
Optimal Timing in Dynamic and Robust Attacker
Engagement During Advanced Persistent Threats

Jeffrey Pawlick
NYU Tandon School of Eng. and

US Army Research Lab
jpawlick@nyu.edu

Thi Thu Hang Nguyen
LAAS-CNRS and

SAS Torus Actions
tthnguye@laas.fr

Edward Colbert
US Army Research Lab

and Virginia Tech
ecolbert@vt.edu

Quanyan Zhu
NYU Tandon School of Eng.

quanyan.zhu@nyu.edu

Abstract—Advanced persistent threats (APTs) are stealthy
attacks which make use of social engineering and deception to
give adversaries insider access to networked systems. Against
APTs, active defense technologies aim to create and exploit
information asymmetry for defenders. In this paper, we study a
scenario in which a powerful defender uses honeynets for active
defense in order to observe an attacker who has penetrated
the network. Rather than immediately eject the attacker, the
defender may elect to gather information. We introduce an
undiscounted, infinite-horizon Markov decision process on a
continuous state space in order to model the defender’s problem.
We find a threshold of information that the defender should
gather about the attacker before ejecting him. Then we study
the robustness of this policy using a Stackelberg game. Finally,
we simulate the policy for a conceptual network. Our results
provide a quantitative foundation for studying optimal timing
for attacker engagement in network defense.

Index Terms—Security, Markov decision process, Stackelberg
game, advanced persistent threat, attacker engagement

I. INTRODUCTION

Traditional cybersecurity techniques such as firewall de-
fense and role-based access control have been shown to be
insufficient against advanced and persistent threats (APTs).
Recent breaches of the Democratic National Committee
[16] and the U.S. Office of Personal Management [3] have
highlighted that advanced actors are capable of undermining
these defenses through social engineering, zero-day exploits,
and deceptively mimicking benign code. Intruders establish
themselves with a network using techniques such as spear-
phishing or direct physical access. Bring your own device
(BYOD) aspects of wireless networks expose additional
routes for malware entry [10]. After entry, attackers move
laterally within the network to escalate privileges and ad-
vance towards a target asset.

This work is partially supported by an NSF IGERT grant through the
Center for Interdisciplinary Studies in Security and Privacy (CRISSP) at
New York University, by the grant CNS-1544782, EFRI-1441140, and SES-
1541164 from National Science Foundation (NSF) and DE-NE0008571 from
the Department of Energy. Research was sponsored by the Army Research
Laboratory and was accomplished under Cooperative Agreement Number
W911NF-17-2-0104. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

PHYSICAL SENSORS

DATABASES
ACCESS
POINTS

ACTUATOR & CONTROLLERS

HONEYPOT

ADMIN

Fig. 1: A honeynet in a process control network. Dashed lines
represent wireless connections. At the top right, a honeynet
records activity in order to learn about attackers.

A. Active Cyber Defense and Honeynets

Often security research studies deceptive attackers and
purely reactive defenders. But new techniques aim to allow
defenders to gain the upper hand in information asymmetry.
The U.S. Department of Defense has defined active cyber
defense as “synchronized, real-time capability to discover,
detect, analyze, and mitigate threats and vulnerabilities...
using sensors, software, and intelligence...” [13]. These tech-
niques both investigate attackers and manipulate their beliefs
[15]. Honeynets and virtual attack surfaces are emerging
techniques which accomplish both purposes. They create
false network views in order to lure the attacker into a
designated part of a network where he can be contained
and observed within a controlled environment [2]. Figure
1 gives a conceptual example of a honeynet placed within
a process control network in critical infrastructure. A wired
backbone connects wireless routers that serve sensors, actu-
ators, controllers, and access points. A honeynet emulates a
set of sensors and controllers and records attacker activities.
Engaging with an attacker in order to gather information
allows defenders to update their threat models and develop
more effective defenses.

B. Timing in Attacker Engagement

Our work considers this seldom studied case of a powerful
defender who observes multiple attacker movements within a
network. This sustained engagement with an attacker comes
at the risk of added exposure. The situation gives rise to
an interesting trade-off between information gathering and

short-term security. How long should administrators allow an
attacker to remain in a honeypot before ejecting the attacker?
How long should they attempt to lure an attacker from an
operational system to a honeypot? Our abstracts away from
network topology or protocol in order to focus exclusively
on these questions of timing in attacker engagement.

C. Contributions

We make the following principle contributions:
1) We introduce an undiscounted, infinite-horizon Markov

decision process (MDP) on a continuous state space to
model attacker movement constrained by a defender
who can eject the attacker from the network at any
time, or allow him to remain in the network in order
to gather information.

2) We analytically obtain the value function and optimal
policy for the defender, and verify these numerically.

3) These results obtain closed-form conditions under
which it is optimal to retain an attacker in the network.

4) To test the robustness of the optimal policy, we develop
a zero-sum, Stackelberg game model in which the
attacker leads by choosing a parameter of the game.
We obtain a worst-case bound on the defender’s utility.

5) We use simulations to illustrate the optimal policy for
a conceptual network.

D. Related Work

Game theory and decision theory are often used to study
cybersecurity [20], [19], [11], [8] due to its adversarial nature.
In particular, game-theoretic design of honeypot deployment
has been an active research area. Signaling games are used to
model attacker beliefs about honeypots in [5], [14]. Honeynet
deployment from a network point of view is systematized in
[2]. Ref. [12] develops a model for lateral movements and
formulates a game by which an automated defense agent
protects a network asset. Durkota et al. model dynamic
attacker engagement using attack graphs and a MDP [6].
Zhuang et al. study security investment and deception using
a multiple round signaling game [21]. Our work fits within
the context of these papers, but we focus on questions of
timing. Reference [7] studies the belief of the attacker, and
suggests that the attacker should be ejected when he becomes
suspicious that he may be in a honeypot. This is a useful
complement to the present work. Finally, this paper fits within
the general category of optimal stopping problems. Optimal
stopping problems with a finite horizon can be solved directly
by dynamic programming, but our problem has an infinite
horizon (and is undiscounted).

II. PROBLEM FORMULATION

A discrete-time, continuous state MDP can be summarized
by the tuple 〈X,A, µ, q〉 , where X is the continuous state
space, A is the set of actions, µ : X×A→ R is the reward
function, and q : X×A×X→ R+ is the transition kernel. In
this section, we describe each of the elements of 〈X,A, µ, q〉 .

Time (0,0)

Residual Utility 𝑈𝑖
System 𝑆𝑖 = 𝑁

System 𝑆𝑖 = 𝐻
j

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝑇𝐴
0 𝑇𝐴

1 𝑇𝐴
2 𝑇𝐴

3 𝑇𝐴
4

Ejection

𝑈0

Fig. 2: A moves throughout a network between honeypots H
and normal systems N. D can earn a total of U0 utility for
investigating A. When A is in a honeypot, D learns and the
residual utility for future investigation decreases. Near U i =
0, the risk of exposure outweighs the benefit of surveillance,
and D ejects A at stage i = 4 (in this example).

A. State Space X
An attacker A moves throughout a network containing two

types of systems S: honeypots H and normal systems N.
At any time, a network defender D can eject A from the
network. L denotes having left the network. Together, we
have S ∈ S , {H,N,L}.

Let i ∈ 0, 1, 2, . . . denote the discrete stage of the game,
i.e., i indicates the order of the systems visited. D observes
the types Si of the systems that A visits. The attacker, on
the other hand, does not know the system types.

We assume that there is a maximum amount of information
that D can learn from investigating A. Let U0 denote the
corresponding utility that D receives for this information.
At stage i ∈ 0, 1, 2, . . . , let U i ∈ U , [0, U0] denote
the residual utility1 available to D for investigating A. For
instance, at i = 5, D may have recorded the attacker’s time
of infiltration, malware type and operating system, but not
yet any privilege escalation attempts, which could reveal
the attacker’s objective. In that case, D may estimate that
U5 ≈ 0.6U0, i.e., D has learned approximately 60% of all
possible information2 about A.
D should use U i together with Si to form his policy. For

instance, with U5 ≈ 0.6U0, D may allow A to remain in a
honeypot S5 = H . But after observing a privilege escalation
attempt, with U6 ≈ 0.8U0, D may eject A from S6 = H,
since there is little more to be learned about him. Therefore,
U i and Si are both states. The full state space is X = U×S.
Figure 2 summarizes the interaction.

B. One-Stage Actions A
Let ℵ0 denote the cardinality of the set of natural numbers

and R+ denote the set of non-negative real numbers. Then

1Quantification of control- and game-theoretic utility parameters (such as
U0) is never exact, and requires substantial effort. In this scenario, D must
first judge what type of attacker he is facing. If it is a simple, brute-force
botnet scan, U0 will be low, while if it is a complex, targeted attack coming
from a state actor, U0 will be high.

2Here D must specify the pieces of information that he hopes to learn
about A, as well as their relative values.

define TD = {T 0
D, T

1
D, T

2
D, . . .} ∈ Rℵ0+ such that T iD denotes

the time that D plans to wait at stage i before ejecting A
from the network. The single-stage action of D is to choose
T iD ∈ A = R+.

C. Reward Function µ

To formulate the reward, we also need to define TA =
{T 0

A, T
1
A, T

2
A, . . .} ∈ Rℵ0+ . For each i ∈ 0, 1, 2, . . . , T iA

denotes the duration of time that A plans to wait at stage
i before changing to a new system.

Let CN < 0 denote the average cost per unit time that D
incurs while A resides in normal systems3. This cost may be
estimated by a sum of the costs φmj < 0 per unit time of each
known vulnerability j ∈ 1, 2, . . . , J − 1 on each the systems
m ∈ 1, 2, . . . ,M in the network, weighted by the likelihoods
ρmj ∈ [0, 1] that A exploits the vulnerability. This data can be
obtained from the National Vulnerabilities Database [1]. Of
course, D may not be aware of some system vulnerabilities.
Let φmJ denote an estimate of damage that could be caused by
an unknown vulnerability J on each system m ∈ 1, 2, . . . ,M,
and let ρmJ denote a heuristic likelihood that A can exploit
the vulnerability4.

CN =
1

M

M∑
m=1

CmN =
1

M

M∑
m=1

J∑
j=1

ρmj φ
m
j .

Let CH ≤ 0 denote a cost that D pays to maintain A
in a honeypot. This cost could represent the expense of
hiring personnel to monitor the honeypot, the expense of
redeployment, or the loss of informational advantage from
A reconnoitering the honeypot. Let R++ denote the set of
strictly positive real numbers. Finally, let v ∈ R++ denote
the utility per unit time that D gains from learning about
A while he is in honeypots. We assume that v > −CH , i.e.,
that the benefit per unit time from observing A in a honeypot
exceeds the cost.

Define the function µ : U × S × R+ → R such that
µ(U i, Si, T iD |T iA) gives the one-stage reward to D if the
residual utility is U i, A is in system Si, A waits for T iA
before moving, and D waits for T iD before ejecting A. Let
T i , min(T iA, T

i
D) denote the time for which A remains at

system Si before moving or being ejected. Also let 1{P} be
the indicator function which returns 1 if it the statement P
is true. We have µ(U i, Si, T iD |T iA) =

1{S = N}CNT i + 1{S = H}
(
min

(
T iv, U i

)
+ CHT

i
)
.

D. Transition Kernel q

Let R+ denote the set of non-negative real numbers. For
stage i ∈ 0, 1, 2, . . . , and given attacker and defender move
times T iA and T iD, respectively, define the transition kernel

3Future work can consider different costs for each individual system in a
structured network.

4One alternate approach that can be used to quantify the impact of
unknown zero-day attacks is k-zero day safety [18]

q : U × S × R+ × U × S → R+ such that, for all residual
utilities U i ∈ U and system types Si ∈ Sˆ

Ui+1∈U

ˆ
Si+1∈S

q
(
U i+1, Si+1, T iD, U

i, Si |T iA
)

= 1,

where U i+1 and Si+1 denote the residual utility and system
type, respectively, at the next stage.

Let p ∈ [0, 1] denote the fraction of normal systems in the
network5. For a real number y, let δ(y) be the Dirac delta
function. For brevity, let Φ(U i, T) , max{U i − vT, 0}. If
T iA > T iD, then D ejects A from the system, and we have
q(U i+1, Si+1, T iD, U

i, Si |T iA) =

1
{
Si = L ∩ Si+1 = L

}
δ
(
U i+1 − U i

)
+

1
{
Si = N ∩ Si+1 = L

}
δ
(
U i+1 − U i

)
+

1
{
Si = H ∩ Si+1 = L

}
δ
(
U i+1 − Φ(U i, T iD)

)
. (1)

If T iA ≤ T iD, then A changes systems, and we have
q
(
U i+1, Si+1, T iD, U

i, Si |T iA
)

=

p1
{
Si = N ∩ Si+1 = N

}
δ
(
U i+1 − U i

)
+

(1− p)1
{
Si = N ∩ Si+1 = H

}
δ
(
U i+1 − U i

)
+

p1
{
Si = H ∩ Si+1 = N

}
δ
(
U i+1 − Φ(U i, T iA)

)
+

(1− p)1
{
Si = H ∩ Si+1 = H

}
δ
(
U i+1 − Φ(U i, T iA)

)
.
(2)

The equations can be understood by considering an ex-
ample. If T iA ≤ T iD and A is currently in a honey-
pot, then Eq. (2) shows that the remaining utility will be
δ
(
U i+1 − Φ(U i, T iA)

)
. There is p probability that the next

system is N, and (1− p) that it is H.

E. Infinite-Horizon, Undiscounted Reward

For stage i ∈ 0, 1, 2, . . . , define the stationary deterministic
feedback policy θ : U× S→ R+ such that T iD = θ(U i, Si)
gives the time that D waits before ejecting A if the residual
utility is U i and the system type is Si. Let Θ denote the space
of all such stationary policies. Define the expected infinite-
horizon, undiscounted reward by Viθ : U× S→ R such that
Viθ(U i, Si) gives the expected reward from stage i onward
for using the policy θ when the residual utility is U i and
the type of the system is Si. Viθ(U i, Si) also depends on the
attacker’s choice of T kA, but for a given T kA, it is expressed
by

Viθ
(
U i, Si

)
= E

{ ∞∑
k=i

µ
(
Uk, Sk, θ

(
Uk, Sk

)
|T kA

)}
,

where the states transition according to Eq. (1-2). Given an
initial system type S0 ∈ {H,N}, the overall problem for D
is to find θ∗ such that

θ∗ ∈ arg max
θ∈Θ

V0
θ

(
U0, S0

)
.

5Again, in a formal network, the kernel will differ among different
honeypots and different normal systems. The fraction p is an approximation
which is exact for a fully-connected network.

The undiscounted utility function demands Proposition 1.

Proposition 1. Viθ∗(U i, Si) is finite.

Proof: See Appendix A.
It is also convenient to define the value function as the

reward for the optimal policy:

Vi
(
U i, Si

)
, Viθ∗

(
U i, Si

)
= max

θ∈Θ
Viθ
(
U i, Si

)
.

The Bellman principle [4] implies that for an optimal sta-
tionary policy θ∗, and for i ∈ 0, 1, 2, . . . , θ∗

(
U i, Si

)
∈

arg max
T i
D∈R+

µ
(
U i, Si, T iD |T iA

)
+

ˆ
Ui+1∈U

ˆ
Si+1∈S

Vi+1
(
U i+1, Si+1

)
q(U i+1, Si+1, T iD, U

i, Si |T iA).

III. ANALYSIS AND RESULTS

In this section, we solve for the value function and optimal
policy. We start by obtaining the optimal policy in honeypots,
and reducing the space of candidates for an optimal policy
in normal systems. Then we present the value function
and optimal policy separately, although they are derived
simultaneously.

A. Reduced Action Spaces

Lemma 1 obtains the optimal waiting time for Si = H.

Lemma 1. (Optimal Policy for Si = H) In honeypots,
for any i ∈ 0, 1, 2, . . . and U i ∈ U, the value function is
optimized by playing T iD = U i/v.

Proof: The value of the game is maximized if A passes
through only honeypots and D ejects A when the residual
utility is 0. D can achieve this by playing T iD = U i/v if
T iA > U i/v. On the other hand, if T iA ≤ U i/v, then it is
optimal for D to allow A to change systems. This is optimal
because the value function at stage i+1 is non-negative, since
in the worst case D can eject A immediately if A arrives
at a normal system. D can allow A to change systems by
playing any T iD ≥ T iA, although it is convenient for brevity
of notation to choose T iD = T iA.

Lemma 2 narrows the optimal waiting times for Si = N.

Lemma 2. (Reduced Action Space for Si = N) In normal
systems, for any i ∈ 0, 1, 2, . . . and U i ∈ U, the value
function is optimized by playing either T iD = 0 or T iD = T iA.

Proof: First, note that it is always suboptimal for D
to eject A at a time less that T iA. That is, for stage i ∈
0, 1, 2, . . . , Vi

θ̃
(U i, N) < Vi

θ̂
(U i, N) for 0 = θ̂(U i, N) <

θ̃(U i, N) < T iA. Second, note that D receives the same utility
for ejecting A at any time greater than or equal to T iA, i.e.,
Vi
θ̃
(U i, N) = Vi

θ̂
(U i, N) for T iA ≤ θ̂(U i, N) ≤ θ̃(U i, N).

Then either 0 or T iA is optimal.
Remark 1 summarizes Lemmas 1-2.

Remark 1. Lemma 1 obtains the unique optimal waiting time
in honeypots. Lemma 2 reduces the candidate set of optimal

waiting times in normal systems to two times: T iD ∈ {0, T iA}.
These times are equivalent to stopping the Markov chain and
allowing it to continue, respectively. Thus, Lemmas 1-2 show
that the MDP is an optimal stopping problem.

B. Value Function Structure

To solve the optimal stopping problem, we must find the
value function. We obtain the value function for a constant
attacker action, i.e., T 0

A = T 1
A = , T̄A. This means that

Vi ≡ V. Define the following notation:

δ , T̄Av, δD1 , T̄A (v + CH) , (3)

λDN ,
−CN
1− p , χDH ,

v + CH
v

. (4)

Note that δ and δD1 are in units of utility, λDN is in units of
utility per second, and χDH is unitless.

First, V(U i, L) = 0 for all U i ∈ U, because no further
utility can be earned after D ejects A. Next, V(0, S) = 0 for
both S ∈ {H,N}, because no positive utility can be earned
in either type of system. V can now be solved backwards in
U i from U i = 0 to U i = U0 using these terminal conditions.
Depending on the parameters, it is possible that ∀U i ∈ U,
θ∗(U i, N) = 0 and V(U i, N) = 0, i.e., D should eject A
from all normal systems immediately. Lemma 3 describes the
structure of the optimal policy outside of this case.

Lemma 3. (Optimal Policy Structure) Outside of the case
that ∀U i ∈ U, θ∗(U i, N) = 0, there exists a residual utility
ω ∈ U such that:

• for U i < ω, θ∗(U i, N) = 0 and V(U i, N) = 0,
• for U i > ω, θ∗(U i, N) = T̄A and V(U i, N) > 0.

Proof: See Appendix B.

Remark 2. Typical intuition dictates that a security profes-
sional should immediately eject a detected attacker from
normal systems in a network. Lemma 3 shows that this is
indeed optimal when ω ≥ U0. When ω < U0, however, it is
better to allow the attacker to remain. A principle contribution
of our work is finding this threshold ω.

C. Value Function Threshold

Next, for x ∈ R, define

k [x] ,

{
bx/δc , if x ≥ 0

0, if x < 0
, (5)

where b•c is the floor function. The floor function is required
because µ is nonlinear in U i. Then Theorem 1 gives ω in
closed form.

Theorem 1. (Threshold ω) Outside of the trivial case, the
threshold ω of residual utility beyond which D should eject
A is given by

ω = δ

(
k [ω] +

λDN

(v + CH) (1− p)k[ω]
− 1− (1− p)k[ω]

p (1− p)k[ω]

)
,

0

2

4

6

8

10

0 2 4 6 8 10

V
al
u
e

Residual Utility U i

Value Function: V(U i, Si)

Recursive H

Recursive N

Calculated H

Calculated N

(a) p = 0.60, ω ≈ 0.83, δ = 3.0, U0 = 10

0

2

4

6

8

10

0 2 4 6 8 10

V
al
u
e

Residual Utility U i

Value Function: V(U i, Si)

Recursive H

Recursive N

Calculated H

Calculated N

(b) p = 0.85, ω ≈ 2.2, δ = 3.0, U0 = 10

Fig. 3: Value functions with p = 0.60 and p = 0.85. The top and bottom curves depict V(U i, H) and V(U i, N), respectively,
as a function of U i. The circles plot the analytical V(U i, S), S ∈ {H,N} from Theorem 2, and the solid lines verify this
using an iterative numerical method.

where k[ω] is defined as in Eq. (5), and it can be shown that

k [ω] =

⌊
log1−p

(
1 +

pCN
(1− p) (v + CH)

)⌋
,

if the argument of the logarithm is positive. If not, then the
optimal policy is for D to eject A from normal systems
immediately.

Proof: See Appendix C.
Remark 3 gives some intuition about Theorem 1.

Remark 3. Numerical results suggest that in many cases
(such as those in Fig. 3), k[ω] = 0. In that case, we have
ω = −δCN/ ((v + CH)(1− p)) . The threshold ω increases
as the cost for normal systems (CN) increases, decreases
as the rate at which utility is gained in normal systems (v)
increases, and decreases as the proportion of normal systems
(p) increases.

Finally, Theorem 2 summarizes the value function.

Theorem 2. (Value Function) The value function is given by

V
(
U i, Si

)
=


0, if Si = L

fD(U i), if Si = H{
fD(U i)− T̄AλDN

}
+
, if Si = N

,

where {•}+ denotes max{•, 0}, and fD : U→ R+ is

fD
(
U i
)
, χDH

(
U i − δk[U i]

)
(1− p)k[Ui]−k[Ui−ω]

+

δD1
p

(
1− (1− p)k[Ui]−k[Ui−ω]

)
+k[U i−ω]

(
δD1 − pλDN T̄A

)
.

Proof: See Appendix B.
Remark 4 discusses the interpretation of Theorem 2.

Remark 4. The quantity fD(U i) is the expected reward for
future surveillance, while T̄AλDN is the expected damage that
will be caused by A. In normal systems, when U i ≤ ω, we
have fD(U i) ≤ T̄Aλ

D
N , and the risk of damage outweighs

the reward of future surveillance. Therefore, it is optimal for

D to eject A, and V(U i, N) = 0. On the other hand, for
U i > ω, it is optimal for D to allow A to remain for T̄A
before moving, so V(U i, N) > 0. Figure 3 gives examples
of the value function.

D. Optimal Policy Function

Theorem 3 summarizes the optimal policy.

Theorem 3. (Defender Optimal Policy) D achieves an opti-
mal policy for Si ∈ {H,N} by playing

θ∗
(
U i, Si

)
=


U i/v, if Si = H

T̄A, if Si = N and U i ≥ ω
0, if Si = N and U i < ω

.

Proof: See Appendix B.

IV. ROBUSTNESS EVALUATION

In this section, we evaluate the robustness of the policy θ∗

by allowing A to choose the worst-case T̄A.

A. Equilibrium Concept

Let us write Vθ(U i, Si | T̄A) and θ∗(U i, Si, | T̄A) to denote
the dependence of the value and optimal policy, respectively,
on T̄A. Next, define V̄ : R+ → R such that V̄(T̄A) gives the
expected utility to D over possible types of initial systems
for playing θ∗ as a function of T̄A. This is given by

V̄
(
T̄A
)

= pV
(
U0, N | T̄A

)
+ (1− p)V

(
U0, H | T̄A

)
. (6)

Definition 1 formulates a zero-sum Stackelberg equilibrium
[17] in which A chooses T̄A to minimize Eq. (6), and D plays
the optimal policy given T̄A from Theorem 3.

Definition 1. (Stackelberg Equilibrium) A Stackelberg equi-
librium (SE) of the zero-sum attacker-defender game is a
strategy pair (T̄ ∗A, θ

∗) such that

T̄ ∗A ∈ arg min
T̄A

V̄θ∗(Ui,Si | T̄A)

(
T̄A
)
,

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14 16 18

A
ve

ra
ge

D
ef

en
d

er
U

ti
li

ty

T̄A

Average Defender Utility vs T̄A for δ > ω

Fig. 4: V̄θ∗(T̄A) for the case that δ < ω. Here, the worst case
value is V̄θ∗(T̄ ∗A) ≈ 1.8, which occurs as T̄A → 0.

2

3

4

5

6

7

8

5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

D
ef

en
d

er
U

ti
li

ty

T̄A

Average Defender Utility vs T̄A for δ > ω

Fig. 5: V̄θ∗(T̄A) for the case that δ > ω. Here, the worst case
value is V̄θ∗(T̄ ∗A) ≈ 3.0, which occurs for T̄A > ω ≈ 30.

and ∀U i ∈ U, ∀Si ∈ S,

θ∗
(
U i, Si | T̄ ∗A

)
∈ arg max

θ∈Θ
Vθ
(
U i, Si | T̄ ∗A

)
.

Definition 1 considers A as the Stackelberg game leader
because our problem models an intelligent defender who
reacts to the strategy of an observed attacker.

B. Equilibrium Analysis

V̄θ∗(T̄A) takes two possible forms, based on the values of
δ and ω. Figure 4 depicts V̄θ∗(T̄A) for δ < ω, and Fig. 5
depicts V̄θ∗(T̄A) for δ > ω. Note that the oscillations are
not produced by numerical approximation, but rather by the
nonlinear value function6. The worst-case T̄ ∗A is as small as
possible for δ < ω and is large for δ > ω. Theorem 4 states
this result formally.

Theorem 4. (Value as a function of T̄A) For low T̄A :

lim
T̄A→0

V̄θ∗(T̄A) = U0

(
1 +

1

v

(
CH + CN

p

1− p

))
. (7)

Define T̄ω as T̄A such that U0 = ω. Then for T̄A ≥
max{r, T̄ω}, we have

V̄θ∗(T̄A) = U0 (1− p) v + CH
v

. (8)

6As T̄A varies, the number of systems that A can visit before U i < ω
changes in a discrete manner. This causes the oscillations.

Fig. 6: The blue nodes and edges illustrate a 20-node net-
work, and the red highlights indicate an example attack trace.

Proof: See Appendix D.
Remarks 5-6 discuss Theorem 4 and Fig. 4-5.

Remark 5. The parameters of Fig. 4 and Fig. 5 differ only in
CN , which has a higher absolute value in Fig. 4. Since CN
only affects V̄θ∗(T̄A) as T̄A → 0, the plots are the same for
high T̄A.
Remark 6. The connection between Fig. 4 and Fig. 5 can
be visualized by translating the left sides of the curves
vertically, while the right sides remain fixed. This gives
network designers an intuition of how the worst-case value
can be manipulated by changing the parameters of the game.

Finally, Corollary 1 summarizes the worst-case value.

Corollary 1. (Worst-Case Value) The worst case value
V̄θ∗(T̄ ∗A) is approximated by

U0min
T̄A

{(
1 +

1

v

(
CH + CN

p

1− p

))
, (1− p) v + CH

v

}
.

V. SIMULATION

In this section, we simulate a network which sustains five
attacks and implements D’s optimal policy θ∗. Consider
the example network depicted in Fig. 1 in Section I. This
network has 16 production nodes, including routers, wireless
access points, wired admin access, and a database. It also
has sensors, actuators, and controllers, which form part of
a SCADA system. The network has 4 honeypots (in the
top-right of the figure), configured to appear as additional
SCADA system components.

Figure 6 depicts a view of the network in MATLAB [9].
The red line indicates an attack path, which enters through the
wireless access point at node 1, passes through the honeynet
in nodes 11, 18, and 19, and enters the SCADA components
in nodes 6 and 7. The transitions are realized randomly.

Figure 7 depicts the cumulative utility of D over time for
five simulated attacks. Towards the beginning of the attacks,
D gains utility. But after learning nears completion (i.e.,
U i ≈ 0), the losses CN from normal systems dominate. The
filled boxes in each trace indicate the ejection point dictated
by θ∗. At these points, U i ≤ ω. The ejection points are

Fig. 7: The curves indicate the cumulative utility gains or
losses for five simulated attacks. The solid squares indicate
the optimal ejection time according to θ∗.

approximately at the maximum utility for traces 1, 3, and
5, and obtain a positive utility in trace 4. Trace 5 involves
a long period in which Si = N, and D sustains heavy
losses. Since the traces are realized randomly, θ∗ maximizes
expected utility rather than realized utility.

VI. DISCUSSION OF RESULTS

This paper aimed to assess how long an intelligent network
defender that detects an attacker should observe the attacker
before ejecting him. We found that the defender should keep
the attacker in a honeypot as long as information remains
to be learned and in a normal system until a threshold
amount of information remains. This threshold is ω, at
which the benefits of observation exactly balance the risks
of information loss. Using this model, network designers
can vary parameters (e.g., the number of honeypots and the
rate at which they gather information) in order to maximize
the value function V. In particular, we have examined the
effect of the attacker move period T̄A using a Stackelberg
game in which A chooses the worst-case T̄A. Future work
can use signaling games to calculate attacker beliefs p and
1 − p based on defender strategies. Another direction, for
distributed sensor-actuator networks, is to quantify the risk
CN of system compromise using optimal control theory.

APPENDIX A
PROOF OF FINITE EXPECTED VALUE

The maximum value of Viθ(U i, Si) is achieved if A only
visits honeypots. In this case, Viθ(U i, Si) = (v +CH)U0/v,
so the expected utility is bounded from above. If D chooses
a poor policy (for example, θ(U i, Si) = T iA for all U i ∈
U and Si ∈ S), then Viθ(U i, Si) can be unbounded below.
On the other hand, D can always guarantee Viθ(U i, Si) = 0
(for example, by choosing θ(U i, Si) = 0 for all U i ∈ U
and Si ∈ S). Therefore, the value of the optimal policy is
bounded from below as well as from above.

APPENDIX B
DERIVATION OF VALUE FUNCTION AND OPTIMAL POLICY

For Si ∈ {H,N}, the value function V(U i, Si) is
piecewise-linear in U i. The pieces result from different
discrete numbers of systems that A visits. Let V(U i, Si)[a, b]
denote V(U i, Si) restricted to the domain U i ∈ [a, b] ⊂ R.
First, we find V(U i, N) in terms of V(U i, H). For any non-
negative integer k, one step of the Bellman equation gives
V(U i, N)[kδ, (k + 1) δ] ={

CN T̄A + pV
(
U i, N

)
[kδ, (k + 1) δ]

+ (1− p)V
(
U i, H

)
[kδ, (k + 1) δ]

]}
+
,

where {•}+ denotes max{•, 0}. D achieves this maxi-
mization by continuing the game if the expected value for
continuing is positive, and ejecting A if the expected value
is negative.

Rearranging terms and using Eq. (3-
4) gives V(U i, N) [kδ, (k + 1) δ] ={
V
(
U i, H

)
[kδ, (k + 1) δ]− λDN T̄A

}
+
. Now, we have

defined ω as U i ∈ R+ which makes the argument on the right
side equal to zero. This obtains V

(
U i, N

)
[kδ, (k + 1) δ] ={

0, if U i ≤ ω
V
(
U i, H

)
[kδ, (k + 1) δ]− λDN T̄A, if U i > ω.

Next, we find V(U i, H). First, consider V(U i, H)[0, δ]. D
keeps A in the honeypot until all residual utility is depleted,
and then ejects him. Thus V(U i, H)[0, δ] = U iχDH . Next,
for k ∈ 1, 2, . . . , consider V(U i, H)[kδ, (k + 1)δ]. We have
V
(
U i, H

)
[kδ, (k + 1) δ] =

(v + CH) T̄A + pV
(
U i − δ,N

)
[(k − 1) δ, kδ]

+ (1− p)V
(
U i − δ,H

)
[(k − 1) δ, kδ] .

A bit of algebra gives V(U i, H)[kδ, (k + 1) δ] =
δD1 + (1− p)V

(
U i − δ,H

)
[(k − 1) δ, kδ] , if

U i ≤ ω + δ, and V(U i, H)[kδ, (k + 1) δ] =
δD1 + V

(
U i − δ,H

)
[(k − 1) δ, kδ] − pλDN T̄A, otherwise.

Solving this recursive equation for the case of U i ≤ ω + δ
gives V(U i, H)[kδ, (k + 1) δ] =

δD1 + δD1 (1− p) + . . .+ δD1 (1− p)k−1

+ (1− p)k V
(
U i − δk,H

)
[0, δ] . (9)

Using initial condition V(U,H)[0, δ] = UχDH produces
fD(U i) for U i ≤ ω. For U i > ω + δ, consider the integer
k1 such that (k − k1 − 1)δ ≤ ω < (k − k1)δ. Then

V(U i, H)[kδ, (k + 1) δ] = k1

(
δD1 − pλDN T̄A

)
+ V

(
U i − k1δ,H

)
[(k − k1 − 1)δ, (k − k1)δ] .

But the last term is simply fD
(
U i − k1δ

)
, and k1 =

k
[
U i − ω

]
defined in Eq. (5). Substituting from Eq. (9) gives

the entire function fD(U i), U i ∈ U.

APPENDIX C
DERIVATION OF k[ω] AND ω

We solve first for k[ω] and then for ω. Because of the floor
function in k[ω], we have that ω ∈ [k [ω] δ, (k [ω] + 1) δ) .
Then for some ε ∈ [0, 1), ω = (k [ω] + ε) δ.

Note that fD(ω) = T̄Aλ
D
N , i.e., the expected gain of

surveillance is equal to the security risk at U i = ω. Therefore,
we have T̄AλDN =

χDH (ω − δk[ω]) (1− p)k[ω]
+
δD1
p

(
1− (1− p)k[ω]

)
. (10)

Substituting for ω,

T̄Aλ
D
N −

δD1
p

= (k [ω] + ε) δχDH (1− p)k[ω]

− δk[ω]χDH (1− p)k[ω] − (1− p)k[ω].

This reduces to

T̄Aλ
D
N −

δD1
p

= εδχDH (1− p)k[ω] − (1− p)k[ω],

which is uniquely solved by the k[ω] in Theorem 1. Now
solving Eq. (10) for ω obtains the result in Lemma 1.

APPENDIX D
DERIVATION OF V̄θ∗(T̄A)

We solve the value function in two cases.

A. Limit as T̄A → 0

As T̄A → 0, ω and δ decrease, so U0 > ω + δ, and the
value functions follow fD2 . Therefore, we find the limit of
fD2 as T̄A → 0. As T̄A → 0, k[U0]− k1[U0] remains finite,
but δD1 → 0, and δk[U0] approaches U0. Therefore, the first
two terms of fD2 approach zero. The last term expands to

T̄A

⌊
U0 − ω
vT̄A

⌋(
v + CH + CN

p

1− p

)
.

As T̄A → 0, this approaches

U0

(
1 +

1

v

(
CH + CN

p

1− p

))
. (11)

Now, manipulation of Eq. (6) yields Vθ†
(
T̄A
)

= fD2
(
U0
)

+
T̄ACN

p
1−p . But as T̄A → 0, the second term approaches

zero. Thus Vθ†(T̄A) approaches Eq. (11). We have proved
Eq. (7).

B. Large T̄A
There are several cases. First, consider δ < ω and

T̄A ≥ U0/v. The second condition implies that D keeps A
in the first honeypot that he enters until all residual utility is
exhausted, which produces utility (v + CH)U0/v. The first
condition implies that U0/v > T̄ω, so T̄A > T̄ω, which
means that D ejects A from the first normal system that
he enters, which produces 0 utility. The weighted sum of
these utilities gives Eq. (8). Next, consider δ > ω and
T̄A ≥ U0/ω. The first condition implies that U0/v < T̄ω, so

it not guaranteed that T̄A ≥ T̄ω. But if T̄A ≥ T̄ω, D ejects
A from the first normal system that he enters, and we have
Eq. (8).

REFERENCES

[1] National vulnerability database. [Online] Available:
https://nvd.nist.gov/. [Accessed: April 2019].

[2] Massimiliano Albanese, Ermanno Battista, and Sushil Jajodia. Deceiv-
ing attackers by creating a virtual attack surface. In Cyber Deception,
pages 169–201. Springer, 2016.

[3] Devlin Barrett, Danny Yadron, and Damian Paletta. U.S. suspects
hackers in China breached about 4 million people’s records, of-
ficials say. The Wall Street Journal, 2015. [Online] Available:
https://www.wsj.com/.

[4] Richard Bellman. On the theory of dynamic programming. Proc. Natl.
Academy of Sciences, 38(8):716–719, 1952.

[5] Thomas E Carroll and Daniel Grosu. A game theoretic investigation of
deception in network security. Security and Communication Networks,
4(10):1162–1172, 2011.

[6] Karel Durkota, Viliam Lisỳ, Branislav Bosanskỳ, and Christopher
Kiekintveld. Optimal network security hardening using attack graph
games. In Intl. Joint Conf. on Artificial Intelligence, pages 526–532,
2015.

[7] Karel Horák, Quanyan Zhu, and Branislav Bošanský. Manipulating
adversary’s belief: A dynamic game approach to deception by design
for proactive network security. In Decision and Game Theory for
Security, pages 273–294. Springer, 2017.

[8] Linan Huang and Quanyan Zhu. Analysis and computation of adaptive
defense strategies against advanced persistent threats for cyber-physical
systems. In Decision and Game Theory for Security, pages 205–226.
Springer, 2018.

[9] MATLAB. R2017b. The MathWorks Inc., Natick, Massachusetts,
2017.

[10] Keith W Miller, Jeffrey Voas, and George F Hurlburt. Byod: Security
and privacy considerations. IT Professional, 14(5):53–55, 2012.

[11] Minghui Min, Liang Xiao, Caixia Xie, Mohammad Hajimirsadeghi,
and Narayan B Mandayam. Defense against advanced persistent threats
in dynamic cloud storage: A colonel blotto game approach. IEEE
Internet of Things J, 5(6):4250–4261, 2018.

[12] Mohammad A Noureddine, Ahmed Fawaz, William H Sanders, and
Tamer Başar. A game-theoretic approach to respond to attacker lateral
movement. In Decision and Game Theory for Security, pages 294–313.
Springer, 2016.

[13] United States Department of Defense. Department of Defense Strategy
for Operating in Cyberspace. DIANE Publishing, 2012.

[14] Jeffrey Pawlick and Quanyan Zhu. Deception by design: Evidence-
based signaling games for network defense. In Workshop on the
Economics of Inform. Security and Privacy, Delft, The Netherlands,
2015.

[15] Frank J. Stech, Kristin E. Heckman, and Blake E. Strom. Integrating
cyber-D&D into adversary modeling for active cyber defense. In Cyber
Deception, pages 169–201. Springer, 2016.

[16] Chris Stokel-Walker. Hunting the DNC hackers: how Crowdstrike
found proof Russia hacked the Democrats. WIRED, 2017. [Online]
Available: http://www.wired.co.uk/.

[17] Heinrich Von Stackelberg. Marktform und gleichgewicht. J. Springer,
1934.

[18] Lingyu Wang, Sushil Jajodia, Anoop Singhal, Pengsu Cheng, and
Steven Noel. k-zero day safety: A network security metric for mea-
suring the risk of unknown vulnerabilities. IEEE Trans. Dependable
and Secure Computing, 11(1):30–44, 2014.

[19] Liang Xiao, Dongjin Xu, Narayan B Mandayam, and H Vincent Poor.
Attacker-centric view of a detection game against advanced persistent
threats. IEEE Trans. Mobile Computing, 17(11):2512–2523, 2018.

[20] Liang Xiao, Dongjin Xu, Caixia Xie, Narayan B Mandayam, and
H Vincent Poor. Cloud storage defense against advanced persistent
threats: A prospect theoretic study. IEEE J Selected Areas in Commun.,
35(3):534–544, 2017.

[21] J. Zhuang, V. M. Bier, and O. Alagoz. Modeling secrecy and deception
in a multiple-period attacker–defender signaling game. European J
Operational Res., 203(2):409–418, 2010.

