 11)
,

U2(S 11)

U2(S 11)

}
,min
{U1(S 12)

U1(S 11)
,

U2(S 12)

U2(S 11)

}
,

min
{U1(S 21)

U1(S 11)
,

U2(S 21)

U2(S 11)

}
,min
{U1(S 22)

U1(S 11)
,

U2(S 22)

U2(S 11)

}
}.

MoA(S 11) =

max
{U1(S 11) + U2(S 11),U1(S 12) + U2(S 12),

U1(S 21) + U2(S 21),U1(S 22) + U2(S 22)

}

U1(S 11) + U2(S 11)
.

1) The case of a Pareto optimal Nash equilibrium:

PoA>MoS=1

player 1 � player 2 strategy 1 strategy 2

strategy 1 (4,5) for S 11 (5,1) for S 12

strategy 2 (1,8) for S 21 (3,7) for S 22

S 11 is the Nash equilibrium S̃ . S 22 is the social optimum S̄ .

Clearly, all states (including the Nash equilibrium S̃ = S 11)

are Pareto efficient. As we anticipate,

MoS (S 11) = max{min{4/4, 5/5},min{5/4, 1/5},
min{1/4, 8/5},min{3/4, 7/5}} = max{1, 1/5, 1/4, 3/4} = 1.

In contrast,

PoA(S 11) = (3 + 7)/(4 + 5) = 10/9 > 1,

although S 11 is Pareto optimal. For this Pareto optimal Nash

equilibrium, PoA shows the value greater than 1 whereas

MoS shows the value 1. We thus see that PoA does not
always distinguish strict Pareto inefficiency from efficiency
whereas MoS does.

2) The case of a Pareto optimal Nash equilibrium:

PoA�MoS=1

player 1�player 2 strategy 1 strategy 2

strategy 1 (4,5)for S 11(NE) (5,1) for S 12

strategy 2 (1,898)for S 21 (3,897)forS 22(SO)

S 11 is the Nash equilibrium S̃ . S 22 is the social optimum S̄ .

Clearly, all states are Pareto optimal. As we anticipate,

MoS (S 11) = max{min{4/4, 5/5},min{5/4, 1/5},
min{1/4, 898/5},min{3/4, 897/5}} = max{1, 1/5, 1/4, 3/4} = 1.



In contrast,

PoA(S 11) = (3 + 897)/(4 + 5) = 100 > 1,

although S 11 is Pareto optimal. For this Pareto optimal Nash

equilibrium, PoA shows a big value, 100, greater than 1,

whereas MoS shows the value 1. We thus see that PoA
does not always distinguish strict Pareto inefficiency from
efficiency whereas MoS does. Note, furthermore, that PoA
of Pareto-optimal NE can have great values much bigger
than 1. We also see that PoA does not always distinguish

Pareto inefficiency.

3) The case of a strictly Pareto inefficient Nash equilibrium

(like a prisoners’ dilemma):

PoA>MoS>1

player 1�player 2 strategy 1 strategy 2

strategy 1 (2,3)for S 11 (NE) (9,2)forS 12(SO)

strategy 2 (1,8) for S 21 (4,6) for S 22

S 11 is the Nash equilibrium S̃ . S 12 is a social optimum S̄ ,

which is Pareto indifferent to NE S̃ . Thus, we cannot apply
corollary 1. In contrast, S 22 is a Pareto optimum S̆ , which is

proportional to NE S̃ . NE S̃ = S 11 is strictly Pareto inefficient.

Since Pareto optimum S̆ is proportional to S̃ , we can apply
theorem 1, which leads to MoS (S 11) = 4/2 = 6/3 = 2. In fact,

by definition,

MoS (S 11) = max{min{2/2, 3/3},min{9/2, 2/3},
min{1/2, 8/3},min{4/2, 6/3}} = max{1, 2/3, 1/2, 2} = 2 > 1.

PoA(S 11) = (9 + 2)/(2 + 3) = 11/5 = 2.2 > 1.

MoS shows the value different from the value of PoA, both

greater than 1 for this case of strictly Pareto inefficient Nash

equilibrium.

4) The case of a strictly Pareto inefficient Nash equilibrium

(like a prisoners’ dilemma):

PoA=MoS>1

player 1�player 2 strategy 1 strategy 2

strategy 1 (2,3)for S 11(NE) (5,2) for S 12

strategy 2 (1,8) for S 21 (4,6)forS 22(SO)

S 11 is the Nash equilibrium S̃ . S 22 is the social optimum (SO)

S̄ . Clearly, the Nash equilibrium S̃ = S 11 is strictly Pareto

inefficient. Since S̄ is proportional to S̃ , we can apply
corollary 1. Thus, MoS is equal to PoA, and

MoS (S 11) = PoA(S 11) = (4 + 6)/(2 + 3) = 2 > 1.

In fact, from the definition of MoS,

MoS (S 11) = max{min{2/2, 3/3},min{5/2, 2/3},min{1/2, 8/3},
min{4/2, 6/3}} = max{1, 2/3, 1/2, 2} = 2 > 1.

Two measures show the same value greater than 1 for this case

of strictly Pareto inefficient Nash equilibrium.

5) The case of a strictly Pareto inefficient Nash equilibrium

(like a prisoners’ dilemma):

PoA>MoS >1

player 1�player 2 strategy 1 strategy 2

strategy 1 (2,3)for S 11(NE) (5,2) for S 12

strategy 2 (1,8) for S 21 (3,7)for S 22(SO)

S 11 is the Nash equilibrium S̃ . S 22 is the social optimum

S̄ . Clearly, the Nash equilibrium S̃ = S 11 is strictly Pareto

inefficient. S̄ is Pareto superior but not proportional to S̃ .
We thus cannot apply corollary 1.

MoS (S 11) = max{min{2/2, 3/3},min{5/2, 2/3},

min{1/2, 8/3},min{3/2, 7/3}} = max{1, 2/3, 1/2, 3/2} = 3/2.

PoA(S 11) = (3 + 7)/(2 + 3) = 2 > 3/2 = MoS (S 11).

In this asymmetric game, MoS and PoA show mutually
different values both greater than 1 for this case of strictly

Pareto inefficient Nash equilibrium.

6) The case of a weakly Pareto efficient (not strictly Pareto

inefficient) Nash equilibrium:

PoA>MoS=1

player 1�player 2 strategy 1 strategy 2

strategy 1 (3,5)for S 11(NE) (5,1) for S 12

strategy 2 (1,7) for S 21 (3,6)for S 22(SO)

S 11 is the Nash equilibrium S̃ . S 22 is the social optimum S̄ that

is Pareto superior but not strictly Pareto superior to NE

S̃ . Then, we cannot apply corollary 1. Clearly, NE S̃ = S 11

is Pareto inefficient but not strictly Pareto inefficient (is

weakly Pareto optimal), but all other states are Pareto optimal.

Note that MoS of NE S̃ = S 11 is

MoS (S 11) = max{min{3/3, 5/5},min{5/3, 1/5},

min{1/3, 7/5},min{3/3, 6/5}} = max{1, 1/5, 1/3, 1} = 1.

PoA(S 11) = (3 + 6)/(3 + 5) = 9/8 > 1.

PoA is greater than 1 for the weakly Pareto optimal NE. We
thus see that PoA does not always distinguish strict Pareto
inefficiency from weak Pareto efficiency whereas MoS does.

B. Networking Games

We present examples with two aspects of network man-

agement: flow control (Subsection IV-B1) and routing/load-

balancing (Subsection IV-B2). In subsection IV-B1, we show

an application of theorem 1 to network flow control. In sub-

section IV-B2, we show an example of network routing/load-

balancing to which we can apply corollary 1 and wherein the

magnitude of strict Pareto inefficiency, MoS, of the NE can

increase without bounds, in the network that has only a finite

amount of resources and a small number of non-cooperative

players.

1) Flow Control in Networks:



a) Assumptions on Networks: Consider a communication

network modeled by an open product-form network of m state-

independent queues, k = 1, 2, . . . ,m that model communication

links, or, simply, links [12]. Denote the set of the links

{1, 2, . . . ,m} by M. The vertices or nodes connected by links

model the routers of the communication network. There are

n independent users/players, 1, 2, . . . , n. User-i decides the

feasible rate λi of packets that she/he will send through

the communication network. Denote the set of the users

{1, 2, . . . , n} by n. Denote λ = (λ1, λ2, . . . , λn). Let L be the

product of the strategy spaces, that is, L = {λ | λi ≥ 0, i ∈ n}.
Denote by C (⊂ L) the set of feasible values of λ.

Ti is the average end-to-end delay of the packets in control

of user i. μik is the state-independent service rate of user-i
packets at link k. In this article, it is assumed that each router

(node) has a sufficient capacity of storing packets, and, thus,

losses of packets may not occur. qik is the resulting visit rate of

user-i packets to link k. That is, qik, for all i, k, is the solution

of the following system of equations:

qik = pi
0k +
∑
l∈M

qil pi
lk for all i ∈ n, k ∈ M, (6)

where pi
lk and pi

0k, respectively, are the probabilities that a

user-i packet goes to link k when it leaves link l and when it

enters the network; they are fixed and not subject to optimal

control. Define pi
k0
= 1 − ∑l pi

kl, i ∈ n, k ∈ M. In this

subsection, we are concerned only with optimal flow control

and not with optimal routing in this subsection. Then, if user

i injects the rate λi of packets into the network, user-i packets

visit link k at the rate of qikλi, where qik is given by eq. (6).

User i injects the rate, pi
0kλi, of packets into link k from the

outside of the network. User-i packets departing link k leave

the network at the frequency (or, probability) qi
k0

. That is, the

network has multiple ports of entry and of exit. Consider the

case where the mean response time, T (k)
i , for a user-i packet

to pass through link k, is

T (k)
i = μ

−1
ik T (k) and T (k) =

1

1 − sk
∑

p∈n qpkλp/μpk
, (7)

if 1 − sk

∑
p∈n

qpkλp/μpk > 0, otherwise infinite,

where sk is 1 for a link modeled by a single-server, 1/h
for a link consisting of h parallel channels each of which

is chosen with probability 1/h and is modeled by a single

server, and 0 for a link modeled by an infinite server, for

1 − sk
∑

p∈n qpkλp/μpk > 0 [12]. Denote K = {l|sl � 0}. Then,

using the Little’s result on the average number of user-i packets

that stay in the network (= λiTi(λ)),

Ti(λ) =
∑
l∈K

Qil

1 − sl
∑

p∈n Qplλp
+
∑

l∈M−K
Qil, (8)

if 1 − sk

∑
p∈n

Qplλp > 0 for all l, otherwise infinite,

where Qil =
qil

μil
.

Clearly, Ti(λ) is increasing in λ as long as 1 − sl
∑

p∈n Qplλp >
0, l ∈ K . We note that

∑
l∈M−K Qil is constant and independent

of the strategy. In order that the statistical equilibrium of this

network be attained, it must hold true that λ ∈ C, where the

feasible region C is

C = (λ | λi ≥ 0, i ∈ n, and 1 − sl

∑
p∈n

Qplλp > 0, l ∈ K). (9)

b) Flow Control with the Power Criterion: Denote the

set of the players {1, 2, . . . , n} by n. Thus, the strategy profile

is presented by a vector, λ = (λ1, λ2, . . . , λn). Consider a non-

cooperative game that has n players each of whom decides

the value of λi ≥ 0. Each of network users (user-i) has two

important major concerns in choosing the protocol to use:

one is the amount of packets user-i can send per unit time

(throughput), denoted by λi, and the other is the expected time

of each packet taken from its origin to its destination (mean

response time), denoted by Ti. In the following, we denote

by λ̃ (∈ C) a strategy profile that presents a Nash equilibrium

(with finite utilities).

The power is defined as Pi = λi/Ti for user-i. In this

subsection, we consider the case where the utility, Ui, of user

i is its power, Pi, i.e., Ui = Pi for all i ∈ n. Denote the

vector (P1, P2, . . . , Pn) by P. From (8), Pi(λ) is defined for all

λ ∈ C. The existence of a Nash equilibrium flow control, which

is Pareto inefficient, has been shown [13]. Furthermore, for

this network, a stronger result, i.e., the existence of a Pareto-

optimal flow control that is proportional to a feasible state,

say NE, will be shown by Theorem 2.

Denote by G the graph (V,E) such that V = n ∪M and

E = {(i, k) | i ∈ n, k ∈ M and qik > 0}.
Assumption 1: G is connected.

Note that the graph G (as will be described in Example 1

below) is undirected. and different from the graph that shows

the network link connection.

Theorem 2: If Assumption 1 holds true, for any feasible

flow-control allocation λ, say an NE, of this network, there

exists a Pareto-optimal flow control allocation that is propor-

tional to it. Thus, condition 1 is satisfied in the flow control

networks for any feasible λ.

[Proof] We can prove this by following the Appendix A of

Kameda et al. [11] with replacing specific term ‘Nash equi-

librium’ therein by less specific term ‘flow-control allocation.’

In fact, the proof given in that appendix of [11]. �

Thus, condition 1 (i.e., the assumption of theorem 1) is
satisfied for any feasible λ in the flow control networks.
We therefore obtain MoS of λ̀, on the basis of theorem 1,

as follows:

MoS (λ̀) = maxλ∈C K(λ, λ̀), where Pi(λ)/Pi(λ̀) = K(λ, λ̀), i ∈
n (K(λ, λ̀) is a constant of proportionality).

In comparison, note that, from the definition, we obtain MoS

of λ̀ as follows:

MoS (λ̀) = maxλ∈C{min j[Pj(λ)/Pj(λ̀)]}.
Example 1 Consider a simple network consisting of three

users n = {1, 2, 3} and two links K = {1, 2},
where p1

01 = p2
02 = 1, p3

01
= p3

02
= 0.5, p1

10 = p2
20 = p3

10
=

p3
20
= 1, μi

1
= μ1 = 3, μi

2
= μ2 = 6, (i = 1, 2, 3) for case A, (as

to the structure of the network for case A parameters see Fig.

1) and



where p1
01 = p2

02 = 1, p3
01
= 0.4, p3

02
= 0.6, p1

10 = p2
20 =

p3
10
= p3

20
= 1, μi

1
= μ1 = 10 μi

2
= μ2 = 12, (i = 1, 2, 3) for

case B.

Then, as to its graph G we have q11 = q22 = 1, and q31 =

q32 = 0.5 for case A (Fig. 2) and q31 = 0.4, q32 = 0.6 for case

B. Each case of the network satisfies Assumption 1.

μi
1

μi
2

p2
02 = 1

p3
10
= 1

p1
10 = 1

p3
20
= 1

p2
20 = 1

p3
01
= 0.5

p1
01 = 1

p3
02
= 0.5

Fig. 1. A simple network for i = 1, 2, 3 (with Case A parameters).

1 3 2

1 2

N

M

q11 = 1

q31 = 0.5 q22 = 1

q32 = 0.5

Fig. 2. Graph G for the simple network for i = 1, 2, 3 (with Case A
parameters).

We can obtain numerically the following:

Case A: The Nash equilibrium flow control λ̃A: The powers

of users, 1, 2, and 3, are

(λ̃A: P1 = 0.8755 . . . , P2 = 5.93263 . . . , P3= 3.05175 . . .).
Based on the definition, MoS (λA) � Q(λA, λ̈A) = 1.1034 . . . .
(λ̈A : P1 = 0.96607 . . . , P2 = 6.54611 . . . , P3 = 3.36733 . . . ).

Based on theorems 2 and 1), MoS (λA) = Q(λA, λ̈A) =

1.1034 . . . .
(λ̈A : P1 = 0.96607 . . . , P2 = 6.54611 . . . , P3 = 3.36733 . . . ).

In contrast, PoA(λA) = 1.14098 · · · > 1, although, in the social

optimum λ̄A,

(λ̄A: P1 = 2.25, P2 = 9, and P3= 0), which implies that

this social optimum is not Pareto superior to the NE λA.

Case B: The Nash equilibrium flow control λ̃B: The powers

of users, 1, 2, and 3, are

(λ̃B : P1 = 12.625 . . . , P2 = 14.6669 . . . , P3= 26.8685 . . . ).
Based on the definition, MoS (λB) � Q(λB, λ̈B) = 1.12173 . . . .
(λ̈B : P1 = 14.1618 . . . , P2 = 16.452 . . . , and P3 = 30.139 . . . ).

Based on theorems 2 and 1, MoS (λB) = Q(λB, λ̈B) =

1.12173 . . . .
(λ̈B : P1 = 14.1618 . . . , P2 = 16.452 . . . , and P3 = 30.139 . . . ).

In contrast, PoA(λA) = 1.12628 · · · > 1 although, in the social

optimum, λ̄B,

(λ̄B: P1 = 25, P2 = 36, and P3= 0), which implies that this
social optimum is not Pareto superior to the NE λB.

2) Routing/Load Balancing in a Two-Node Network Model:
We present an example of network routing/load-balancing.

Since the optima are symmetric as we show below, we can

apply corollary 1, and we have the results on the magnitude

of strict Pareto inefficiency, MoS, of the NE in the model.

Therein the magnitude of strict Pareto inefficiency, MoS, of

the NE can increase without bounds, in the network that has

only a finite amount of resources and a small number of non-

cooperative players.

a) The Model and Assumptions: We consider a model

that consists of two identical servers (nodes) and a communi-

cation means that connects both servers. Servers are numbered

1 and 2. Jobs (or customers) are classified into 2n classes

Rik, i = 1, 2, k = 1, 2, · · · , n. Jobs of class Rik arrive only at

server i with identical rate 1/n. Out of each class arrival,

the rate xik, i = 1, 2, k = 1, 2, · · · , n, of jobs are forwarded

upon arrival through the communication means to the other

server j (i � j) to be processed there. Therefore, the remaining

rate 1/n − xik of class Rik jobs are processed at server i. We

have 0 ≤ xik ≤ 1/n. We denote the vector (x11, x12, · · · ,
x1n, x21, x22, · · · , x2n) by x. We denote the set of x’s that

satisfy the above constraint by C. Within the constraint, a

set of values of xik (i = 1, 2, k = 1, 2, · · · , n) are chosen to

achieve optimization. Thus, the load βi on server i is given by

βi = 1 −∑l xil +
∑

l x jl, (i � j). Then, the expected processing

(including queueing) time Di(βi) of a job that is processed at

server i (i.e., the cost function at server i) is

Di(βi) = 1/(μ − βi) for βi < μ (otherwise it is infinite).

As to the communication means, we consider two communi-

cation lines 1 and 2 separately for each server. One line i is

used for forwarding of a job that arrives at server i, i = 1, 2.

The communication time of a job arriving at server i and being

processed at server j (� i) is simply t, i.e., independent of the

traffic and the job class and with no queueing delay.

server 1 server 2

tt

11

1β

μ−β1 μ−β2

2β

Fig. 3. The system model.

The expected sojourn time of a class Rik job that arrives at



server i is

Tik(x) = n[(
1

n
− xik)Tiik(x) + xikTi jk(x)], (10)

where Tiik(x) = Di(βi) and Ti jk(x) = Dj(β j)+ t, for j � i. (The

above expression holds true, again, only for positive values

of denominators, and are otherwise infinite.) Then, the overall

expected sojourn time of a job that arrives at the system is

T (x) =
1

2n

∑
i,k

Tik(x). (11)

b) The Optima: We have three optima as follows: , the

social optimum, the non-atomic Nash equilibrium, and the

atomic Nash equilibrium, as in the following.

(1) [Social optimum — Completely centralized optimization]:

There exists only one decision maker over all of 2n classes.

The social optimum is given by such x̄ that satisfies the

following: T (x̄) = minx∈C T (x).

The solution x̄ is unique and simply given as follows: x̄ =
0, i.e., x1k = x2k = 0 for all k

and

T (x̄) = Tik(x̄) = 1/(μ − 1), i = 1, 2, k = 1, 2, · · · , n. (12)

(2) [Non-atomic Nash equilibrium — Completely distributed

optimization]: Each class has infinitely many infinitesimal de-

cision makers (players). Thus, infinitely many non-cooperative

decision makers exist in total. The non-atomic Nash equilib-

rium (or Wardrop equilibrium) is given by such x̂ that satisfies

the following for all i, k,

Tik(x̂) = min{Tiik(x̂),Ti jk(x̂)} (i � j) s.t. x̂ ∈ C. (13)

The solution x̂ is unique and given as follows: x̂ =

0, i.e., x̂1k = x̂2k = 0, for all k. Aagain,

T (x̂) = Tik(x̂) = 1/(μ − 1) i = 1, 2, k = 1, 2, · · · , n.
(3) [Atomic Nash equilibrium — Intermediately distributed

optimization]: Each class has one decision maker (an atomic

player). Thus, 2n non-cooperative decision makers exist in

total. The atomic Nash equilibrium is given by such x̃ that,

for all i, k,

Tik(x̃) = min
xik

Tik(x̃−(ik); xik), s.t. that (x̃−(ik); xik) ∈ C.

where (x̃−(ik); xik) denotes the 2n vector wherein the element

corresponding to x̃ik has been replaced by xik.

(A) The case where t > 1/[n(μ − 1)2]: The solution x̃ is

unique is given as follows: x̃ = 0. Again,

T (x̃) = Tik(x̃) = 1/(μ − 1), i = 1, 2, k = 1, 2, · · · , n.
(B) The case where t ≤ 1/[n(μ − 1)2]: The solution x̃ is

unique is given as follows:

x̃1k = x̃2k =
1

2
[
1

n
− t(μ − 1)2], for all k. (14)

In that case, we have

T (x̃) = T1k(x̃) = T2k(x̃)

=
1

μ − 1
+

t
2

[1 − nt(μ − 1)2], for all k. (15)

The solutions for the models that are more general, in the

number of nodes and in the forms of cost functions, than the

above have been obtained [6].

Consider the case (B) in the atomic Nash equilibrium.

In this case (B), each player mutually forwards a part of

his/her jobs through the communication means to the other

server for remote processing, and thereby his/her mean sojourn

time degrades. In this case, the atomic Nash equilibrium is

strictly Pareto inefficient. In contrast, the solutions of the social

optimum, the non-atomic Nash equilibrium, and the atomic

Nash equilibrium in case (A) are identical and Pareto optimal

(also weakly Pareto optimal). As n increases in the atomic

Nash equilibrium with case (B) (see eq. (15)), T (x̃) decreases

as far as t ≤ 1/[n(μ − 1)2] holds true. Then, as n increases

further, t > 1/[n(μ − 1)2] (case (A)) holds true and T (x̃)

becomes the same as those of the social optimum and the

non-atomic Nash equilibrium.

Since the solutions of the social optimum and of all the
Nash equilibria are symmetric (thus mutually proportion-
ate), we can use the corollary 1. Then, from (12) and (15),

in the case (B)

MoS =
T (x̃)

T (x̄)

= 1 +
t
2

[1 − nt(μ − 1)2](μ − 1) for t ≤ 1/[n(μ − 1)2] and

= 1 for t > 1/[n(μ − 1)2].

Thus, the magnitude of strict Pareto inefficiency MoS of
the atomic Nash equilibrium decreases as the number of
players 2n increases and finally it reaches that of the non-

atomic Nash equilibrium that is Pareto optimal, 1. On the other

hand, we cannot let the atomic Nash equilibrium be down to

the social optimum as we cannot reduce the number of atomic

players 2n down to 1.

[The worst-case performance]: Furthermore, in the case (B),

we can easily see that Tik(x̃) (= T (x̃)), for every i, k, has its

maximum T̃ (μ, n) w.r.t. t (i.e., the worst-case performance) for

given μ, n.

T̃ (μ, n) =
1

μ − 1
[1 +

1

8n(μ − 1)
], when t =

1

2n(μ − 1)2
. (16)

The magnitude of strict Pareto inefficiency MoS of the

atomic Nash equilibrium for given μ, n is to be

MoS = Δ(μ, n) =
T̃ (μ, n)

T0(μ)
, (17)

where T0(μ) = 1/(μ−1) is the mean sojourn time of the social

optimum for given μ. Then, we have

MoS = Δ(μ, n) = 1 +
1

8n(μ − 1)
. (18)

As μ→ 1 with n fixed, Δ(μ, n) increases without bounds.

Theorem 3: There exist networking games wherein, with a
finite amount of network resources and with a fixed number
of non-cooperative players, the magnitudes of strict Pareto
inefficiency, MoS, of atomic Nash equilibria can increase
without bounds.



This is in contrast to the studies that seek the bounds of the

degrees of ineffectiveness of non-atomic Nash equilibria for

congestion games [14].

V. Concluding Remarks

We have tried to make clear a definition of the magnitude

of strict Pareto inefficiency, MoS, of a system state, e.g., Nash

equilibrium (NE). We have presented some examples wherein

the measure of social optimality like price of anarchy, PoA, of

a state, does not always distinguish ‘strict’ Pareto inefficiency

from others whereas MoS of the state does. Furthermore, we

have shown that, if there exists a Pareto optimum that is

proportional to a state, MoS of the state is obtained as the

constant of proportionality between the Pareto optimum and

the state. We have seen, moreover, that, if the Pareto optimum

is socially optimal, PoA of the state is identical to MoS of the

state. We have examined networking games. We have shown

that the magnitude of strict Pareto inefficiency, MoS, of NE can

increase without bounds, even though the system has a finite

amount of resources and a small number of non-cooperative

players.

Acknowledgment

This study is supported in part by the Grant-in-Aid for

Scientific Research of Japan Society for the Promotion of

Science.

References

[1] P. Dubey, “Inefficiency of Nash equilibria,” Mathematics of Operations
Research, vol. 11, no. 1, pp. 1–8, 1986.
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