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Abstract—We study the effects of stochastic shadowing on
scheduling in wireless networks. Previous work has generally
assumed that shadowing affects different signals independently.
Concentrating on “compact” networks, where very little or no
spatial reuse is possible, such as in indoor environments, we
form a model of correlation between the shadowing components
for different signals. We analyze two fundamental measures: the
maximum number of simultaneous transmitting links, and the
fewest time/frequency slots or channels needed to schedule all
the links. Based on the correlation model, we characterize (up
to constant factors) how these measures scale with correlation
strength and the number of links. We also give nearly optimal
algorithms to compute such schedules, as well as to optimize
the maximum weighted sum of simultaneously transmitting
links. The latter can as well be extended to arbitrary sets of
similar length links, under a suitable model of correlations, by
partitioning them into compact subsets.

Index Terms—link capacity, scheduling, lognormal shadowing,
correlated shadowing

Much effort has been spent on understanding the capacity
of wireless networks and how to best utilize them. A major
challenge has been how to model the wireless environments re-
alistically while maintaining analytical tractability. The model
of choice for algorithmic study of general ad hoc networks
has been the physical model with geometric pathloss. By the
geometric nature of the model, the main tool for achieving
efficient channel utilization is spatial reuse, namely packing
as many concurrent transmissions in space as possible, then
using time or spectrum division multiplexing. What happens
when there is little possibility of spatial reuse, such as in
indoor communications? The geometric pathloss model offers
in this case only the trivial time/spectrum division. However,
the physical model is only the averaged view of what happens
in actual networks. In particular, the received signal is almost
never symmetric with respect to different directions around
the transmitter, due to channel and antenna irregularities, or
shadowing.

Shadowing is most frequently modeled stochastically. To
each pair of points in space, we associate a random variable
drawn from a distribution. There is a general agreement
that Lognormal shadowing (LNS), which is Gaussian on the
dBm scale, is the most faithful approximation known of true
shadowing [1]–[4]. Though probabilistic models are known
to be far from perfect, they are generally understood to be
highly useful for providing insight into wireless systems, and
certainly more so than using pathloss alone.

The aim of this paper is to go beyond spatial reuse and

analyze possible capacity gains due to shadowing effects, using
the physical model as a baseline. We tackle two representative
fundamental problems, weighted single-shot scheduling and
minimum length scheduling, where in the former, we seek a
maximum weight feasible subset of a weighted set of links that
can successfully transmit simultaneously, while in the latter,
the set of links must be partitioned into the minimum number
of feasible subsets.

It has been frequently observed in the literature (through
simulations or analytically) that throughput and connectivity
improve with shadowing. However, such effects have also
been attributed to the assumed independence of shadowing
across different links. The amount of correlation depends on
the network structure, with the highest correlation between
links in nearly the same situation.

As a case study, we consider compact networks under cor-
related Lognormal shadowing, where the links have roughly
similar lengths, and are located in an area comparable to their
lengths, such as indoor networks. Clearly, such networks offer
very limited spatial reuse, and can be used to best demonstrate
possible capacity gains due to shadowing. Also, the problems
we consider are already quite challenging even in this simple
case. There are many interesting questions that arise when
faced with this situation:
• Can shadowing cause non-trivial capacity/scheduling

gains?
• If so, how does it scale with the correlation and the size

of the network?
• Are there simple and/or natural expressions for the ca-

pacity of compact networks?
• Which is the bigger factor in capacity gains: variations

in signal strengths of links, or variations in interferences
between links?

• Are there efficient algorithms for computing near-optimal
throughput schedules?

In this paper, we address all these questions for compact
networks. Such an analytic study faces two major challenges.
On one hand, the Lognormal distribution is heavy-tailed,
meaning that large values are not that unlikely. This precludes
the direct use of concentration bounds, in a major departure
from exponential distributions, such as the case of Rayleigh
fading. The other challenge is how to capture and handle non-
independence of stochastic events.

a) Our results: Below, we present a high level overview
of our results and the techniques used.



Algorithm for Weighted Single-Shot Scheduling. Our first re-
sult (Sec. II) is an algorithmic characterization, up to constant
factors, of the expected maximum weight of feasible subsets in
a compact network. More concretely, given a compact set with
shadowing sampled from correlated Lognormal distribution,
we select a feasible subset of links whose weight is only a
constant factor away from the expected optimum. In previous
work [5], we have shown that under independent shadowing,
nearly maximal size unweighted feasible sets of links can
be computed by focusing on strong sets of links: sets of
t links whose signal strength is about t times larger than
the expectation. The heavy-tail property of LNS will give us
strong sets of significant size, while the interference within
such sets, which is composed of many i.i.d. terms (pairwise
interferences), will be concentrated near its mean. Moreover,
non-strong sets of links are much less likely to be feasible,
leading to the near-optimality of strong sets.

A somewhat different approach is needed in the presence
of correlated shadowing. There, roughly speaking, there is
a principal component of shadowing shared by all signal
and interference distributions, which varies simultaneously for
all of them. In particular, the interferences are not as well
concentrated near their expectation as before, since their values
depend on that single component. Therefore, it may not suffice
to select the largest strong set of links. If the largest strong set
is very small, the reason for that could be the small value of
the principal component, which in turn implies smaller value
for all interferences, so one could potentially obtain a better
solution by selecting sets of weaker links that also happen to
have small mutual interference. Thus, our approach is to seek
large subsets of links that become strong when both signal
strengths and interferences are normalized by the value of the
principal component, trying all such values.

The main challenge remaining is then to show that those
are the only sets we need to consider, in order to get a
(expected) constant factor approximation. To that end, we
show that achieving feasibility with only (normalized) sets of
strong links is much more likely than using even a single non-
strong link, given the strong concentration bounds that hold
for the aggregate interference received by a link. This fails
only when all optimal sets are small, which can occur if the
weights are highly unbalanced; for that case, we can apply
exhaustive search among the relatively small number of high
weight links.

The constant factor approximation can also be extended to
the more general setting of sets of nearly equal length links,
arbitrarily located on the plane. This is achieved by showing
that such a set can be partitioned into a constant number
of subsets consisting of well-separated compact subsets. For
this, we assume that shadowing effects within well-separated
compact subsets are uncorrelated. We leave the consideration
of more detailed or accurate models for correlation between
disjoint compact subsets to future work.

Scaling Law for Max Size Feasible Set. In our second result
(Sec. III), we use the ideas developed above to formulate a
scaling law for the expected maximum size of a feasible set

in a compact network of k links, which shows the dependence
of the expected size of a maximum feasible set on the
number of links in the network and the correlation coefficient.
This requires to estimate the maximum expected size of a
normalized strong subset of links. In particular, we show that
the expected size is exp(c

√
ln k ± τ), where c is a constant

(depending on the correlation), while τ is a lower order term.
Min Length Scheduling. In our third result, we characterize

the expected minimum number of slots required to schedule
a compact set of k links and show, perhaps surprisingly, that
considerable scheduling gains can be achieved, even under
correlated shadowing (Sec. IV). The difference from one-
shot scheduling is that while the main improvement in one-
slot schedules is due to very strong links, the min. length
scheduling gain is achieved by showing that moderately strong
links can be grouped into low-interference subsets, i.e., that
there are many feasible subsets of significant size, giving us
the throughput gain. We show that this number is a constant
factor of k(ln ln k)2/ ln k, which gives us a throughput gain
by a factor of ln k/(ln ln k)2, compared with the bound k in
the case without shadowing.

The argument behind this result is based on partitioning
the set of links into normalized strong subsets. However, the
normalization factor here is not only the principal component,
as using just the latter for normalization would yields few
feasible subsets of relatively big size, which is not enough
to prove our claim. Instead, we look for smaller but still
significant feasible subsets that are strong, when normalized
by a larger factor. The heavy-tail shadowing distribution shows
that there will be many such subsets with significantly lower
mutual interference than expected. In order to turn these ideas
into the actual result we aim for, we reduce the problem to
that of coloring Erdős-Renyi random graphs.

To our knowledge, this is the first work to study the
weighted single-shot scheduling and min. length scheduling
problems in this setting.

Due to space constraints, some technical details are deferred
to the full version of the paper.

b) Related Work: Gupta and Kumar [6] introduced the
physical model, in order to study scaling laws regarding
throughput capacity in networks. This simplified model gained
wide attention in analytic and algorithmic studies of wireless
networks. Experimental studies support the physical model
over disk-graph-based models, which over-simplify decay be-
havior of signals [2], [7]–[10]. This model has been accu-
rate and tractable enough to spawn a considerable body of
work studying algorithmic problems like (weighted) single-
shot and min. length scheduling, among others [11]–[20].
First algorithms with performance guarantees in the physical
model were given by Moscibroda and Wattenhofer [21]. These
scheduling problems have been fundamental to various MAC
layer problems, most notably for TDMA scheduling and
maximum thoughput scheduling (e.g. [22], [23]).

Validity of the Lognormal model for shadowing has been
confirmed through extensive experiments [1], [2], [24], [25].
There have been numerical and analytical studies showing that



log-normal shadowing results in better connectivity [26]–[29]
and throughput capacity (under particular scheduling strate-
gies) [30]. However it has been demonstrated that the con-
nectivity gains are mostly due to the independent shadowing
assumption, and they decrease dramatically when correlations
are introduced [25]. The unweighted single-shot scheduling
under independent shadowing has been considered in a pre-
vious work [5]. However, we are not aware of any analytic
study quantifying the dependence of the gains on correlation
in terms of explicit expressions.

Even though the equal correlation assumption is natural (and
has been observed experimentally [1]) for the case of compact
networks, it is not the only model. In particular, it may
not be applicable for “sparser” networks spread over a large
area. Many different correlation models have been studied in
the literature. For example, it has been suggested to model
correlation as exponentially decreasing with distance [25]. See
e.g. [31] for a list of models.

I. MODELS AND FORMULATIONS

a) Communication Model and Basic Problems: The
main object of our consideration is a set L of communication
links, numbered from 1 to k = |L|. Each link i ∈ L
represents a unit-demand communication request between a
sender node si and a receiver node ri, both point-size wireless
nodes located on the plane. We assume the links all operate
in the same channel, and all (sender) nodes use the same
transmission power level P . We refer to a set of links that
can successfully communicate in a single time slot as feasible.
Before formally defining the feasibility model, let us define the
main problems we are interested in.

In the weighted single-shot scheduling problem, given a set
L of links with positive weights, the goal is to select the
maximum weight feasible subset of links, where the weight
of a subset is the sum of the individual link weights. We refer
to the optimum weight by optW (L). Of particular interest is
the special case when all links have equal weights, i.e., the
goal is to find a maximum cardinality feasible subset. The
optimum cardinality is denoted by optC(L). In the minimum
length scheduling problem, the goal is to partition L into the
minimum number of feasible subsets. We call this number the
scheduling number, denoted optS(L).

When S is the subset of links transmitting simultaneously,
a given link i ∈ S succeeds if its signal strength (the power
of the transmission of si when measured at ri) is greater than
β times the total (sum) interference from other transmissions,
where β > 0 is a threshold parameter, and the interference
of link j on link i is the power of transmission of sj when
measured at ri. We consider interference-limited networks,
where the effect of ambient noise is negligible. Formally, link
i transmits successfully if

SIR(S, i) =
Si∑

j∈S\i Iji
> β , (1)

where Si is the received signal strength/power of link i and
Iji is the interference of link j on link i. A link i is feasible

in a set S if SIR(S, i) > β. A set S is feasible if every link
i ∈ S is feasible in S.

We assume for simplicity that β = 1. The latter is justified
by the following result of [32]: we can state our results for
general β ≥ 1 by paying at most a factor of 2β in performance.

Lemma 1. If a set S of links and number β′ > 0 are such that
SIR(S, i) ≥ β′ for each link i ∈ S, then S can be partitioned
into at most d2β/β′e subsets, each feasible with threshold β.

b) Geometric Path-Loss: The Geometric Path-Loss
model (GPL) defines the received signal strength between
nodes u and v as P/f(d(u, v)), where P is the power used
by the sender u, d denotes the Euclidean distance, and f is
a deterministic function (e.g., f(x) = xα, in the case of log-
distance pathloss). In particular, the signal strength of a link i
and the interference of a link j on link i are, respectively,

S̄i =
P

f(li)
and Īji =

P

f(d(sj , ri))
,

where li = d(si, ri) denotes the length of link i and d(sj , ri)
is the distance from the sender node of link j to the receiver
node of link i. If the links in a set S transmit simultaneously,
the formula determining the success of the transmission on
link i is similar to (1).

c) Shadowing: One of the effects that GPL ignores
(or models only by an appropriate change of the path loss
exponent α), is signal obstruction by objects, or shadowing. In
generic networks shadowing is often modeled by a stochastic
shadowing model. Here we adopt the Lognormal Shadowing
model, or LNS for short. In this case, the signal strength Si of a
link i at ri is assumed to have been sampled from a Lognormal
distribution with mean E[Si] = S̄i, and similarly, for any two
links i, j, the interference Iij is sampled from a Lognormal
distribution with mean E[Iij ] = Īij . More concretely, there
are Normal random variables (r.v.s) Zi ∼ N (µi, σ) and
Zij ∼ N (µij , σ) with a fixed σ > 0, such that Si = eZi

and Iij = eZij , for all links i, j. We assume that shadowing
does not change during the time period under consideration. In
this model too, signal reception is characterized by the signal
to interference ratio.

d) Network structure and shadowing correlation: We
will primarily be concerned with compact sets of links, where
the links have lengths in the range [`, 2`] and are contained in
a box of side 4`, for some ` > 0. The main motivation is that
in the geometric path-loss model without shadowing, only a
few links (a constant number) can be selected from a compact
set to transmit in the same time slot, and similarly, in order
to schedule a compact set in the geometric path-loss model,
one has to use a number of slots that is linear in the size of
the set. Thus, the main question is whether one can hope for
better under shadowing.

In order to study compact sets, we can partition them into
a constant number of clusters, where the distance between the
sender and receiver of any two links in a cluster is at least c`,
for some constant 0 < c < 1. Thus, we eliminate the pairs
of links which have too high expected interference on each



other. In order to keep things simple, we will focus on “ideal”
clusters, where we assume that the senders are all located at
one point and the receivers are all located at another point, and
hence all links have the same length `. This simplification will
only affect the constant factors in our results, due to Lemma 1,
but will significantly simplify the exposition. Thus, all clusters
considered henceforth are assumed to be such.

Within a cluster, since links have approximately similar
position, we assume that they are pairwise equally correlated.
It is natural to assume that the correlation is such that the
shadowing affects links “similarly”, i.e. that the correlation is
non-negative. More concretely, if L is a cluster, and if for all
links i, j ∈ L, Si = eZi and Iji = eZji , where Zi ∼ N (µi, σ),
Zji ∼ N (µji, σ) are Normal r.v.s, then we assume that all r.v.s
Zi, Zij are jointly Normal with a covariance matrix that has
σ2 on its diagonal and ρσ2 elsewhere; namely, every pair of
(logarithms of) signals has correlation 0 ≤ ρ < 1. Note that
for jointly Normal variables, ρ = 0 implies independence. We
emphasize that ideal clusters are only a technically simpler
abstraction of actual instances where links do not share the
same place in space, hence we assume general correlation ρ
and not ρ = 1, which is suitable for ideal instances.

e) Technical Preliminaries: We use the following facts
about Lognormal random variable X = eZ with Z ∼
N (µ, σ2): The expected value is given by E[X] = eµ+σ2

2 ,
and for any x > 0, Pr[X > x] = Q

(
ln x−µ
σ

)
, where Q(x) is

the tail distribution function of standard Normal distribution,
given by Q(x) =

∫∞
x
φ(t)dt, and φ(t) = 1√

2π
e−t

2/2. We will
mainly be interested in the following probability:

Pr[X > t · E[X]] = Q

(
ln t

σ
+
σ

2

)
. (2)

II. ALGORITHM FOR SINGLE-SHOT SCHEDULING

We refer the reader to the introduction for an informal
overview on the ideas behind the algorithm and analysis.
Formally, the input to our algorithm is a cluster L of k = |L|
links i with positive weight wi with signal strengths Si and
interferences Iji sampled from correlated Lognormal shadow-
ing distribution. Namely, we assume that for each pair i, j of
links, Si = eZi , Iji = eZji , where {Zi, Zij : i, j ∈ L} are
jointly Normal with correlation matrix Σ that has σ2 on its
diagonal and ρσ2 off the diagonal, and 0 ≤ ρ < 1.

The goal is to find a feasible subset T ⊆ L whose total
weight is close to the expected optimum E[optW (L)], with
expectation taken over the shadowing distribution.

Let S̄ = E[Si] = E[Iij ] = eµ+σ2/2 denote the expected
signal strength of a link (or interference of one link on
another). A link i is t-strong if Si > tS̄. Our approach is
divided into two phases. The first one, given in Alg. 1, tries
to find the heaviest set consisting of links of strength above a
threshold, for various thresholds. The analysis below is made
by conditioning on the component (referred to as principal
component in the introduction) that is common to all signal
strengths and interferences, due to correlation. The outer loop
in Alg. 1 essentially guesses this component b, then we focus

on sets F that consist of (roughly) b|F |-strong links. We show
that if b is the right value, then such a set F is likely to contain
a large feasible subset. Having this, the main challenge is to
show that such sets of strong links are likely to contain a near
optimal solution, except for the case when the optimal weight
is achieved by only sets of few (bounded by a constant) links.
To handle the latter case, we complete our algorithm by doing
exhaustive search to find the heaviest feasible subset of at most
h links.

Algorithm 1 Find heavy strong subsets
1: γ ← 1

2 · exp(−(1− ρ)σ2/2)
2: for b = 1, 2±1, 4±1, . . . , 2±dlogWe do
3: for t = 1, 2, . . . k do
4: F bt ← (at most) t heaviest of γbt-strong links in L
5: Ebt ← {i ∈ F bt :

∑
j∈F bt

Iji < 4Si/γ}
6: Partition Ebt into at most 8/γ feasible subsets, using

Lemma 1, and let Gbt be the heaviest one
7: end for
8: end for
9: return Heaviest of all Gbt

Algorithm 2 Main algorithm

1: h← O
(

1 + max
(

lnσ, ln3(1/(σ
√

1−ρ))
σ2(1−ρ)

))
2: H ← the heaviest feasible subset of at most h links
3: return the better among H and G, the output of Alg. 1

Remark. A naı̈ve implementation of the algorithm has run-
time O(k3 logW+kh). When links are very highly correlated,
i.e., when (σ

√
1− ρ)−1 is very large, the second term (due

to step 2 in Alg. 2) may be prohibitive. In that case, one may
resort to computing the heaviest among smaller subsets. In the
most trivial form, one could simply take H to be the heaviest
link in L; this would increase the approximation ratio by a
factor of h. Note also that with a more detailed calculation, the
values of constants can be tuned/traded to give better bounds.

Recall that optW (L) is the optimum weight of a feasible
subset. We use opt′W (L) to denote the maximum weight of a
feasible subset of size at least h. The rest of this section is
devoted to the proof of the following theorem, which shows
that the algorithm attains a performance ratio independent of
the network size or link weights. For a weighted set S of links,
we denote by wS the total weight of S.

Theorem 1. Let A be the output of Alg. 2 on a set L of links,
and γ be as in Alg. 1. Then there is a constant c > 0, s.t.
E[optW (L)] ≤ (c/γ) · E[wA], where the expectation is with
respect to the shadowing distribution.

Since we handle the subsets of size at most h exactly (by
subset H), it suffices to prove the approximation for larger
subsets. Therefore, the subsequent analysis focuses on the
approximation of opt′W (L) by the set G produced by Alg. 1.

In order to realize our plan of separating the common
part between correlated signals and interferences, we need to



formalize this quantity. We achieve that using Lemma 2 below
(proved in the full version), which shows that a cluster with
correlated shadowing behaves essentially like a cluster with
independent shadowing, but with shifted means and scaled
(decreased) variances. It implies that the common part is a
Normal r.v., which is perturbed by independent Normal r.v.s
to give individual signals and interferences.

Lemma 2. Let X,Y1, . . . , Yt be independent N (0, σ2) r.v.s.
Let 0 ≤ ρ < 1 be a parameter. Consider the random variables
Zi =

√
ρX +

√
1− ρYi for i = 1, 2, . . . , t. Then Zi are

jointly Normal with correlation matrix Σ, which has σ2 on
its diagonal and σ2ρ elsewhere.

Let Zi, Zij , for i, j = 1, 2, . . . , k, be Normal r.v.s such that
Si = eZi and Iij = eZij . Recall that µ = E[Zi] = E[Zij ].
By the assumption on the correlation between the signals and
interferences, Lemma 2 implies that there are independent
N (0, σ2) r.v.s X,Yi and Yij , i, j = 1, 2, . . . , k, such that
Zi =

√
ρX+

√
1− ρYi+µ and Zij =

√
ρX+

√
1− ρYij +µ

(obvious modifications apply for non-ideal instances, e.g., with
different E[Zi] = µi).

Our strategy will be to condition on the value of X ,
and show that identical bounds can be obtained for all val-
ues with significant probability mass, then argue the bound
in expectation. Assume that X = a is fixed, with a ∈
[− logW, logW ]; the remaining values of X have total proba-
bility mass O(1/W ) and have negligible effect on the expected
approximation ratio. Then Zi and Zij become independent
Normal r.v.s with shifted mean µ′ =

√
ρa + µ and variance

σ′2 = (1 − ρ)σ2. Let S̄a = E[Si | X = a] = E[Iji | X = a]
denote the expected signal strength, conditioned on X = a.
Note that S̄a = exp(µ′ + σ′2/2) = exp(a

√
ρ− ρσ2/2) · S̄.

For a given value X = a, a subset T ⊆ L is strong, if for
each link i ∈ T , Si > γ|T |S̄a (i.e., if each link is γ|T |-strong
w.r.t. S̄a). Let F a ⊆ L denote the maximum weight strong
subset of size at least h.

Thm. 1 follows from Lemmas 3 and 4, where the former
shows that Alg. 1 essentially captures the optimum weight
achieved by strong subsets, while the latter, which is the most
challenging part of the argument, shows that the optimum
weight in general is expected to be achieved by a strong subset.
All probabilities below are conditioned on X = a, which we
omit from the notation for clarity.

Lemma 3. E[wG] ≥ (γ/16) · E[wFa ], where G ⊆ L is the
output of Alg. 1.

Proof. By definition of F a, for each link i ∈ F a,

Si > γtS̄a = γte
√
ρae−ρσ

2/2 · S̄ , (3)

where t = |F a|. Let b be the largest power of two below
e
√
ρae−ρσ

2/2. Consider the set F bt as defined in Alg. 1 (this
value of b is considered in the algorithm, since we assume that
a ∈ [− logW, logW ]). Recall that for each link i ∈ F bt ,

Si > γtb · S̄ ≥ γt · S̄a/2 , (4)

and F bt contains the t heaviest of such links. Hence, wF bt ≥
wFa . To complete the proof, it suffices to show that the
corresponding set Gbt contains a constant fraction of the weight
of F bt , in expectation. Taking expectations with respect to
interferences and using (4), we have, for each link i ∈ F bt ,

E

∑
j∈F bt

Iji

 = (|F bt | − 1) · S̄a <
2Si
γ

.

By Markov’s inequality, Pr
[∑

j∈F bt
Iji < 4Si/γ

]
> 1

2 . The
latter implies that E[wEbt ] >

1
2 · wF bt , where Ebt is, by defi-

nition, the subset of links i ∈ F bt with
∑
j∈F bt

Iji < 4Si/γ.
On the other hand, by Lemma 1, Ebt can be partitioned into
at most 8

γ feasible subsets, the heaviest of which, namely Gbt ,
has weight at least (γ/8) ·wEbt , which implies the lemma.

Lemma 4. For any fixed a, conditioned on X = a,

E[opt′W (L)] ≤ 2 · E[wFa ].

Proof. The main ingredient is the following “stochastic dom-
inance” property. For a subset T , let EsT and EnsfT denote
the events that T is strong, and T is not strong but feasible,
respectively.

Claim 1. There is a constant c > 0, such that for any subset
T ⊆ L of size at least h = c ·

(
1 + max

(
lnσ′, ln3(1/σ′)

σ′2

))
,

Pr[EsT ] ≥ Pr[EnsfT ].

Proof. Fix a subset T and denote s = |T |,

ps = Pr[Si > γsS̄a],

psf = Pr[Si > γsS̄a ∧
∑
j∈T
Iji < Si],

pwf = Pr[Si ≤ γsS̄a ∧
∑
j∈T
Iji < Si].

By the symmetry of the problem, these probabilities are the
same for all links. Then using independence, we have:

Pr[EsT ] =
∏
i∈T

Pr[Si > γsS̄a] = pss.

On the other hand, the Law of Total Probability and indepen-
dence imply:

Pr[EnsfT ] =

s∑
t=1

(
s

t

)
ptwfp

s−t
sf ≤

s∑
t=1

(spwf )tps−tsf ,

where we used the simple bound
(
s
t

)
≤ st. Our aim now is to

show that for s ≥ h,

ps ≥ s2pwf .

Using this inequality and the simple fact that psf ≤ ps in the
two bounds above, the claim follows easily.

First, let us bound from above the probability pwf of a link
not being strong but being feasible in T . Fix a link i ∈ T .
Let Ij denote the indicator r.v. that is 1 iff Iji ≥ ηS̄a, for a
parameter η > 0. Then Ij are i.i.d. Bernoulli with parameter



q = Q
(

ln η
σ′ + σ′

2

)
, and E

[∑
j∈T Ij

]
= qs, where q is given

by (2). Further note that if
∑
j∈T Iji < γsS̄a, then at most

(γ/η) · s of Ij can be 1, which implies that

pwf ≤ Pr

∑
j∈T
Iji < γsS̄a

 ≤ Pr

∑
j∈T

Ij <
γ

η
· s


= Pr

∑
j∈T

Ij <
γ

ηq
· qs

 ≤ exp

(
−sq

2
·
(

1− γ

ηq

)2
)
,

where the first inequality follows from the definition of pwf ,
the second from the observation above, while in the last one
we used a standard Chernoff bound. We set η = e−σ

′2/2. Then
q = Q(0) = 1/2, and γ = 1

2 · e
−σ′2/2 = ηq

2 . The bound thus
simplifies to: pwf ≤ e−s/8 .

The probability ps of a link being strong is, by (2),

ps = Pr[Si > γs] = Q

(
ln(γs)

σ′
+
σ′

2

)
= Q

(
ln(s/2)

σ′

)
,

using γ = 1
2 · e
−σ′2/2. Now, known bounds on the Q function

can be used (see the full version) to show that ps ≥ s2pwf

is satisfied by taking s ≥ c′ + c′′ · max
(

lnσ′, ln3 σ′−1

σ′2

)
, for

absolute constants c′, c′′ > 0.

For any T as in the Claim, Pr[T feasible] ≤ Pr[EsT ] +
Pr[EnsfT ], so by the Claim, Pr[EsT ] ≥ 1

2 Pr[T feasible]. This
implies that E[wFa ] ≥ 1

2E[opt′W (L)].

Putting the pieces together, we have that when restricted to
large sets, E[wG] ≥ γ

16 · E[wFa ] and E[wFa ] ≥ 1
2E[opt′W (L)]

hold for each a. The claimed approximation ratio then follows
from the inequality E[optW (L)] ≤ max (wH ,E[opt′W (L)]).

A. The Case of Unweighted Links

It is easy to see that in the special case of maximum cardi-
nality feasible set, our algorithm gives an additive h approx-
imation, even without the exhaustive search step. Moreover,
Lemmas 3 and 4 imply the following relationship between
strong and feasible subsets, which we will use for deriving a
scaling law for feasible sets.

Corollary 1. For a cluster L, let F ⊆ L be the maximum size
strong subset of L, for any value of the component X . Then
there are constants c, c′ > 0, such that

cγ · E[|F |] ≤ E[optC(L)] ≤ c′ · E[|F |] + h .

B. Extension to General Sets of Links

The algorithm above can be extended to the more general
case of nearly equal length links arbitrarily placed on the
plane. This can be achieved by essentially a direct application
of the corresponding result for independent shadowing [5].
To this end, [5, Prop. 4.2] shows that every set of nearly
equal length links can be partitioned into a constant number
of subsets, each consisting of well-separated clusters, where
the distance between two clusters is greater than the length of
a link (and can be made bigger by more refined partitioning).

Now, if we assume that the shadowing within each cluster
is independent of the shadowing in another one that is well-
separated from it, then we can apply the same reasoning as
in [5, Thm. 4.3], to extend the our algorithm for clusters
to the more general setting. While this assumption seems
reasonable, there are many other ways to model correlation
between links at a certain distance, e.g., the correlation could
be an exponentially decreasing function of distance. We leave
more comprehensive treatment of this issue to the future work.

III. SCALING LAW FOR MAXIMUM FEASIBLE SET

In this section, we examine how the expected maximum size
of a feasible set in a cluster scales with the number of links
and the shadowing correlation. Given Corollary 1, it suffices
to estimate the maximum size of a strong subset to bound the
optimal size of a feasible set.

Recall that given the fixed value X = a, we say a set T is
strong if each link i ∈ T is γ|T |-strong, i.e., Si > γ|T | · S̄a,
where S̄a is the expected signal strength conditioned on X =
a, and γ = 1

2 · exp(−(1− ρ)σ2/2).
For a Lognormal r.v. Y = eZ with Z ∼ N (µ, σ2), let

g(k, σ) denote the value g > 0, such that Pr[Y > γg ·EY ] =
g
k . We will use this quantity in our bound. We can estimate
g(k, σ) using (2) and known bounds on the Q function (details
in the full version):

g(k, σ) = exp(σ
√

2 ln k −O(ln ln k)− σ2).

Lemma 5. Let L be a cluster of k = |L| links under correlated
LNS. Let R denote the maximum size of a strong subset of L.
Then E[R] = Θ(1) · g(k, σ

√
1− ρ).

Proof. Let Zi, Zij , for i, j = 1, 2, . . . , k, be the Normally
distributed logarithms of signals and interferences, such that
Si = eZi and Iij = eZij . Recall that µ = E[Zi] = E[Zij ]. By
Lemma 2, there are independent N (0, σ2) r.v.s X,Yi and Yij ,
i, j = 1, 2, . . . , k, such that Zi =

√
ρX +

√
1− ρYi + µ and

Zij =
√
ρX +

√
1− ρYij + µ. We condition on the value

X = a. Then {Zi, Zij : i, j ∈ L} become independent
N (µ′, σ′2), where µ′ = µ + a

√
ρ and σ′ = σ

√
1− ρ. All

probabilities below are conditioned on X = a, so we omit
the conditioning notation for simplicity of formulas. Since the
bounds below do not depend on a, the lemma follows simply
by the law of total expectation.

Let g = g(k, σ′). Denote by Ii the indicator variable that is
1 iff link i is γg-strong. By the definition of g, p = Pr[Ii] = g

k .
Thus, E [

∑
i Ii] = kp = g, and since Ii are independent, the

Chernoff bound applies, giving Pr [
∑
i Ii < g/3] < e−2g/9 ,

which is at most 1/e if g ≥ 9/2, implying that E[R] ≥ e−1
3e ·g.

If g < 9/2, then a crude approximation gives Pr[R = 0] =
(1− p)k ≤ e−g , and

E[R] ≥ Pr[R 6= 0] ≥ 1− e−g ≥ g

g + 1
>
g

6
,

where we used the inequality eg ≥ 1 + g.
In order to show the other direction, let E(t) denote the event

that the number of γg-strong links is at least t, i.e.,
∑
i Ii ≥ t.

It follows from the definition of strong sets that for t ≥ g,



Pr[E(t)] ≥ Pr[R ≥ t]. Also note that the expected number
of γg-strong links in L can be expressed as E [

∑
i Ii] =∑k

t=0 Pr[E(t)], and similarly, E[R] =
∑k
t=0 Pr[R ≥ t]. Thus,

we have (assume, for simplicity, that g is an integer):

E[R] =

k∑
t=0

Pr[R ≥ t] =

g∑
t=0

Pr[R ≥ t] +

k∑
t=g+1

Pr[R ≥ t] .

The first term on the right side is at most g + 1, while,
as observed above, the second term is upper bounded by∑k
t=0 Pr[E(t)] = E [

∑
i Ii] = g. Together, these give us the

bound E[R] ≤ 2g + 1.

The lemma and Cor. 1 together imply our scaling law:

Corollary 2. Let L be a cluster of k = |L| links under
correlated LNS, and let γ and h be as in Algs. 1 and 2. Then
there are constants c, c′ > 0, such that

cγg(k, σ
√

1− ρ) ≤ E[optC(L)] ≤ c′g(k, σ
√

1− ρ) + h .

IV. MINIMUM LENGTH SCHEDULING

We consider here the min. length scheduling problem for a
cluster. In the geometric model, almost all links in a cluster
must be scheduled separately, namely the scheduling number
is linear in |L|. Hence, the question is whether we should
expect better schedules due to shadowing.

We showed in previous sections that there will be a sig-
nificant number of strong links due to shadowing, which
can be used to form large feasible sets. For min. length
scheduling, it does not suffice to focus on the strong links, as
we need to schedule all links, and not all of them are strong.
Instead, we must leverage the variability in the interference
strength and group together links that have very low mutual
interference. We model this as a coloring problem in Erdős-
Renyi random graphs: the nodes correspond to links and edges
correspond to interference above a certain threshold. This turns
out to characterize the length of optimal schedules, modulo
constant factors: on average, nearly a logarithmic number of
links (more precisely, Θ((1− ρ) ln k/(ln ln k)2) links) can be
simultaneously scheduled in a slot, and with high probability,
no feasible subset of links is significantly larger.

Theorem 2. Let L be a cluster of k = |L| links under
correlated LNS. Then E[optS(L)] = Θ(1) · f(k, σ, ρ), where
f(k, σ, ρ) = k(ln ln k)2

σ2(1−ρ) ln k . The result holds even if power
control is available.

Proof. As before, we can express the signal strengths and
interferences in terms of independent Normal r.v.s. Namely,
Si = eZi , Iij = eZij , where Zi =

√
ρX +

√
1− ρYi + µ and

Zij =
√
ρX +

√
1− ρYij + µ for all i, j, and X,Yi and Yij

are independent N (0, σ2). Again, by conditioning on X = a
for any a, Zi and Zij become independent Normal r.v.s with
mean µ′ = µ+

√
ρa and variance σ′2 = (1− ρ)σ2.

Now, assume X = a is fixed. All probabilities below are
conditioned on this event, unless explicitly stated otherwise.

We begin by proving that E[optS(L)] = O(1) · f(k, σ, ρ).
Let t > 1 be a parameter, which we will specify later. We

overload the notation to denote S̄ the expected value of Si,
given X = a. A link is weak if Si < S̄

t . Denote

q1 = Pr

[
Si <

S̄
t

]
, and q2 = Pr

[
Si <

S̄
t log k

]
.

We start by eliminating the weak links. By the assumption, the
expected number of weak links is q1 · k. Since the signals are
now independent, we can apply Chernoff bound to see that
there are at most 2q1k weak links, with probability at least
1−e−q1k/3. We can schedule all weak links in a separate slot
for each, and in 2q1k slots in total.

Now, let us focus on the set L′ of non-weak links. Let
k′ = |L′|. Consider any pair of links i, j ∈ L′. Let Bij denote
the indicator r.v. that is 1 if and only if max{Iij , Iji} ≥
S̄

t log k′ . Let p = Pr[Bij = 1]. Note that by independence,
p = 1 − Pr[max{Iij , Iji} ≤ S̄

t log k ] = 1 − q2
2 . Consider

the graph G over the set 1, 2, . . . , n where there is an edge
between vertices i, j iff Bij = 1. Clearly, this is an instance
of the Erdős-Rényi random graph Gk′,p, which is obtained by
taking k′ vertices and connecting each pair with an undirected
edge with probability p, independently of other pairs. It is
not hard to see that small independent sets in G give feasible
sets in L′. Namely, given any independent set S of size at
most log k in G, it induces a feasible set S′ in L′, since
no link in L′ is weak and by the definition of Bij , the total
interference on each link in S′ by other links in S′ is at most
S̄

t log k · |S
′| < S̄

t . Hence, it is sufficient to show that Gk′,p can
be colored with not too many colors, using only independent
sets of small size, i.e. at most log k. A classic result in random
graph theory [33] (see also the full paper) shows, that if
1/(1 − p) ≥ 2 then there is a greedy algorithm that colors
Gk′,p with O

(
k′

log1/(1−p) k
′

)
= O

(
k′ log q−1

2

log k′

)
colors using

only independent sets of size log1/(1−p) k
′.

Overall, with probability 1− e−q1k/3, we obtain a schedule
of length O(k) ·

(
q1 +

ln q−1
2

ln k

)
. Now, the goal is to choose the

parameter t so as to minimize the last sum. By evaluating the
expressions for q1 and q2, we can see that the best choice for t
is t = (ln k)c

′′
for a constant c′′ > 0, hence the schedule length

is O
(

k(ln ln k)2

σ2(1−ρ) ln k

)
, with probability at least 1 − e−Ω(k/ ln k),

and in expectation, conditioned on X = a.
Next, let us prove that E[optS(L)] = Ω(1) · f(k, σ, ρ) .

Let L′′ denote the set of links i with Si ≤ 2S̄. Note that by
Markov’s inequality, each link is in L′′ with probability at least
1/2. The Chernoff bound then implies that |L′′| ≥ k/4, with
probability at least 1 − e−k/16. Consider any subset S ⊆ L′′

of size |S| = t, where t < k/4 is a parameter to be specified
below. For each pair i, j ∈ S, let Bij be the indicator r.v. that
is 1 if and only if min{Iij , Iji} ≥ 18

t · S̄. The proof of the
following claim uses the result of [34] on achieveable SIR for
a given set of links (see the full paper).

Claim 2. If
∑
ij∈S Bij >

t(t−1)
4 then S is not feasible, even

with power control.

Thus, in order for S to be feasible, we must have∑
ij∈S Bij < T = t(t− 1)/4. Namely, for at least half of the



pairs i, j, it must be that Bij = 0. Denote q = Pr[Bij = 0].
Let R be a subset of T link pairs. By independence, the
probability that Bij = 0 for all (i, j) ∈ R is at most qT .
The number of different subsets R of size T is at most(

2T
T

)
< 4T . Thus, using the union bound, we see that the

probability that there are T pairs of links with Bij = 0 is at
most 4T · qT = (4q)T = (4q)t(t−1)/4.

By applying union bound over all subsets of L′′ of size t,
we see that the probability that L′′ contains a feasible subset
of size t is at most(

k/4

t

)
· (4q)t(t−1)/4 <

(
ek

4t

)t
·
(

(4q)(t−1)/4
)t
≤ 1

k
,

where the last inequality holds if we take (4q)(t−1)/4 ≤
2tk−1− 1

t , i.e. if t ≥ 4 and t > 5 ln k
ln(4q)−1 . Thus, with high

probability, optS(L) > k
4t , given that t > 5 ln k

ln(4q)−1 . In order
to see which values of t are admissible, we bound q using the
union bound,

q ≤ 2 · Pr

[
Iji <

18

t

]
= 2Q

(
s

σ′
− σ′

2

)
,

and use known bounds on the Q function to find that there
is a valid choice of t with t = O

(
σ′2 ln k

(ln ln k)2

)
, which gives

us E[optS(L)] = Θ(1) · k(ln ln k)2

σ2(1−ρ) ln k w.h.p. and in expectation
(details in the full version).

The upper and lower bounds for E[optS(L)] above were
obtained by conditioning on X = a. The theorem then follows
by applying the law of total expectation.

V. FUTURE WORK

While the possibility of power control can only affect the
constant factors in our results concerning unweighted single-
shot scheduling and min. length scheduling in a compact
network, it is an interesting question whether algorithms for
weighted single-shot scheduling may profit from power control
to obtain better solutions. In any case, power control and link
adaptation are crucial for utilizing shadowing gains in practice.

Another interesting question arising from our study is:
In what extent is the disagreement of predictions between
deterministic SINR and stochastic shadowing models reflected
in practice?
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