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Abstract—Dual Connectivity (DC) has been proposed by Third
Generation Partnership Project (3GPP), in order to address
the small coverage areas and outage of users and improve the
mobility robustness and rate of users in Heterogeneous Networks
(HetNets). In the HetNet with DC, each user is assigned a
Macro eNode Base Station (MeNB) and a Small eNode Base
Station (SeNB) and transmits data to both eNode Base Stations
(eNBs), simultaneously. In this paper, we present a power splitting
scheme for the HetNet with DC; to maximize the total rate of
the users while not exceeding the maximum transmit power
of each user. In our proposed power splitting scheme, a Deep
Reinforcement Learning (DRL) approach is taken based on the
actor-critic model on continuous state-action spaces. Simulation
results demonstrate that our power splitting scheme outperforms
the baseline approaches in terms of total rate of users and
fairness.

Index Terms—Dual connectivity, heterogeneous networks,
power allocation, deep reinforcement learning

I. INTRODUCTION

Recently, with the increase of mobile users’ demands, there
has been an enormous growth of load in cellular networks.
Therefore, in order to increase the capacity of cellular net-
works, several solutions have been proposed. One approach is
cell densification i.e., deploying Small eNode Base Stations
(SeNBs) in order to offload the load from Macro eNode
Base Stations (MeNBs). The SeNBs have smaller coverage
and lower transmit power compared to MeNBs and can
provide service for the users in their proximity [1]. However,
offloading the users to SeNBs can have some drawbacks such
as increase in control overhead and outage of mobile users
[2]. These flaws can be addressed by Dual Connectivity (DC)
Heterogeneous Networks (HetNets). As shown in Fig. 1, in this
type of network a user can be assigned to both an SeNB and
an MeNB in micro and macro tiers, respectively, and transmit
data to both of them, simultaneously [3]. This approach has
several advantages compared to traditional HetNets such as
increased frequency spectrum, spatial diversity [4], achieving
wider bandwidth, and robust management of users [5].

One of the key research challenges in DC HetNet is Radio
Resource Allocation (RRA) e.g., power control. The traditional

Fig. 1. A dual connectivity HetNet

RRA approaches in HetNets are not usually as efficient in DC
HetNets since in these networks, users are assigned to two
eNode Base Stations (eNBs) at the same time and are able to
take advantage of radio resources provided by both eNBs. One
of the main issues discussed in DC HetNets in the uplink is
the problem of user power allocation. If the allocated power
for transmitting to each eNB is not large enough, the total
rate in the network will not reach its maximum potential;
on the other hand, if the allocated power for transmitting
to each eNB exceeds a certain level, the total rate of the
network is susceptible to degradation due to high levels of
interference. As a result, the power of users should be assigned
to maximizes the throughput of the DC HetNet while not
exceeding the maximum power constraint of each user [3].

There have been several schemes proposed to allocate
transmit power of each user for transmitting to MeNB and
SeNB. One approach is power splitting [6], [7] which is a
direct approach that guarantees the maximum power of users
will not be exceeded. However, the main drawback of this
scheme is the fact that the redundant power for transmitting
to one eNB is not sufficiently used in the other eNB. In
[8], a solution is proposed to overcome this drawback which



aims to utilize the redundant power of a vacant eNB by
another eNB. While this improves the power utilization, it
does not consider the interference caused by excessive use of
the power, and therefore the total rate of the network is prone
to degradation. In [3], an uplink power control scheme has
been suggested in order to enhance the system performance by
considering system traffic demand and Interference of Thermal
(IoT). The flaw of this approach arises from the fact that the
redundant power not utilized in transmission to one eNB, is not
reused for another eNB, leading to a decrease rate in certain
circumstances.

Reinforcement Learning (RL) is a category of learning
algorithms that involves an agent that can interact with an
environment and receive certain rewards for every action it
takes. The mentioned agent gradually learns how to take the
best set of actions in order to reach an optimal solution [9]. The
main drawback of traditional RL methods such as Q-learning
is that the feature extraction must be done by an expert.
Thus, if this procedure is not performed sufficiently well, the
algorithm may not obtain the best possible results. Addition-
ally, these algorithms are also prone to slow convergence in
continuous state-action spaces. This category of solutions have
been deployed in many works for power allocation. In [10], the
use of cooperative Q-learning has been proposed for the users
in order to learn the optimal answer considering a Quality of
Service (Qos) for every user in their reward function. In [11],
the authors have suggested a power allocation scheme using
Deep RL (DRL) architecture called Deep Q-Network (DQN)
in which the power levels are learned using a distributed
approach. This method is extended in [12] by investigating
the case of multiple users.

In all the aforementioned RL works, the action space is
discrete which is not efficient in real world situations requiring
continuous actions. Additionally, so far, the problem of power
allocation is discussed in single connectivity (SC) HetNets.
In addressing both of these shortcomings, in this paper we
propose a deep reinforcement learning scheme in order to
solve the problem of uplink user power allocation in DC
HetNets using continuous state action spaces and evaluate the
outcome of this scheme by comparing its performance with
baseline methods.

This paper is organized as follows. In section II the prelim-
inary concepts of this paper are presented. In section III, the
system model and the optimization problem are formulated.
The simulation results and conclusion are illustrated in section
IV and section V, respectively.

II. PRELIMINARIES

In this section we explain the concepts of RL, deep learning,
and DRL.

A. Reinforcement Learning

RL is one of the methods that is widely used in order to
estimate optimal policies in model-less environments. These
methods introduce techniques through which a learning agent
tries to find the best actions in every state of the environment

Fig. 2. Different parts of a CNN

and obtains the optimal policy that gains the maximum reward.
Q-learning is one of the most popular methods in RL in which
the learning agent updates its action-value function of the
current state-action pair according to the action-value function
of the next state-action pair. This value is called Q-value and
is updated as

Q(St, At)← Q(St, At) + α
′
[r

′

t+1 + γ
′
maxaQ(St+1, a)

−Q(St, At)],
(1)

in which St and At denote state and action at time step t,
respectively. Furthermore, r

′

t+1 is the reward value at time
step t+ 1. In addition, α

′
and γ

′
are used as the learning rate

and the discount factor, respectively [9].

B. Deep Learning

Deep learning is used to enable computers to learn from
experience and comprehend complex concepts that are defined
through their relation to simpler concepts. Supervised learning
is heavily supported by deep learning as a powerful frame-
work. In this framework, a high complexity can be represented
by adding more layers and more units within a layer in a deep
neural network [13].

Deep learning solutions usually consist of two major steps:

• Automatic feature extraction: This step aims to extract
features and hand them to the classification in order to
make proper decisions.

• Classification or regression: This step makes decisions
about the inputs’ class or the output value based on the
features of the previous step.

A state of the art deep learning architecture is Convolutional
Neural Network (CNN). The main purpose of these types of
networks is to solve a supervised classification problem, but
these methods have also been proven effective in regression
tasks. Three main components of this architecture are:

• Convolutional layer: This layer comprises a set of learn-
able filters that are responsible for extracting spatial
features from the input.

• Pooling layer: This layer performs down-sampling oper-
ations along the spatial dimensions.

• Fully connected layer: This layer is responsible for
deciding the class of the input features [14].

Fig. 2 illustrates the different parts of a deep CNN and how
these components interact with one another.



Fig. 3. Actor-critic model

C. Deep Reinforcement Learning

When the number features in an environment becomes too
large for traditional RL methods to estimate the Q-value,
a subset of RL algorithms called DRL is used. Although
several approximation estimators have been introduced for
these type of problems, all of these estimators need an expert
in order to define the value function as a linear function
of the environment features, which is subject to divergence
in the case of inappropriate features [9]. Therefore, we can
benefit from the automatic feature extraction of deep learning
architectures to prevent this issue [15].

Many problems in real world situations require continuous
and high-dimensional action spaces. Traditional DRL methods
are not able to find the actions that maximize the action-
value function in continuous domains. An obvious solution
to this problem is to discretize the action space. However,
the drawback of this approach is exponential increase in
dimension when increasing the degree of freedom i.e., curse
of dimensionality. In order to overcome this issue, actor-critic
based models have been introduced. In this type of models, two
functions named actor and critic are responsible for estimating
the continuous action and the Q-value, respectively. Actor
receives the state and decides the action to be taken and
critic receives this action with the current state and decides
whether this particular action is best suited for the agent.
In DRL, the two functions that serve as actor and critic
are one of the deep neural network architectures e.g., CNN,
Long Short Term Memory (LSTM) networks, etc. In this
approach, the actor network models the action prediction task
as a regression problem, thus, it does not suffer from the
curse of dimensionality. [16]. Fig. 3 depicts the actor-critic
components.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we present our system model and formally
state the optimization problem.

A. System Model

In this paper, a two tier DC HetNet is considered which
comprises M MeNBs, S SeNBs, and N users. The bandwidth
is orthogonally divided between SeNB and MeNB, which

results in zero inter-tier interference. The sets of MeNBs,
SeNBs, and users are denoted by M = {1, 2, ...,M},
S = {M + 1,M + 2, ...,M + S}, and N = {1, 2, ..., N},
respectively. Each MeNB is located at the center of every cell.
Furthermore, SeNBs and users are randomly distributed in the
DC network.

We assume that every user is assigned to its corresponding
MeNB and SeNB based on pathloss. Thus, the eNB assign-
ment is already performed. Let xij ∈ {0, 1} denote the set of
assignments of users to eNBs where xij is set to 1, if user i
is assigned to eNB j, otherwise it is set to 0. Additionally, it
is assumed that ∑

j∈M
xij = 1 ∀i ∈ N ,∑

j∈S
xij = 1 ∀i ∈ N .

(2)

Parameters Pij and Lij denote the transmit power of user i
while transmitting to eNB j and the pathloss between user i
and eNB j, respectively. The interference of each user on each
eNB is calculated as

Iij =

{
PijL

−1
ij if xij = 0

0 else if xij = 1.
(3)

The received signal-to-interference-plus-noise-ratio (SINR)
of MeNB j due to the transmission power of user i is
determined as

γij =
PijL

−1
ij∑

k∈N Ikj + σj
∀i ∈ N , j ∈M, (4)

where σj represent noise power at MeNB j which is calculated
by σj = Wjnj , where Wj and nj denote the bandwidth and
power density at MeNB j, respectively.

Likewise, the SINR of SeNB j as a result of the transmis-
sion power of the user i is given by

γij =
PijL

−1
ij∑

k∈N Ikj + σj
∀i ∈ N , j ∈ S, (5)

where σj shows the noise power in SeNB j which is obtained
through σj = Wjnj . Additionally, Wj and nj represent the
bandwidth and power density of SeNB j, respectively.

According to Shannon’s theory, the data rate of user i to
eNB j is calculated as

rij = xijWj log2(1 + γij) ∀i ∈ N , j ∈M∪ S, (6)

Moreover, the total rate of user i while transmitting to eNB j
is obtained through

Ri =
∑

j∈M∪S
rij ∀i ∈ N (7)

The set of total rates of all the users is expressed as

R =

N⋃
i=1

Ri. (8)



Additionally, the set of interferences of all users on the eNBs
is denoted by

I =

i=N,j=M+S⋃
i=1,j=1

{Iij} (9)

The set of powers allocated to user i for transmitting to eNB
j is denoted by

Pi = {
∑
j∈M

xijPij ,
∑
j∈S

xijPij} ∀i ∈ N . (10)

In addition, we assume that all the users have an equal constant
maximum transmit power that we aim to split between MeNB
and SeNB in the uplink.

B. Power Splitting

According to Third Generation Partnership Project (3GPP)
[17], the transmit power of users for the Physical Uplink
Shared Channel (PUSH) is calculated as follows

PPUSCH =

min{Pmax, 10log10RB + P0 + αPL + ∆TF + f(i)},
(11)

where Pmax and RB represent the maximum transmit power
of users and the number of resource blocks assigned to each
user, respectively. Additionally, P0 and PL express the power
offset that controls the SINR target and pathloss from a given
user to its assigned eNB, respectively. Furthermore, ∆TF

denotes an offset that depends on transport format (TF) scheme
and f(i) denotes the correction value, which is based on
the Transmit Power Control (TPC) command. Finally, α is
the compensation factor of pathloss that is usually set in the
range of [0, 1]. This power control scheme is also known
as Fractional Power Control (FPC) and is widely used in
LTE networks. In this scheme, which is a combination of
open-loop and closed-loop control, the user is in charge of
measuring signal quality in order to compensate for pathloss
and shadowing in the open-loop power control. In the closed-
loop power control, eNB generates the power control com-
mand based on its measurements and feeds it back to the user
using the downlink control signaling channel. The parameter
α in (11) specifically makes an equilibrium between cell edge
throughput and cell capacity in the open-loop power control.

In order to avoid exceeding the limit of power, the maximum
transmit power of each user is split into two proportions
between MeNB and SeNB based on the following

PMeNB + PSeNB ≤ Pmax, (12)

where PMeNB and PSeNB denote the maximum transmit
power of the user when transmitting to MeNB and SeNB,
respectively. Parameter Pmax in (11) is replaced by these
two values in each tier. Two basic solutions given below are
employed in order to tackle the power splitting problem.

1) Splitting Equally: The maximum transmit power of each
user is equally split between MeNB and SeNB as

PMeNB = PSeNB =
Pmax

2
. (13)

Although this approach is fairly simple without any overhead,
it does not take into account the pathloss difference between
MeNB and SeNB and therefore is susceptible to rate deterio-
ration of the users with higher pathloss. This is due to the fact
that the users at the cell edge but in close proximity to SeNBs,
do not use their power resources for transmitting to MeNB
efficiently while the power transmitted to SeNB is wasted.

2) Pathloss Based Splitting: In order to guarantee the users’
QoS, a pathloss based power splitting has been proposed. This
approach is described as

PMeNB =
Lij

Lij + Lik
Pmax ∀i ∈ N , j ∈M, k ∈ S (14)

PSeNB =
Lik

Lij + Lik
Pmax ∀i ∈ N , j ∈M, k ∈ S. (15)

Although as opposed to the previous method, the cell edge
users can achieve a desirable rate at the eNB, this method
imposes a large amount of interference on the neighboring
cells since a large proportion of the maximum power is
allocated to the eNB located further from the user compared
to the other eNB. Thus, the interference level raises and the
performance of the whole system is negatively affected.

C. Problem formulation

The uplink power allocation optimization problem to max-
imize the total rate of the DC HetNet can be formally stated
as

max
P

∑
i∈N

xijRi

s.t.

C1 :
∑

j∈M∪S
xijPij ≤ Pmax ∀i ∈ N ,

(16)

In problem (16), we aim to maximize the total transmit
power of users. In addition, constraint C1 implies that the total
transmit power of each user when transmitting to its assigned
MeNB and SeNB should be less than or equal to the maximum
transmit power of users.

IV. POWER ALLOCATION BASED ON ACTOR-CRITIC DEEP
DETERMINISTIC POLICY GRADIENT

In this section, we present our DRL setting to solve the
optimization problem (16). We adjust the parameters of the
actor-critic based Deep Deterministic Policy Gradient (DDPG)
model of [16] such that the DC property of the HetNet is
realized through proper choice of state, action, and reward.
Moreover, to analyse these parameter, the CNN concepts are
adopted in the actor and critic functions. Below, we explain
our novel scheme in details. Three main components of each
RL problem are state, action, and reward, which are describes
below



Algorithm 1: DDPG Algorithm [16]
Initialize weight of actor π(s|θπ) with θπ

Initialize weight of critic Q(s|θQ) with θQ

Initialize target network Q
′

with weights θQ
′ ← θQ

Initialize target network π
′

with weights θπ
′ ← θπ

Initialize replay buffer R
for e← 1 to episodes do

Initialize the exploration noise Z0 for action exploration
Receive initial state s1
for t← 1 to steps do

Select action at = π(st|θπ) + Zt based on the current policy and exploration noise
Perform action at and get reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in replay buffer R
Randomly select a mini-batch of N transitions (si, ai, ri, si+1) from R
Set yi = r

′

i + γ
′
Q

′
(si+1, π

′
(si+1|θπ

′
)|θQ′

)
Update critic by minimizing L(θQ) = Est∼ρβ ,a∼β,r′∼E [(Q(st, at|θQ)− yt)2]
Update the actor policy using randomly selected sample policy gradient

∇θπJ = Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|s=st ]
Update the target networks

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′

end
end

Fig. 4. State and action of the scenario in Fig. 1

• State: The state of the environment at time step t is

st = R∪ I (17)

• Action: The action set of the agent at time step t is

at =

N⋃
i=1

Pi. (18)

If the sum of the powers allocated for each user to the
eNBS are higher than the maximum power of the user,
the powers are scaled such that their sum is equal to the
maximum power of each user.

• Reward: The reward function for each action at time step
t is

r
′

t =

N∑
i=1

Ri (19)

Therefore, the state of the environment at each time step is
an array of size N(M + S − 1) with each row corresponding
to the rate of each user and the interference on the eNBs that
are not assigned to this user. Furthermore, the actions include
an array of size 2 × N with each row corresponding to the
power set of each user in the macro and micro tiers. Fig. 4
shows the state and action arrays of the scenario depicted in
Fig. 1.

In DDPG model of [16], same as every RL setting, an agent
interacts with the environment E with a certain action at ∈
RN and receives a reward r

′
(st, at) and state st+1 at time

step t. The actor determines the deterministic policy function
π : S −→ A in which S and A represent the state and action
spaces, respectively. The action-value function is defined as:

Qπ(st, at|θQ) = Es,r′∼E,a∼π[r
′
(st, at)

+ γ
′
Qπ(st+1, π(st+1)|θQ)]

(20)

in which, E denotes the expectation value. Furthermore, γ
′ ∈

[0, 1] and θQ denote the discount factor and the critic parame-
ters, respectively. Additionally, this expectation depends solely
on E and therefore, can be learned by an off-policy approach
based on the trajectories generated through a behaviour policy
β. The loss function considered for optimizing the critic
function is

L(θQ) = Est∼ρβ ,a∼β,r′∼E [(Q(st, at|θQ)− yt)2], (21)

in which yt is obtained by

yt = r
′
(st, at) + γ

′
Q(st+1, π(st+1)|θQ). (22)



The expected sum of discounted future rewards J from the
starting state is defined as

J = Es,r′∼E,a∼π

[ T∑
i=1

γ
′ (i−1)r

′
(si, at)

]
(23)

Assuming the actor function π(s|θπ), the critic function
can be learned by (1). Furthermore, the actor function can
be updated by applying the chain rule on J with respect to
the actor parameters θπ as

∇θπJ = Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|s=st ],
(24)

in which ρβ represents the discounted state visitation distribu-
tion of behaviour policy β. It is proved in [18] that (24) is in
fact the policy gradient.

The exploration noise function Zt is used to create trajec-
tories in this off-policy method. Similar to [16] we employ
Ornstein-Uhlenbeck [19] process in order to produce trajec-
tories based on exploration policy π

′
(s) which is calculated

as
π

′
(s) = π(s|θπ) + Zt. (25)

In order to avoid learning divergence in this approach, [16]
has proposed the use of two methods:
• Replay buffer: in this method, a finite sized buffer

which stores the transition by tuples of (st, at, rt, st+1)
is employed. In order to update the actor and critic
functions, a mini-batch is selected from the buffer based
on uniform distribution.

• Soft target update: in this approach, initially, the pa-
rameters of the actor and critic networks are copied
in networks Q

′
(st, at|θQ

′

) and π
′
(s|θπ

′

) and the target
value is obtained by these two networks. Afterwards,
in each update, the parameters of these networks are
calculated by θ

′ ← τθ + (1− τ)θ
′

with τ << 1.
The pseudo-code of the DDPG is provided in Algorithm 1.

V. SIMULATION RESULTS

In this section, we demonstrate simulation results to evaluate
our proposed approach of DRL based uplink power control in a
DC HetNet. There are two MeNBs in a 500m×500m coverage
area. MeNBs are placed in the center of each cell and four
SeNBs and N users are distributed randomly. Additionally, the
pathloss of each user i to MeNB j and SeNB k is calculated
by Lij(dij) = 34+40log2(dij) where dij denotes the distance
between user i and MeNB j and Lik(dik) = 37+30log2(dik)
where dik denotes the distance between user i and SeNB k,
respectively. The rest of the simulation parameters are pro-
vided in table III. Additionally, the architectures of both actor
and critic networks for different number of users are given in
Tables I and II, respectively, with abbreviations defined below.
Conv(x, y, z, v) denotes a convolution layer with kernel size
of [x, y] and z filters with valid padding. Furthermore, FC(n)
denotes a fully connected layer with n number of neurons.
Additionally, BN stands for batch normalization layer [20].
Moreover, LReLU and ReLU stand for the Leaky Rectifying

TABLE I
ACTOR NETWORK MODELS

Number of users Actor

12

State(12,5) - Conv(32,3,2,v) - BN - LReLU -
Conv(32,3,2,v) - BN - LReLU -
Conv(64,3,2,v) - BN -
FC(256) - Sigmoid

16

State(16,5) - Conv(32,5,2,v) - BN - LReLU -
Conv(32,5,2,v) - BN - LReLU -
Conv(64,3,2,v) - BN -
FC(256) - Sigmoid

20

State(20,5) - Conv(32,6,2,v) - BN - LReLU -
Conv(32,6,2,v) - BN - LReLU -
Conv(64,5,2,v) - BN - LReLU -
FC(256) - Sigmoid

24

State(24,5) - Conv(32,6,2,v) - BN - LReLU -
Conv(32,5,2,v) - BN - LReLU -
Conv(64,5,2,v) - BN - LReLU -
FC(512) - LReLU -
FC (256) - Sigmoid

28

State(24,5) - Conv(32,9,2,v) - BN - LReLU -
Conv(32,6,2,v) - BN - LReLU -
Conv(64,6,2,v) - BN - LReLU -
FC(512) - LReLU -
FC (256) - Sigmoid

Fig. 5. Average reward of training the agent

Linear Unit and Rectifying Linear Unit activation functions,
respectively [21], [22]. Finally, Out stands for the linear output
of the network. In order to train the RL agent for allocating the
power to users, each episode was run on different scenarios
with random user locations. Maximum of 20000 episodes were
run on each scenario. Fig. 5 depicts the average obtained
reward in each episode on all the scenarios. As shown in Fig.
5, the agent is able to converge to an optimum policy for
allocating the users’ power.

In order to evaluate our proposed approach in a DC HetNet,
we compare it with methods described in III-B1, III-B2, and
Genetic Algorithm (GA) for optimizing (16) in which each
gene comprises of a proportion of the power that is allocated
to a user. In [23], GA is considered to be a near-optimum
method in the non-convex problems such as (16).

In Fig. 6, we compare the achieved total rate of users in the
network through our DRL approach with the total rate obtained
by splitting equally, pathloss based splitting, and GA. It can



TABLE II
CRITIC NETWORK MODELS

Number of users Critic

12

State(12,5) - Conv(32,3,2,v) - BN - LReLU -
Conv(32,3,2,v) - BN - LReLU -
Conv(64,3,2,v) - BN - LReLU -
FC (256) - Out1
Action(12,2) - Conv(64,3,2,v) - ReLU -
FC(256) - Out2
Out1 * Out2 - ReLU

16

State(16,5) - Conv(32,5,2,v) - BN - LReLU -
Conv(32,5,2,v) - BN - LReLU -
Conv(64,3,2,v) - BN - LReLU -
FC (256) - Out1
Action(16,2) - Conv(64,5,2,v) - ReLU -
FC(256) - Out2
Out1 * Out2 - ReLU

20

State(20,5) - Conv(32,6,2,v) - BN - LReLU -
Conv(32,6,2,v) - BN - LReLU -
Conv(64,5,2,v) - BN - LReLU -
FC (512) - Out1
Action(20,2) - Conv(64,6,2,v) - ReLU -
FC(512) - Out2
Out1 * Out2 - ReLU

24

State(24,5) - Conv(32,6,2,v) - BN - LReLU -
Conv(32,5,2,v) - BN - LReLU -
Conv(64,5,2,v) - BN - LReLU -
FC(1024) - LReLU - FC (512) - Out1
Action(24,2) - Conv(64,6,2,v) - ReLU -
FC(512) - Out2
Out1 * Out2 - ReLU

28

State(28,5) - Conv(32,9,2,v) - BN - LReLU -
Conv(32,6,2,v) - BN - LReLU -
Conv(64,6,2,v) - BN - LReLU -
FC(1024) - LReLU - FC (512) - Out1
Action(24,2) - Conv(64,6,2,v) - ReLU -
FC(512) - Out2
Out1 * Out2 - ReLU

TABLE III
SIMULATION PARAMETERS

Parameter value
α 0.8

MeNB total noise power spectral density -174 dBm/Hz
SeNB total noise power spectral density -104 dBm/Hz

MeNB shadowing-fading deviation 10 dB
SeNB shadowing-fading deviation 8 dB

MeNB bandwidth (WM ) 2 GHz
SeNB bandwidth (WS ) 3.5 GHz

User transmit power (PN(M∪S)) 25 dBm
P0 -75 dBm
γ
′

0.99
τ 0.001

Replay buffer size 300000
Mini-batch size 128

Maximum number of episodes 20000

be seen that our DRL approach is able to allocate power for
transmitting to MeNBs and SeNBs in a way that maximizes the
total rate of the DC HetNet and is close to the near-optimum
answer (GA). Furthermore, it is able to outperform the two
basic methods of splitting equally and pathloss based splitting
in terms of total rate of users.

Fig. 7 illustrates the Cumulative Distribution Function
(CDF) for the rate of 28 users in our DRL approach, the two

Fig. 6. Total rate versus different number of users

Fig. 7. The CDF of total rate of users

TABLE IV
AVERAGE CPU TIME (SECONDS)

Number of users Genetic DRL Equal Split PL Split
12 40.2 4e-4 8e-4 9e-4
16 50 1.6e-1 1.4e-3 1.4e-3
20 57 2.2e-2 2e-3 2e-3
24 61 3e-1 2.7e-3 2.7e-3
28 100 5.4e-1 1e-2 2e-2

baseline methods, and the near-optimum answer of GA. As
can be seen, our approach is able to obtain higher rate for
all of the users compared to splitting equally and all of the
users achieve higher data rate than the pathloss based splitting.
Furthermore, the CDF of our method demonstrates that for
some of the users the total rate is higher than those of the GA
answer.

Table IV demonstrates the average CPU time required for
obtaining the final answer in each of the methods. As can be
seen, the CPU time of DRL agent is marginally less than GA



Fig. 8. Jain’s fairness criterion

and is close to the base line methods which can be appropriate
in practical real world scenarios.

Jain’s fairness index [24] is a reliable criterion for measuring
the rate fairness in a network. This index is defined as

f(R1, R2, ..., RN ) =
(
∑n
i=1Ri)

2

N
∑N
i=1(R2

i )
, (26)

in which 0 ≤ f(R1, R2, ..., RN ) ≤ 1 and if this index
is equal to 1, all the rates of users are the same. In Fig.
8, Jain’s fairness index of users’ rate are compared in 3
practical approaches of DRL, PL based split, and equal split.
As illustrated, our proposed method is able to present a power
allocation in which the users’ rate are fairly distributed and
a fairness measure of nearly 95% is achieved for the case
of 16 users. Additionally, the fairness measure is higher than
those of baseline approaches across different number of users.
Although with the increasing amount of users in the network,
this measure will be decreased, our proposed scheme is still
able to outperform the two methods of splitting equally and
pathloss based splitting.

VI. CONCLUSION

In this paper, we proposed a power allocation scheme
for DC HetNets based on DRL that utilizes the continuous
state-action space in order to maximize the total rate of
the network. Our simulation results show that our suggested
scheme outperforms the baseline methods in terms of total
rate.
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