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Abstract— Millimeter-wave (mmWave) bands have shown the
potential to enable high data rates for next generation mobile net-
works. In order to cope with high path loss and severe shadowing
in mmWave frequencies, it is essential to employ massive antenna
arrays and generate narrow transmission patterns (beams). When
narrow beams are used, mobile user tracking is indispensable
for reliable communication. In this paper, a joint beam tracking
and data communication strategy is proposed in which, the base
station (BS) increases the beamwidth during data transmission to
compensate for location uncertainty caused by user mobility. In
order to evade low beamforming gains due to widening the beam
pattern, a probing scheme is proposed in which the BS transmits
a number of probing packets to refine the estimation of angle
of arrival based on the user feedback, which enables reliable
data transmission through narrow beams again. In the proposed
scheme, time is divided into similar frames each consisting of a
probing phase followed by a data communication phase. A steady
state analysis is provided based on which, the duration of data
transmission and probing phases are optimized. Furthermore,
the results are generalized to consider practical constraints such
as minimum feasible beamwidth. Simulation results reveal that
the proposed method outperforms well-known approaches such
as optimized beam sweeping.

I. INTRODUCTION

Millimeter wave spectrum (30 GHz-300 GHz) offers an
order of magnitude greater bandwidth for wireless commu-
nications which can be utilized to provide multi-Gbps data
rates and meet the growing demand for speed in wireless
networks [1]. Although high path loss and severe shadowing
attenuate signal power intensely in mmWave frequencies,
various beamforming (BF) techniques have been proposed
to overcome these effects by forming directional radiation
patterns using massive antenna arrays [2].

Signal space BF (also referred to as digital BF) requires
high quality channel estimation and sophisticated hardware
[2]. However, most of the practical systems support a limited
number of RF chains and have limited capability to adapt the
BF coefficients. In this paper, physical BF (also referred to as
analog BF) is adopted which is one of the most popular choices
for mmWave systems. The properties of the propagation
channel in mmWave systems such as having a limited number
of spatial clusters [3] make analog BF an appealing choice.

Misalignment between transmitter and receiver beam pat-
terns can diminish the BF gain required for a high data
rate mmWave links [4]. A variety of beam alignment (BA)
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techniques have been proposed for static scenarios where
the user is stationary [5]. Exhaustive search (ES) algorithms
scan different beams sequentially, and pick the beam with the
highest received power, which leads to a large overhead [6],
[7]. Hierarchical search (HS) (or fractional search) algorithms
are proposed to reduce BA overhead and delay [8], [9],
[10], and envisioned for standards such as IEEE 802.11ad
[11]. These algorithms search wider sectors first using coarser
beams, and then refine the search within the best sector.

Device mobility (rotational and/or linear) breaks the align-
ment, demanding constant retraining which can increase BA
overhead significantly [4]. To avoid this overhead, reference
[4] suggests to track the user in lower frequencies (i.e. sub
6 GHz) while transmitting data in mmWave frequencies.
However, this approach is costly in terms of operating two
sets of radios at higher and lower frequencies. An optimized
beam sweeping approach is proposed in [12] which extends the
exhaustive search algorithms, previously used for BA in static
scenarios, to support user mobility. In this paper, we propose
a robust method for extending hierarchical search algorithms
to support user mobility which leads to a higher performance
than beam sweeping methods due to lower tracking overhead.

We consider a single-cell scenario, where the BS transmits
data to a user over a mmWave link. In order to enable
reliable data communication through narrow beams, the BS
is required to allocate a fraction of the time slots to estimate
the angle of arrival (AoA), and the remaining time to data
communication. To refine the estimation of AoA, the BS scans
regions of uncertainty of AoA by transmitting probing packets
and analyzing the user response. In this paper, one of the goals
is to find the optimal probing strategy leading to a narrower
region of uncertainty for AoA. We use dynamic programming
to show that onward bisection is optimal among all fractional
search strategies, which scan a fraction of uncertainty region
at each probing time slot.

When the user is mobile, the uncertainty of AoA increases
during data communication. Consequently, the BS needs to
expand the beamwidth to compensate for location uncertainty
caused by user mobility. To avoid low BF gains caused
by widening the beam in the proposed scheme, each data
communication phase is followed by a probing phase reducing
the reliable beamwidth for the next data communication phase.
On the one hand, spending more time on the probing leads
to narrower beams which increases the BF gain during the
next data communication phase, but on the other hand less



time remains for data communication. Consequently, there is
a trade-off between the BF gain during data communication
and the duration of data transmission. A similar trade-off
has been identified for the duration of channel estimation
in multiple-antenna systems [13]. In order to balance this
trade-off, we provide a steady state analysis based on which
an average throughput optimization problem is formulated to
answer the following questions: i) For how long should we
probe? and ii) How long is the probing good for (how long to
communicate data after each probing phase)? We prove that
the optimal scheme spends only one time slot on probing at
each probing phase. Furthermore, we prove that the average
throughput is an strictly quasi-concave function of the duration
of data communication. Hence, the optimal duration of data
transmission can be obtained efficiently using quasi-concave
programming.

In practice, there are various constraints such as minimum
feasible beamwidth and imperfect beam patterns. Moreover,
the communication channel can include multiple spatial clus-
ters. We generalize our proposed approach to satisfy these
practical constraints. More precisely, we find the optimal
solution to the average throughput maximization problem
when there is a minimum beamwidth constraint. Furthermore,
we generalize the proposed method to support imperfect beam
patterns and multi-path channels.

The rest of the paper is organized as follows. In Section II,
we provide the system model. We describe the proposed beam
tracking approach in Section III. Section IV provides the
steady state analysis, frame optimization problem, and the
solution. We present the simulation results in Section V and
conclude in Section VI.

II. SYSTEM MODEL

We consider the downlink of a single-cell system where
the BS communicates with a mobile user through a mmWave
link which is already established by an initial access algorithm
[5]. We assume that the propagation channel between the BS
and the user consists of a single path (spatial cluster). This
assumption has been adopted in several previous studies such
as [9], [12], and is supported by channel measurements in
mmWave frequencies. For instance, it is shown in [3] that
with a high probability the channel incorporates one or two
clusters in mmWave frequencies. In Section IV-C, we show
that our proposed method also works well when the channel
includes multiple paths.

Let φ(t) be the angle of arrival (AoA) of the signal received
from the user at the BS. We note that φ(t) is time varying due
to the user mobility. We define the angular velocity ω(t) as
the rate of change of φ(t), i.e. ω(t) = d

dtφ(t). We also note
that ω(t) depends on the magnitude and direction of the user
velocity as well as the environment. Furthermore, we define
ωmax as the maximum angular velocity that the system can
tolerate. In other words, a necessary condition for the proposed
method to work properly is −ωmax ≤ ω(t) ≤ ωmax. It should
be noted that ωmax is an algorithm parameter which can be set
sufficiently high by the BS such that this condition is satisfied.

It will be shown in Section V that higher ωmax leads to a lower
average throughput. Furthermore, note that if the necessary
condition is not satisfied, the link may be broken and the BS
should re-establish the link by performing another round of
initial access.

We assume that the BS contains a massive antenna array
as envisioned for mmWave communications [1]. To model the
directionality of the BS transmission pattern due to BF, we
adopt a sectored antenna pattern model from [14], charac-
terized by three parameters: main-lobe gain G, beamwidth θ,
and the angular coverage region Θ which is the angular region
covered by the main-lobe of the transmission pattern. Clearly
we have θ = |Θ|. Furthermore, we neglect the effect of the
side-lobes for tractability. In this model, energy conservation
implies that G = 2π

θ . We discuss more practical beam patterns
where the roll-off is not sharp in Section IV-C. Let G(t),
θ(t), and Θ(t) be the BF gain, beamwidth, and the angular
coverage region at time t, respectively, which are controlled
by the BS to track and communicate with the mobile user as
will be discussed later. We assume that the user has an omni-
directional transmission and reception pattern. Investigation of
directional pattern for user is left for future research.

In order to maintain the connection while using narrow
beams, the BS is required to track the AoA while the user
moves. We define the concept of uncertainty region as follows.

Definition 1 (AUR). The angular uncertainty region (AUR)
associated with AoA at time t, denoted by Φ(t), is the shortest
angular interval [a(t), b(t)], such that the BS knows φ(t) ∈
Φ(t) with probability 1. Furthermore, the length of uncertainty
region is defined as u(t) , |Φ(t)| = b(t)− a(t).

According to this definition, if the BS matches its trans-
mission pattern to the AUR (i.e. if Θ(t) = Φ(t)) during
data transmission, the connection will be maintained with
probability 1, leading to a reliable data communication. To
investigate the evolution of AUR over time, assume that the BS
transmits data to the user over the time interval [0, t′]. Without
tracking, AUR expands over time as AoA may change due to
the user mobility. Using condition −ωmax ≤ ω(t) ≤ ωmax
and Definition 1, it is straightforward to show that if Φ(0) =
[a(0), b(0)], then we have Φ(t′) = [a(t′), b(t′)], where

a(t′) = a(0)− ωmaxt′, b(t′) = b(0) + ωmaxt
′, (1)

u(t′) = u(0) + 2ωmaxt
′. (2)

Fig. 1 illustrates the expansion of AUR without beam tracking
over time. Note that AUR expands from both sides with the
rate of ωmax as ω(t) can be positive or negative. Also, note
that Φ(0) is the initial AUR which can be obtained from
the initial access algorithm used to establish the connection.
However, we will show in Section IV that the steady state
parameters do not depend on Φ(0).

III. BEAM TRACKING AND DATA COMMUNICATION

Equation (2) suggests that the BS should expand its trans-
mission beamwidth θ(t) with the rate of 2ωmax during data
transmission so as to maintain the connection with probability



Fig. 1: The expansion of angular uncertainty region over The
shaded region shows the AUR at (a) t = 0, and (b) t = t′.
The vertical line is the angular origin, i.e. φ = 0.
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Fig. 2: Frame structure in the proposed beam tracking method.

1. However, this leads lower BF gains as time proceeds. In
order to avoid low BF gains (wide beams) while maintaining
connection with the mobile user, it is necessary for the BS
to reduce the uncertainty of AoA intermittently. We assume
that time is divided into similar frames. Fig. 2 illustrates the
structure of a frame consisting of two phases: i) probing
phase (PP) and ii) data communication phase (DP). While
the PP consists of K ∈ N time slots each with duration τ , we
assume that the DP is not slotted as will be explained later.
Furthermore, the duration of DP is assumed to be D×τ , where
D ∈ R+. We conclude that the frame length is N × τ , where
N = K +D.

In the PP, the BS probes the AUR while considering that
AUR expands due to user mobility. At the beginning of each
time slot, the BS transmits a probing packet while matching
its angular coverage region to a fraction of AUR. Next, the
AUR is updated based on the user feedback which is either
an ACK or NACK. We consider the following assumptions:

i) The transmission and reception patterns of the BS are
equivalent during each time slot.

ii) The length of the ACK packet and the processing time
required for probing and ACK packets are negligible.

It is straightforward to relax the second assumption and gener-
alize the results with minor modification. Furthermore, as we
consider a single path for the propagation channel, receiving an
ACK from the user implies that AoA has been in the angular
coverage region used for probing packet transmission during
that time slot, and NACK means otherwise. After PP, in the
second phase (DP), the BS matches its angular coverage region
to the most updated AUR and starts data communication while
expanding the beamwidth continuously in time according
to (2). Consequently, the AoA is in the coverage region
constantly in DP. We assume that the communication between
the BS and user is error free, that is, the user receives the
packet correctly as long as AoA is in the coverage region of

Fig. 3: Probing procedure at a generic time slot m.

the BS. As a result, there is no need for user feedback in DP.
Therefore, we assume that the DP is not time slotted.

Next, we describe each phase in details and analyze the
variation of AUR over time, which will be used to perform a
steady state analysis and optimize the frame structure later.

A. Probing Phase (PP)

In the PP, the duration of each time slot, τ , is the time
required for transmitting the probing packet and receiving user
response. Since PP is time slotted, we define Φm , Φ(mτ),
am , a(mτ), bm , b(mτ), um , u(mτ), and Θm , Θ(mτ)
for notation brevity, where m = 0, 1, . . . ,K. Note that m = 0
corresponds to the initial value at the beginning of the PP.

We focus on a family of probing strategies called ‘onward
fractional search (On-FS)’. Algorithm 1 provides a step-by-
step description of On-FS. Furthermore, the operation of On-
FS at a generic probing time slot is depicted in Fig. 3. We
note that the AUR is Φm−1 at the beginning of time slot m =
1, 2, . . . ,K (Fig. 3a). The BS transmits a probing packet with
size τ ′ while adjusting its transmission pattern to cover angular
region Θm(ξm) = [am−1 −∆, am−1 + ξm + ∆] where ξm ∈
(−∆, um−1),m = 1, 2, . . . ,K is a design parameter discussed
later, and ∆ = τωmax is the maximum change of AoA in
the duration of one time slot (Fig. 3b). Note that Θm(ξm)
is a fraction of the AUR at the end of time slot m if no
probing occurs, i.e. Θm(ξm) ⊂ [am−1 −∆, bm−1 + ∆] . The
user transmits back an ACK if it receives the entire probing
packet. Consequently, an ACK will be received by the BS if
φ(t) ∈ Θm(ξm) for (m− 1)τ ≤ t ≤ (m− 1)τ + τ ′. The BS
needs to update the AUR based on the user response at the end
of the time slot, hence we should have τ ′ ≤ τ . We assume that
τ ′ = τ for the simplicity of expressions. However, the results
can be generalized for τ ′ < τ with minor modifications. If the
BS does not receive an ACK, it is interpreted as NACK.

If the BS receives an ACK, it implies that the AoA has
been in angular region Θm(ξm) for the entire time slot, hence
AUR is updated as Φm = Θm(ξm) (Fig. 3c). Otherwise, AoA
has been outside of Θm(ξm) at least for a fraction of the
time slot, hence the AUR is updated as Φm = Θ′m(ξm) ,
[am−1 + ξm, bm−1 + ∆] (Fig. 3d). There are two important



observations: first, the AoA at the end of time slot m, i.e.,
φm belongs to region Θm(ξm) ∪ Θ′m(ξm) with probability
1, if condition −ωmax ≤ ω(t) ≤ ωmax is satisfied. This is
because Θm(ξm)∪Θ′m(ξm) = [am−1−∆, bm−1 + ∆], which
is the AUR at the end of time slot m without probing which
includes the AoA with probability 1, if condition −ωmax ≤
ω(t) ≤ ωmax is satisfied. Therefore, the BS will not lose the
track of AoA regardless of the user response. Second, if a
NACK happens, the updated AUR still includes a part of the
probed angular region, i.e. Θm(ξm) ∩ Θ′m(ξm) = [am−1 +
ξm, am−1 + ξm+ ∆]. The reason is that in the worst case, the
AoA can be φm−1 = am−1 + ξm + ∆ + ε with an arbitrary
small ε > 0 at the beginning of the time slot, and decrease
with maximum rate ωmax during the time slot. In that case
we have φm = am−1 +ξm+ ε at the end of time slot m while
the user does not send back an ACK since it has not received
the entire probing packet (it misses the first ε portion of it).
Therefore, Θ′m(ξm) should also include a part of Θm(ξm) with
length ∆ to ensure that the BS keeps track of AoA correctly.
Note that this overlap should be larger if the roll-off of the
beam pattern is not sharp as will be studied in Section IV-C.
We call this method onward fractional search since it probes
a fraction of [am−1 −∆, bm−1 + ∆] which is the AUR at the
end of time slot m if no probing occurs.

Algorithm 1 Onward Fractional Search (On-FS)
Input: Initial AUR in the probing phase Φ0 = [a0, b0]
Output: Final AUR in the probing phase ΦK = [aK , bK ]

1: for m = 1 to K do
2: The BS transmit a probing packet with a beam-pattern cov-

ering the angular region [am−1 − ∆, am−1 + ξm + ∆] as
illustrated by Fig. 3(b).

3: if The BS receives an ACK from the user then
4: the AUR, illustrated by Fig. 3(c), is updated as

Φm = [am, bm] = [am−1 − ∆, am−1 + ξm + ∆], (3)
um = bm − am = ξm + 2∆. (4)

5: else
6: the AUR, illustrated by Fig. 3(d), is updated as

Φm = [am, bm] = [am−1 + ξm, bm−1 + ∆], (5)
um = bm − am = um−1 − ξm + ∆. (6)

7: end if
8: end for

To characterize On-FS, we need to determine the design
vector ξ = [ξ1, ξ2, . . . , ξK ]. The goal of PP is to reduce the
length of AUR at the beginning of DP so as to start data
transmission with a narrower beam. Therefore, we want to
reduce uK as much as possible during PP. However, we note
that uK is a random variable whose distribution depends on ξ
as well as the user mobility model which affects the probability
distribution of φ(t) and ω(t) introduced in Section II. This is
because AUR is updated based on the user feedback directly
affected by the user mobility model. As the details of the
mobility model is assumed to be arbitrary for robustness,
we consider a deterministic approach to find ξ such that
the worst case (maximum) of uK over all mobility models

satisfying −ωmax ≤ ω(t) ≤ ωmax is minimized. Therefore,
we formulate the problem as

Π1 : ξ∗ = argmin
ξ

max
M

(
uK(ξ)

)
,

subject to: −∆ < ξm < um−1, m = 1, 2, . . . ,K.

where M is the set of all mobility models satisfying −ωmax ≤
ω(t) ≤ ωmax.

Lemma 1. The solution of problem Π1 is

ξ∗m = (um−1 −∆)/2, m = 1, 2, . . . ,K.

The sketch of proof is provided in Appendix A. The proof of
Lemma 1 reveals that using the optimal vector ξ∗, the length of
AUR at the end of each probing time slot is independent of the
user feedback, i.e. |Θm(ξ∗m)| = |Θ′m(ξ∗m)|, m = 1, 2, . . . ,K.
As a result, we call On-FS, onward bisection (On-Bi) when
we use ξ∗ since the length of AUR is equal given ACK and
NACK. This implies that um,m = 1, 2, . . . ,K is independent
of user mobility model when ξ = ξ∗ as expected. Furthermore,
using ξ∗ we have

um =
um−1

2
+

3∆

2
, 1 ≤ m ≤ K. (7)

It is straightforward to show that (7) leads to

um =
u0

2m
+ 3∆

(
1− 1

2m

)
, 1 ≤ m ≤ K, (8)

where u0 is the length of AUR at the beginning of PP.

B. Data Communication Phase (DP)

In this phase, the BS matches its angular coverage region to
the updated AUR from PP, i.e. ΦK , and starts data transmis-
sion. To avoid connection loss during data transmission due
to user mobility, the BS expands the beamwidth to constantly
cover AUR, i.e. Θ(t) = Φ(t) for Kτ ≤ t ≤ Nτ . So we have

θ(t) = uK + 2ωmax(t−Kτ), Kτ ≤ t ≤ Nτ. (9)

We define the average throughput of the frame as follows

R̄(K,D, u0) = 1
Nτ

Nτ∫
Kτ

log2

(
1 + SNR(K,D, u0, t)

)
dt, (10)

where, the signal to noise ratio (SNR) is defined as

SNR(K,D, u0, t) =
PG(t)

N0WL
, (11)

where, P is the BS transmit power, G(t) = 2π/θ(t) is the BF
gain, N0 is the noise spectral density, W is the communication
bandwidth, and L is the path loss between the BS and the user.
We note that R̄ is a function of K, D, and u0. The dependency
of R̄ on u0 originates from θ(t) in which uK depends on u0

according to (8). Later, we will use average throughput as the
objective function to optimize the frame structure.



Fig. 4: The convergence of u0,f (solid curve) to u0 (dotted
line) when K = 2 and D = 100.

IV. STEADY STATE ANALYSIS AND FRAME OPTIMIZATION

In this section, we first analyze the steady state performance
of the proposed approach when many similar frames are
concatenated. Next, we formulate an optimization problem to
find the optimal duration of PP and DP maximizing steady
state average throughput.

A. Steady State Analysis

In this section, we assume that a large number of similar
frames are concatenated. Let um,f denote the length of AUR
at the end of time slot m ∈ {1, 2, . . .K} during PP in frame
f ∈ N. Also, let u0,f be the length of AUR at the beginning
of frame f . We note that AUR at the end of frame f is equal
to the AUR at the beginning of frame f + 1. Thus according
to (8) and (9) we have

u0,f+1 =
u0,f

2K
+ 3∆

(
1− 1

2K

)
+ 2∆D, f ∈ N. (12)

Lemma 2. For any u0,1, sequence {u0,f}f∈N converges to

u0 , 2∆

(
3

2
+

2K

2K − 1
D

)
. (13)

The proof is omitted due to the lack of space. The main
idea of the proof is that the sequence is either constant or
monotonic and bounded. Consequently, there exists a finite
limit which can be obtained by assuming that u0,f+1 is equal
to u0,f in (12). Lemma 2 reveals an important property of the
multi-frame structure. As time proceeds, the length of initial
AUR of the frames converges to u0, introduced in (13), which
is independent of the initial AUR of the first frame, i.e. u0,1.
In practice, after some initial frames, the transient effect of
u0,1 fades away and the system converges to a steady state.
Fig. 4 illustrates this property for three cases: i) u0,1 > u0,
ii) u0,1 = u0, and iii) u0,1 < u0 when K = 2 and D = 100.
We observe that u0,f (solid curve) converges to its limit u0

(dotted line) fast in every case.

Remark 1. Using the same approach, it can be shown that
sequence {um,f}f∈N converges for every m ∈ {1, 2, . . .K}.

Hereafter, we assume u0,1 = u0. As all of the frames are
similar in the steady state, the analysis is focused on a single
frame. Considering (8) with m = K and substituting u0 with
its value provided in (13) lead to

uK = 2∆

(
3

2
+

D

2K − 1

)
, (14)

where uK is the AUR at the end of PP and at the beginning
of DP in the steady state. We note that uK is a function of
K and D. Let R̂(K,D) denote the average throughput in the
steady state. Using (9)-(11) we have

R̂(K,D) =
1

Nτ

Nτ∫
Kτ

log2

(
1 +

A

uK + 2∆( tτ −K)

)
dt, (15)

where, A = 2πP
N0WL . Taking the integral in (15) and using

steady state value of uK provided in (14) lead to

R̂(K,D) =
1

(K +D)

[
P̂ log2

(
1 +

D
D

2K−1
+ α+ P̂

)

+

(
2K

2K − 1
D + α

)
log2

(
1 +

P̂
2K

2K−1
D + α

)

−
(

D

2K − 1
+ α

)
log2

(
1 +

P̂
D

2K−1
+ α

)]
, (16)

where P̂ = A
2∆ and α = 3/2.

B. Frame Optimization

Increasing number of probing time slots K leads to a
narrower AUR during data transmission according to (9) and
(14); hence a higher SNR can be achieved in DP due to the
higher BF gain which can potentially increase the average
throughput. On the other hand, increasing K reduces the
fraction of the time spent on data communication (i.e. D

K+D )
which can reduce the average throughput. In this section, we
study this trade-off by formulating an optimization problem to
find the optimal values of K and D maximizing steady state
average throughput R̂(K,D) provided in (16). The problem
can be formulated as

Π2 : (K∗, D∗) = argmax
K∈N,D∈R+

R̂(K,D).

We solve optimization problem Π2 in two steps: i) we prove
that K∗ = 1, and ii) we find D∗ while assuming K = K∗ = 1.

Theorem 1. The optimal value of K in Π2 is K∗ = 1.

The proof is provided in Appendix B. The idea of the proof
is to compare the case (K,D) with the case (1, D/K) and
show that the latter outperforms the former, i.e. R̂(K,D) ≤
R̂(1, D/K), ∀K ∈ N, D ∈ R+. Consequently we have K∗ =
1, which means that the probing slots should be distributed in
time to avoid large AURs. Using Theorem 1, problem Π2 is
reduced to

Π3 : D∗ = argmax
D∈R+

R̂(1, D).



To solve this problem, we first show that the objective function,
R̂(1, D), is strictly quasi-concave with D on the domain.

Theorem 2. R̂(1, D) is an strictly quasi-concave function of
D on R+ and there exists a unique D∗ ∈ R+ at which R̂(1, D)
is maximized.

The proof is provided in Appendix C. Theorem 2, implies
that problem Π3 is quasi-concave. Moreover, problem Π3 is
a one-dimensional optimization problem, hence a simple one-
dimensional bisection method can find D∗ with logarithmic
numerical complexity [15, Chapter 2].

C. Practical Considerations

Even with a large number of antennas, there is a minimum
beamwidth that can be realized in practice. If we assume a
minimum beamwidth θmin, then the optimal data transmission
duration (i.e. D∗ in Π3) may not conform to such requirement.
The following lemma, proved in Appendix D, provides the op-
timal frame structure given a minimum beamwidth constraint.

Lemma 3. If there is minimum constraint on the beamwidth
θ, i.e. if θ ≥ θmin, then the solution of problem Π1 is K∗ = 1
and D∗ = max{D∗1 , D∗2(θmin)} where D∗1 is the solution of
problem Π3 and D∗2(θmin) = θmin

2∆ − 3
2 .

Although we considered a single path for the channel
between the BS and the user in previous sections, the channel
may contain multiple paths in practice. In such conditions,
the proposed scheme is guaranteed to find at least one of the
paths for data transmission. When there are more than one
path, receiving an ACK at the end of the probing time slot
m implies that AoA of at least one of them belongs to the
probed region Θm introduced in Section III-A. On the other
hand, receiving NACK implies that all the remaining paths
belong to the angular region Θ′m defined in Section III-A.
Therefore, the AoA of at least one of the paths belong to the
updated AUR at the end of time slot m. This implies that at
the beginning of data transmission, the AoA of one or more
paths belong to the updated AUR.

We considered an ideal beam pattern with a sharp roll-off
(i.e. sharp edges) to model analog beamforming in Section
II. However, it is possible to generalize the proposed method
such that it works properly with more practical beam patterns
where the roll-off is not sharp [16]. For beams with sharp
edges, we showed in Section III-A that Θm and Θ′m should
have an overlap of length ∆. If the roll-off is not sharp, the
uncertainty regions given ACK and NACK, i.e. Θm and Θ′m,
should have a larger overlap to compensate the lower BF gain
in the roll-off region and ensure that the algorithm does not
miss the AoA. It should be noted that the cost of this reliability
is a lower BF gain caused by widening the beam pattern.

V. NUMERICAL RESULTS AND SIMULATIONS

In this section, we provide extensive simulation results to
evaluate the performance of the proposed method. Table I lists
the simulation parameters. As a benchmark, we consider an
optimized beam sweeping approach proposed in [12] which

supports user mobility. In [12], the authors also consider an
adaptation of IEEE 802.11ad to their proposed model. We
consider it as another benchmark and refer the reader to [12,
Section IV] for more details due to the lack of space.

Fig. 5a illustrates the average throughput as a function of
BS transmit power when ωmax = 300 degree/sec. We observe
that our proposed method (with optimized frame structure)
outperforms beam sweeping proposed in [12]. The reason is
that onward bisection used in our approach reduces the length
of AUR more than beam sweeping, leading to a higher BF
gain during DP. Furthermore, we observe a large gap between
the performance of the proposed method and that of 802.11ad
which is because fixed 7◦ beams are used in 802.11ad while
the beamwidth is optimized in our proposed method.

Fig. 5b displays the percentage of beam tracking overhead in
the proposed method using the optimal frame structure, which
is defined as K∗

K∗+D∗ × 100% where K∗ = 1 according to
Theorem 1 and D∗ is obtained by solving Π3. Considering
P = 20 dBm, we observe that the tracking overhead is
between 8% and 12%.

Fig. 5c illustrates the optimized average throughput
R̂(1, D∗) as a function of maximum angular velocity ωmax
for different values of transmit power P . According to (2),
AUR expands faster for higher values of ωmax. As a result,
the BS is required to perform PP more frequently so as to
avoid low BF gains. However, this increases beam tracking
overhead leading to a lower average throughput.

In Fig 6, we plot the average throughput as a function
of BS transmit power when there is a minimum beamwidth
constraint θ ≥ θmin ∈ {2◦, 4◦, 8◦, 16◦} as discussed in
Section IV-C. A larger θmin restricts the BF gain more leading
to a lower average throughput as expected. Furthermore, we
note that adding 3 dB to the transmit power can approximately
compensate for the throughput loss incurred by doubling the
minimum feasible beamwidth.

VI. CONCLUSION

In this paper, we have proposed a joint beam tracking and
data communication scheme for mmWave mobile networks.
In this scheme, the BS increases the beamwidth during data
transmission to compensate for location uncertainty caused by
user mobility. To avoid low beamforming gains due to widen-
ing the beam, we have proposed a probing strategy to refine
the estimation of AoA after each data communication phase.
Furthermore, we have formulated an optimization problem
to optimize the duration of probing and data communication

TABLE I: Simulation parameters

Parameter Value

Distance between BS and user d 25 m
Probing time slot duration τ 100 µsec
Maximum angular velocity ωmax 10− 400 degree/sec
Frequency 60 GHz
Bandwidth W 2 GHz
BS transmit power P 0− 20 dBm
Noise spectral density N0 −174 dBm/Hz
Pathloss L(d) (in dB) 68 + 20 log10(d in m)



(a) (b) (c)

Fig. 5: (a) Average throughput (bps/Hz) as a function of BS transmit power (dBm) for different methods, (b) Beam tracking
overhead (%) as a function of maximum angular velocity (degree/sec) for different transmit powers, (c) Average throughput
(bps/Hz) as a function of maximum angular velocity (degree/sec) for different transmit powers.

Fig. 6: Average throughput as a function of transmit power for
different minimum beamwith constraints.

phases. A natural extension to this work is to consider direc-
tional beam patterns at user device, as well as the possibility
of communication errors which can affect the performance.

APPENDIX

A. Proof of Lemma 1

We use dynamic programming to prove the statement. Let
ξ[m],m ∈ {1, 2, . . . ,K} denote the vector including the first
m elements of ξ. Clearly, um is a function of ξ[m],m ∈
{1, 2, . . . ,K}. First, we consider the last probing time slot,
i.e. time slot K. According to (4) and (6), we have:

uK(ξ[K]) =

{
ξK + 2∆, ACK,
uK−1(ξ[K−1])− ξK + ∆, NACK.

Therefore, irrespective of ξ[K−1], maximizing the minimum of
uK(ξ[K]) requires that ξ∗K + 2∆ = uK−1(ξ[K−1])− ξ∗K + ∆.
This is due to the property of min max problem and leads
to ξ∗K = (uK−1(ξ[K−1]) − ∆)/2. Note that ξ∗K is a fea-
sible solution to problem Π1. This equality introduces the
optimal value of ξK as a function of ξ[K−1], leading to
uK(ξ[K]) = (uK−1(ξ[K−1]) + ∆)/2. Therefore, minimiz-
ing the maximum of uK(ξ[K]), it is equivalent to use ξ∗K
introduced above as well as minimizing the maximum of
uK−1(ξ[K−1]). Repeating this top-down procedure leads to
ξ∗m = (um−1(ξ[m−1])−∆)/2,m = 1, 2, . . . ,K.

B. Proof of Theorem 1

If K = 1 then the Lemma’s statement is followed. Let K ≥
2 is optimal. We define f(P̂ ,K,D) , R̂(1, D/K)−R̂(K,D).

The goal is to prove that f(K,D, P̂ ) ≥ 0,∀K ∈ N,∀D ≥
0,∀P̂ ≥ 0. We note that f(K,D, 0) = 0. It is sufficient to
show that ∂

∂P̂
f(K,D, P̂ ) ≥ 0,∀K ∈ N,∀D ≥ 0,∀P̂ ≥ 0.

Using Leibniz’s integral rule, ∂

∂P̂
f(K,D, P̂ ) is equal to

K
K+D loge

(
α+P̂+ 2D

K

α+P̂+ D
K

)
− 1

K+D loge

(
α+P̂+ 2KD

2K−1

α+P̂+ D

2K−1

)
.

It is straightforward to show that, ∂

∂P̂
f(K,D, P̂ ) ≥ 0 is

equivalent to

(Q+ 2D
K )

K
(Q+ηD)

(Q+ D
K )

K
(Q+(η+1)D)

≥ 1, (17)

where, Q , α + P̂ , and η = 1
2K−1

. Using binomial theorem
it is straightforward to show that (17) is equivalent to

B−1D
K+1 +

∑K
i=0BiQ

i+1DK−i

C−1DK+1 +
∑K
i=0 CiQ

i+1DK−i
≥ 1 (18)

where,

B−1 = C−1 =
2KK−K

2K − 1
,

Bi =

(
K

i

)(
2

K

)K−i
+ η

(
K

i+ 1

)(
2

K

)K−i−1

,

Ci =

(
K

i

)(
1

K

)K−i
+ (η + 1)

(
K

i+ 1

)(
1

K

)K−i−1

,

and i ∈ {0, 1, . . .K}. To prove the correctness of (18), it
is sufficient to prove that Bi ≥ Ci, i = 0, 1, . . . ,K for every
K ≥ 2 which is equivalent to proving the following inequality
for i = 0, 1, . . . ,K:

Ei , (i+ 1)
(
2K−i+1 − 2

)
+ (K − i)

(
η2K−i−1 − η − 1

)
≥ 0.

We note that E0 = 2K+1 − 2 > 0 since K ≥ 2. Moreover
we have EK = 0. Furthermore, it can be shown that Ei is
decreasing with i for i ≥ 1. Consequently, we have E1 >
E2 > . . . > EK = 0 which concludes the proof.



C. Proof of Theorem 2

Let f(D) , R̂(1, D) where R̂(K,D) is given by (16). By
taking derivative of f(D) with respect to D and simplifying
the expressions we have

f ′(D) =
1

2(D + 1)2

[
log2

(
1 +

P̂

2D + α

)

+ log2

(
1 +

P̂

D + α

)
− 2P̂ log2

(
1 +

D

D + α+ P̂

)]
.

Let g(D) , 2(D + 1)2f ′(D). Since D ≥ 0, it is clear that
g(D) is of the same sign as f ′(D). Furthermore, by taking
derivative of g(D) with respect to D we have

g′(D) =− P̂ log2(e)

[
2

(2D + α)(2D + α+ P̂ )

+
1

(D + α)(D + α+ P̂ )

+
2(α+ P̂ )

(D + α+ P̂ )(2D + α+ P̂ )

]
, (19)

where e is the Euler’s number. We observe that g′(D) <
0,∀D ≥ 0. Therefore, g(D) is monotonically decreasing over
[0,∞). Besides, we have g(0) = 2 log2(1 + α−1P̂ ) > 0
and limD→∞ g(D) = −2P̂ < 0. Therefore, according to
the intermediate value theorem, there exist a finite D∗ such
that g(D) = f ′(D) = 0. Furthermore, D∗ is unique due
to monotonicity of g(D). Moreover, g(D) (and consequently
f ′(D)) is positive, and negative over the intervals [0, D∗)
and (D∗,∞), respectively. We conclude that function f(D)
is monotonically increasing over [0, D∗) and monotonically
decreasing over (D∗,∞). Therefore, f(D) is strictly quasi-
concave and it takes its maximum value at D∗.

D. Proof of Lemma 3

It is straightforward to show that the minimum length of
AUR occurs at the end of PP (equivalently at the beginning
of DP) in steady state. Therefore, θ ≥ θmin is equivalent to
uK ≥ θmin since the beamwidth θ is equal to the length
of AUR during DP. Therefore, in order to model minimum
beamwidth constraint, we merely need to add uK ≥ θmin
as a new constraint to the problem Π2 and solve it. Let
Π4 denote the new optimization problem. Using a similar
approach as the one in Section IV-B, we first show that
K∗ = 1 is still optimum. To this end, we also use the in-
equality uK(K∗, D∗) < uK(1, D∗/K∗), which holds because
2K

∗ − 1 > K∗,∀K∗ > 1), to show that if (K∗, D∗) is a
feasible solution to problem Π4, then (1, D∗/K∗) is also a
feasible solution to that problem. Considering K = K∗ = 1,
problem Π3 is simplified to another problem, denoted by Π5,
in which D∗ is the only optimization variable. To find D∗ we
use the result of Theorem 2. Let D∗1 denote the solution of
problem Π3. Noe that Π3 is a relaxed version of Π5 since it
does not have a minimum beamwidth constraint. We consider
the following two cases.

i) Case 1: If D∗1 is a feasible solution to Π5, i.e. if
uK(1, D∗1) ≥ θmin, then it is also the optimal solution of
Π5, i.e. we have D∗ = D∗1 .
ii) Case 2: Otherwise, if uK(1, D∗1) < θmin, D∗1 is not a
feasible solution to Π5 and we have D∗ > D∗1 since uK is
increasing with D according to (14). Furthermore, we note
that the objective function of Π5, i.e. R̂(1, D), is strictly
quasi-concave with respect to D and takes its maximum value
at D = D∗1 according to Theorem 2. Therefore R̂(1, D) is
decreasing with D for D > D∗1 . As uK is increasing with
D and D∗ > D∗1 , we conclude that uK(1, D∗) = θmin is
optimum, i.e. the minimum beamwidth constraint is active at
the optimal solution. Using (14) and solving this equation for
D∗ leads to D∗ = D∗2(θmin) , θmin

2∆ − 3
2 .

We conclude that D∗ = max{D∗1 , D∗2(θmin)}.
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