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Abstract—We consider a single server queueing system with
two classes of jobs: eager jobs with small sizes that require service
to begin almost immediately upon arrival, and rolerant jobs with
larger sizes that can wait for service. While blocking probability
is the relevant performance metric for the eager class, the tolerant
class seeks to minimize its mean sojourn time. In this paper, we
discuss the performance of each class under dynamic scheduling
policies, where the scheduling of both classes depends on the
instantaneous state of the system. This analysis is carried out
under a certain fluid limit, where the arrival rate and service rate
of the eager class are scaled to infinity, holding the offered load
constant. Our performance characterizations reveal a (dynamic)
pseudo-conservation law that ties the performance of both the
classes to the standalone blocking probabilities of the eager
class. Further, the performance is robust to other specifics of
the scheduling policies. We also characterize the Pareto frontier
of the achievable region of performance vectors under the same
fluid limit, and identify a (two-parameter) class of Pareto-complete
scheduling policies.

I. INTRODUCTION

In this paper, we analyse a single server queueing system
with two heterogeneous customer classes. One class of cus-
tomers is eager—they require service to commence (almost)
immediately upon arrival. The performance of the eager class
is captured by the blocking probability, i.e., the long run
fraction of eager customers that are blocked. The second class
of customers is folerant—these customers can tolerate delays
and may be queued. The performance of this class is captured
via the mean response time of the tolerant customers.

Service systems of this kind are motivated by modern cellu-
lar networks, which handle voice calls (which must be either
admitted or dropped upon arrival) as well as data traffic (which
can be queued). However, such part-loss, part-queueing multi-
class service systems are analytically intractable even under
the simplest scheduling disciplines (see [1] and the references
therein). In this paper, we derive tractable approximations of
the performance experienced by each class using a certain fluid
limit, referred to as the short-frequent-jobs (SFJ) limit.

The SFJ limit corresponds to scaling the arrival rate as well
as the service rate of the eager class to infinity, such that
the offered load is held constant. This gives rise to a time-
scale separation between the two classes, with the eager class
operating at a faster time-scale. Under the SFJ limit, we obtain
a closed form characterization of the performance of both
classes under a broad class of dynamic scheduling policies that
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allow the admission control of eager class and scheduling of
the eager and tolerant class to be dependent on the size of the
tolerant queue.! Interestingly, a dynamic pseudo-conservation
law follows from this characterization—the performance of
both classes depends only on the standalone blocking prob-
abilities (resulting when a single eager scheduling policy is
used oblivious to the tolerant state) associated with the eager
scheduling schemes employed for each occupancy level of
the tolerant queue. In particular, the performance does not
depend on the specific scheduling policies that generate those
blocking probabilities, as well as on the details of the toler-
ant scheduler (subject to work conservation and serial, non-
anticipative processing). Conservation laws typically allow one
to compute the performance of a complex system in terms of
the performance of simpler ones. In our case, once the relevant
standalone blocking probabilities are known (these can usually
be computed easily as they result from the analysis of a single-
class loss system), one can compute the performance of both
the classes.

We further analyse the Pareto frontier of the performance
vectors achievable under the class of dynamic schedulers,
which defines the set of efficient operating points for the
system. Remarkably, we are able to identify a Parefo-complete
family of scheduling policies (a family of schedulers is Pareto-
complete if it spans the entire Pareto frontier over its parameter
space). This family, parametrized by (L, d), where L € N and
d € (0, 1), blocks eager customers with the minimum blocking
probability when the tolerant occupancy is less than L, with
probability d when the occupancy equals L, and with the
maximum blocking probability when it exceeds L.

Finally, via numerical experiments, we show that our per-
formance characterizations under the SFJ limit are extremely
accurate in the pre-limit (i.e., for moderate values of arrival
and service rates of the eager class). This shows that our
approximations, which are provably accurate under the SFJ
fluid limit, are also useful in practice.

The remainder of this paper is organised as follows. We
conclude this introduction with a survey of the related litera-
ture. We describe our system model and state some preliminary
results in Section II. Under the SFJ limit, we characterize the
performance of the tolerant class in Section III, and that of
the eager class in Section IV. We formally define the dynamic

'From here on, we follow the convention that admission control (if used)
is included in the eager scheduling policy.



achievable region in Section V, and demonstrate the Pareto-
complete family of dynamic schedulers in Section VI.
Related literature: The present paper is a follow-up of our
prior work [2], [3], which analyses the same heterogeneous
queueing system under the SFJ limit for a class of (partially)
static scheduling policies. Under this class of policies, the
scheduling of the eager class is oblivious to the state of the
tolerant queue, with the tolerant queue simply utilizing the ser-
vice capacity left unused by the eager class. Clearly, this class
of schedulers is restrictive. In the present paper, we consider
general dynamic policies, where eager scheduling depends
on the occupancy of the tolerant queue. This generalization,
which requires a non-trivial analysis, results is a substantial
expansion of the achievable region of feasible performance
vectors (as is shown in Sections V, VI). Moreover, the gener-
alization to dynamic policies necessitates the identification of
a Pareto-complete family of schedulers (which is the goal of
Section VI); in the restricted class of static schedulers analysed
in [2], [3], it turns out that all policies are efficient.

Aside from [2], [3], the only prior work we are aware of
that analyses a part-queueing, part-loss service system is [4].
In this paper, the authors obtain the performance metrics for
all classes in closed form, assuming exponential inter-arrival
and service times for all classes, under a certain static priority
scheduling discipline. However, we note that [4] does not
attempt to address the tradeoff between the performance of
the two classes, which is central to the present work.

From an application standpoint, this paper is also related
to the considerable literature on sharing the capacity of a
cellular system between voice and data traffic; for example,
see [5]—[7]. In this line of work, both voice and data classes are
treated as lossy, the focus being on characterizing the blocking
probability of each class under different (static and dynamic)
admission rules. However, to the best of our knowledge, these
papers do not analyse the achievable region of performance
vectors, or characterize its Pareto frontier.

We also note that there is a well-developed literature on
multiclass queueing systems with multiple tolerant classes on
a single server (e.g., conservation laws, pioneered by [8]). The
achievable region is well understood in such a ‘homogeneous’
multi-class setting [9], [10]. Interestingly, in this case, it is
known that the static and dynamic achievable regions coincide
(see [2]), in contrast with the ‘heterogeneous’ multi-class
setting considered here, where we see that the static achievable
region is a strict subset of the dynamic achievable region.
Moreover, the achievable region in the homogeneous setting is
its own Pareto frontier (i.e., all points of the achievable region
are efficient) under work conserving policies, also in contrast
with the heterogeneous setting considered here.

II. SYSTEM DESCRIPTION

We consider a single server queueing system with two
job classes: eager customers (also denoted as e-customers)
have limited patience and demand service within a short span
after arrival, whereas tolerant customers (also denoted as 7-
customers) can wait in a queue (of infinite capacity) to be

served. The 7-customers can be interrupted either partially
(i.e., their service rate may be reduced) or completely by
e-customers, but not by other 7-customers. Without loss of
generality, we assume a unit server speed. We assume that
e-customers (respectively, 7-customers) arrive according to a
Poisson process with rate A\, (respectively, A;). The sequence
of job sizes (a.k.a. service requirements) for both the classes
is ii.d., with B, denoting a generic ¢ job size, and B,
denoting a generic 7 job size. Throughout, we assume that
B, is exponentially distributed with mean 1/u,, and that
E[B] < o0. Let pe := 1/E[B].

A. Dynamic schedulers

We consider dynamic scheduling, wherein the scheduling
policy used for the eager class is dependent on the number
of tolerant customers in the system (see Footnote 1). The
tolerant queue in turn utilizes the service capacity left unused
by the eager class in a work-conserving manner. As a result,
the service processes of the two classes are interdependent
(unlike in the case of static scheduling as considered in [2],
[3]). Our dynamic schedulers are of nested type: a top-level
policy chooses the sub-policy used for scheduling the e-class
based on the occupancy (state) of the 7-class. Consider g
contiguous partitions {G;};<g of the non-negative integers.
A single sub-policy is used to schedule the e-class®> when the
tolerant queue occupancy lies in G; for each j < g.
e-schedulers: Note that while the occupancy of the tolerant
queue dictates the selection of € sub-policy, the sub-policies
are themselves oblivious to the state of the tolerant queue.
Moreover, what we refer to as a sub-policy includes system
decisions (e.g., service capacity allocated to e-class, admission
control, amount of waiting space, etc.) as well as behavioural
aspects of the impatient eager customers (e.g., eager customers
may balk based on the system occupancy).

We make the following additional assumptions. Some exam-
ple schedulers that satisfy these are provided in Section II-C:
A.1 To simplify the transition from one e-sub-policy to the

next, we assume that all e-customers are dropped when
there is an arrival/departure in the 7-queue.’
A.2 The scheduling of each sub-policy depends only on the
number of e-jobs present in the system.
Under each sub-policy, there exists a (finite) upper bound
on the number of e-jobs in the system at any time.
Under each sub-policy, the interval between the start of
two successive busy periods of the eager class has finite
second moment.

A3

A4

T-schedulers: Next, we state our assumptions on the schedul-
ing policy of the tolerant class.

>The further details of e-scheduling policy (after initial selection) will
obviously remain constant till the next 7-change, thus these nested schedulers
are not restricted, when one considers all possible partitions.

3A.1 is required for our proof of Theorem 2 (characterizing the blocking
probability of the eager class under the SFJ limit). However, under the SFJ
limit, this ‘flushing’ of the e-system is only performed at a bounded rate (since
arrivals/departures in the 7-queue occur at a bounded rate), while the arrival
rate of the e system scales to infinity. Thus, we expect that this assumption
will not impact the blocking probability of the eager class (also evident from
the Monte Carlo simulation based study presented in Section VI).



B.1 The 7-scheduler is work conserving, i.e., it utilizes all
the service capacity left unused by e-jobs, so long as the
T-queue is non-empty.

B.2 The 7-jobs are served in a serial fashion, i.e., 7-jobs
cannot pre-empt one another.

B.3 The 7-scheduler is blind to the size of 7-jobs.

Assumption B.1 implies that the tolerant class experiences
a time varying service process, which depends on both the
T-state as well as the e-state. Assumptions B.2-3 imply that
we consider 7-schedulers which are non-pre-emptive and
non-anticipative, for instance, first come first served (FCES),
last come first served (LCFS), and random order of service
[Chapter 29] [11].

We require another assumption (B.4) regarding the stability
of the T-queue under the SFJ limit, when e-customers employ
a single sub-policy (irrespective of 7-state). These are referred
to as 7-static schedulers in [3]. We provide the required
background on these schedulers, define formally the SFJ
scaling, and state the resulting pseudo-conservation law (see
[3] for more details), after which we state Assumption B.4.

B. T-static schedulers and background

We now consider the special case of 7-static scheduling,
where a single e-sub-policy is used at all times (irrespective
of T-state); this case was analysed in [3]. Let Pp; represent the
blocking probability (long run fraction of losses) of the e-class,
if sub-policy-j is used in a 7-static manner (Pp; was referred
to as the standalone blocking probability of sub-policy j in
Section I). We call these as 7-static blocking probabilities.

Short-Frequent Jobs (SFJ) Scaling: Under the SFJ scaling
(as in [3]), we let Ac — oo and pu. — o0, such that
Pe = A¢/pe remains constant. This corresponds to scaling
the arrival as well as the service rate of the eager class to
infinity proportionately, so that the offered load (the long term
rate at which work arrives into the system) is held constant.
We use p. as the scale parameter for this partial scaling.
Specifically, we scale the job size distribution of the eager
class as, B« L Bl /., where B"< denotes a generic eager job
size at scale u. and 2 is equality in distribution. This scaling
(plus Poisson arrivals) under A.2 ensures that the occupancy
process of the e-class gets time-scaled (fast-forwarded) by p.;
see the proof of Theorem 2 in the Appendix for more details.
Note that the tolerant workload remains unscaled. Thus, the
SFJ scaling may be viewed as a time-scale separation, with
the eager class operating at a faster time-scale.

Static Pseudo Conservation: Let Qg‘ (t) represent the total
amount of server capacity left unused by the e-customers in
time interval [0, t], under sub-policy j operating in a 7-static
manner. Note that Q‘; “(t) is the (cumulative) service process
seen by the 7-system. Then by [3, Lemma 1], for all pu., the
asympg):icz gin time) growth rate of //(t) is the same (a.s.):

e (¢
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t— o0 t

— v, v = 1—pc(1l— Pp;)almost surely. (1)

In other words, the long run time average service rate seen by
the 7-queue equals v;, which depends only on the blocking
probability Pp; of the eager class, and not on the specific

e-sub-policy that produced the blocking probability. Further
under the SFJ limit, the service process seen by the 7-class
becomes uniform. Specifically it follows from [3, Theorem 1]
that, as e — oo in the SFJ limit,

s<uV1{)/ ’Q;L (t) — Vjt‘ — 0 a.s. for any finite W, and
t<

T;‘ e % %, both for any initial e-state, )
J
where T;‘ﬁ denotes the time required to finish B, amount
of work using the service process Qi (). This uniformity of
the service process under SFJ limit enables a closed form
characterization of the performance of the 7-class (see [3,
Theorems 2,3]). A key feature of the above results is a pseudo-
conservation law that expresses the performance of the tolerant
class purely in terms of the blocking probability of the eager
class, independent of the underlying e-policy that produced
the blocking probability. We show an analogous pseudo-
conservation for dynamic scheduling policies in this paper.
Finally, we state the following assumption, which ensures
that the 7-queue remains stable under each of the g sub-
policies, when they are applied in a 7-static manner.

B.4 There exists § > 0 such that p; := A < 1§ for all j.

HrVj
Assumption B.4 guarantees that the 7-system is stable in the
dynamic setting as well, as shown by Lemma 1.

C. Some example models

We begin with the description of one example system that
satisfies our assumptions, in which the system capacity is not
completely transferred to one class at any time, but rather a
fraction of it is used by each e-customer, whilst the left is
utilized by one T-customer.

Each e-customer uses (1/K) part of the service capacity. If
there are 0 < ¢ < K number of e-customers receiving service,
then e-customers are served at a net service rate of (¢/K),
while the T-customer in service (if any) is served at rate ((K —
¢)/K). This continues up to K e-customers, and any further e-
arrival departs without service. Note that whenever an existing
e-customer departs, the service rate of the T-customer gets
increased by 1/K. Further there is a prior admission control
on e-arrivals, they are admitted with probability p independent
of all other events. This is the description of the e-sub-policy
(as in [2], [3]). Now the top-level policy varies the probability
of admission p based on the occupancy of the 7-queue.

We refer to the above e-sub-policy as Capacity Division
or briefly as the CD-(p, K) policy. Note that the CD-(p, K)
policy captures a multi-server setting for the eager class. While
the e-scheduler need not be work conserving, the 7-class
uses all the left over capacity. One can have other e-sub-
policies either designed by the system and/or influenced by
the impatient response of the e-class. We describe a few here.
Limited Processor Sharing (LPS): This sub-policy, denoted
by LPS-(p, K) (as in [2], [3]), admits an incoming eager job
into the system with probability p, so long as the number of
eager jobs already in service is less than or equal to K. The
entire service capacity of the server is shared equally between
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the eager jobs in service (i.e., each eager job gets served at
rate 1/¢ when there are ¢ jobs in service). Note that under
the LPS-(p, K) policy, the tolerant class receives service only
when there are no eager jobs in the system.

Balking and Reneging: As a part of a particular e-sub-policy,
the system may allocate a certain number of servers (recall that
the system may be viewed as multi-server from the standpoint
of the eager class) and might allocate a certain amount of
waiting space for e-class. The e-customers might respond to
the resources allocated based on their patience levels: a) an
e-customer may not enter the system depending upon the e-
number already in system according to some probabilistic rule,
as in balking models; or b) may leave the system after waiting
for an exponentially distributed patience time of rate o<, as
in reneging models. In the case of reneging, we will require
that the parameter a*< scales linearly with g, i.e., o’ = ap,
for some « € (0,00) (as in [3]).

Top-level policies: The top-level policy can chose any one
of these sub-policies for any 7-state. For example, when the
T-occupancy is greater than a certain threshold L, one may
allocate fewer individual servers to e-customers (using, for
example, the CD policy), while one may allocate the entire
capacity to the e-class and may serve them in LPS mode when
the 7-occupancy is smaller. Alternatively, one may allocate
(say) only one server to the e-class when the 7-occupancy
is high (or low), which might lead to increased levels of
balking/reneging by the e-class.

III. PERFORMANCE OF TOLERANT CLASS

In this section, we characterize the performance of the 7-
class under the SFJ limit. Recall that the 7-queue is served (in
a work conserving manner) using the unused service process
of the e-sub-policy, which in turn is selected based on 7-
occupancy. Thus, the T-queue is served using a random, time
varying, state-dependent service process. Due to space con-
straints, in the present paper, the performance characterization
of the tolerant and the eager class is done assuming finitely
many € sub-policies, i.e., g < oo. The generalization to
the case of countably many e sub-policies, which is in fact
required for our analysis to hold for the class of stationary
Markov top-level policies, can be found in [12].

We analyse the 7-performance by considering the 7-queue at
arrival/departure epochs. Let X,, denote the occupancy of the
T-queue immediately following the nth arrival/departure. Un-
der Assumption A.l and because of exponentially distributed
tolerant job sizes, {X,,} is a discrete-time Markov chain with
birth-death structure. Our first observation is that this process
is positive recurrent for large enough p. (proof in Appendix):

Lemma /: Assume g < oo. There exists 7 > 0 such that
for pe > [i, the Markov chain {X,} is positive recurrent. W

Lemma 1 implies that for large enough ., the 7-queue is
stable and has a well defined stationary behaviour.

The performance of the tolerant class under the SFJ limit
is characterized in terms of a certain state-dependent service
rate M/M/1 (SDSR-M/M/1) queue, which we describe now.
An SDSR-M/M/1 queue sees the same workload process as an
M/M/1 queue: job arrivals are according to a Poisson process
(of rate \), job sizes are i.i.d. and exponentially distributed
(with mean 1/p). However, unlike the standard M/M/1 queue,
the SDSR-M/M/1 queue has a state dependent service rate
(a.k.a. server speed). Specifically, given a partition {G;};<g
of the non-negative integers, the server operates with service
rate v; if the number of jobs in the queue (including the
job in service) lies in G;. Thus, the SDSR-M/M/1 queue is
parametrized by (A, p, v, {G;}j<g), Where v = {v;};<g is
the vector of service rates.

The number of jobs in the SDSR-M/M/1 queue evolves as a
continuous time Markov process with birth-death structure (see
Figure 1), whose steady state behaviour can be obtained by
elementary techniques. In particular, the stationary distribution
7= {n(i)}$2,, and the expectation of the steady state queue
occupancy (denoted by N) are given by (see [13]):

1 = 1 7 l* 1
n) = H=otluenlleiee A G, g
L3 s [Ty pe K
EIN] = > in(i). &
=1

We are now ready to characterize the performance of the
tolerant class under the SFJ limit, for the case with finite
number of e-sub-policies (proof in Appendix).

Theorem /: [Number in system] Assume A.1-4 and B.1-
4. Also assume g < o0.

1) Under the SFJ scaling, as p. — oo, the steady state
number of 7-jobs in the system converges in distribution
to the steady state number of jobs in an SDSR-M/M/1
(Ars pors (V1,125 - vg), {G;}) queue, with

= (1 - pe(1 — Pp,)), for any j < g.
ii) The stationary expected number of 7-customers converges
to that of the same limit system (given by (3)). |

To provide intuition for Theorem 1, note from (2) that T? ‘,
the time required to complete B, amount of job (when
uninterrupted) converges to B;/v;, which is exponentially
distributed. Thus one can anticipate the following 7-system
at SFJ limit (further because the residual service times are
exponentially distributed): a) Poisson arrivals; b) exponential
service times, whose rate depends upon the 7-number in the
system. And this is precisely the SDSR-M/M/1 queue.
IV. PERFORMANCE OF EAGER CLASS

We now focus on the performance of eager class. As already
discussed the e sub-policy changes dynamically among g sub-
policies depending only upon the 7-number in the system (we
assume g < oo in this section; the generalization to arbitrary
partitions is in [12]). To be more precise, if the number of
T-customers at T-transition (arrival/departure) is in group G
of states, sub-policy j is used till the next 7-transition.



The e-class is a lossy system, and the blocking probability
would be Pp; if j-th sub-policy is used in 7-static manner.
We now derive the ‘dynamic’ blocking probability, when these
sub-policies are selected based on 7-dynamics. We show that,
in SFJ limit, the overall blocking probability of the eager class
is a convex combination of the 7-static blocking probabilities
{Pp,}, weighted by the long run fractions of time the 7-
system spends in the groups {G;}.

Theorem 2: [Blocking probability of eager class] Assume
A.1-4, B.1-4. Also assume g < oco. Let w2° := {7$°(9) }i>0
denote the stationary distribution of SDSR-M/M/1 limit tol-
erant system, given by Theorem 1. Then the steady state
blocking probability of e-jobs in SFJ limit is given by:

g
P 37> P, (wa(i)) =PrPy. A
j=1 i€G;

A sketch of the proof of Theorem 2 can be found in the
appendix; the complete proof, which also generalizes to count-
ably many partitions, can be found in [12].

Dynamic Pseudo Conservation and its relevance: The key
challenge in the performance evaluation of our multi-class
system is the interdependence between the service processes
of the two classes. However, Theorems 1-2 show that one
may approximate the performance of both classes (the ap-
proximations being accurate under the SFJ limit) using only
the 7-static blocking probabilities { P, } j<g. The probabilities
{Pp, }j<g themselves are typically easy to compute, since
they involve the analysis of a single-class (stationary) loss
system. Finally, we note that by virtue of Theorems 1-2, we
have a ‘Dynamic Pseudo Conservation’: Under the SFJ limit,
the performance of both classes depends only on the 7-static
blocking probabilities {Pp, }<¢ and the partitions {G;} <g,
and not on other specifics of the g sub-policies.

V. DYNAMIC ACHIEVABLE REGION

A queuing system can be analysed using several perfor-
mance metrics; for example, number of customers in the
system, sojourn time (the total time spent by the customer),
waiting time (of the customer before the service starts),
fraction of the customers blocked (in a loss system), etc.
The achievable region of a multi-class system is defined as
the region of all possible vectors (one component for one
class) of the relevant performance metrics. In our model,
corresponding to the eager class we have a lossy system,
thus we consider blocking probability as the performance
metric. For the tolerant class, one can consider the steady
state expected number of customers in the system as the
performance metric.

By Lemma 1, the system is stable for all u. > f, for some
[ < oo. Thus for all such p., by Little’s Law, E*<[S], the
stationary expected sojourn time of a typical 7-customer, and
E#<[N], the stationary expected number of 7-customers in the
system are related as E#<[N] = A, E*<[S]. Thus it is sufficient
to consider any one of these metrics.

Stationary Markov top-level policies: In any general
sequential decision problem, a Stationary Markov (SM) policy

is a sequence of decisions, in which one decision is chosen
for each value of the state and the same decision is applicable
in any time slot. In our case we consider the top-level policies
among the Stationary Markov (SM) family. This means, a top
level policy ¢ is a sequence of e-sub-policies, and that if the
T-state equals j at any time slot, then the j-th sub-policy of ¢
is used for scheduling the e-class.

While the statements of Theorems 1-2 in the present paper
assume finitely many e-sub-policies (one for each of the
subsets in {G;}), the study of SM strategies requires us to
move on to the general case of countably infinite e-sub-
policies, one for each value of 7-occupancy. However, as stated
before, the statements of Theorems 1-2 do extend to general
SM top-level policies (see [12]). Accordingly, in the remainder
of this paper, we proceed with our analysis of the achievable
region and its Pareto frontier disregarding the restriction to
finitely many e-sub-policies.

As understood from Theorems 1-2, the only characteristic
of the e-sub-policies that influences the system (dynamic)
performance are the T-static blocking probabilities {Pg;};,
obtained when respective sub-policies are used in T-static
manner. Thus to define an efficient dynamic system, one
effectively needs to choose (based on the 7-state), one among
these blocking probabilities (and no further details of the sub-
policy are important). This is a consequence of the ‘dynamic
pseudo-conservation’ mentioned in the previous section.

Any Stationary Markov (SM) top-level policy is generally
given by a sequence of e-sub-policies, one for each 7-state.
However, in view of the above observation, a stationary
Markov policy can be thought of as a sequence of e-blocking
probabilities (derived when the corresponding sub-policies are
applied in 7-static manner. In other words, a SM top-level
policy is defined by ¢ = (do,di,---), where decision d;
specifies a ‘r-static blocking probability’ to be chosen when
number of 7T-customers equals j. Towards this we implicitly
require the existence of at least one sub-policy, that achieves
the given value of ‘T-static blocking probability’, which is any
value between the system specified limits d := Pp (minimum
possible blocking probability) and d := Pg (the maximum
possible blocking probability). This for example, is achieved
by CD-(p, K)/LPS-(p, K) policies mentioned in Section II,
when one considers all possible values of {(p, K)} (see [2],
[3] for more details). In the rest of the paper, we refer to the
top-level policies simply as policies for brevity.

Limit Achievable region Our focus from here on will be
the dynamic achievable region A>° of performance vectors
under the SFJ limit. Recall that for tolerant class, the limit is
an SDSR-M/M/1 queue. The e-limit can be seen as a mixture
model made up of many lossy systems, each described by
their 7-static blocking probabilities, and mixed independently
according the stationary distribution of the limit SDSR-M/M/1
queue. Thus, we define the limit achievable region as follows:

A* = {( P5ly, E5[N]) : ¢ is an SM policy} .

Note that A is the set of limiting performance vectors under
SM policies. In this sense, one may view A as the limit of



achievable region of our multi-class system as p. — co.

For simplicity of notations we avoid the super-script oo
when the discussion is clearly about the limit system. At times
we also drop ¢, the SM policy, when there is no ambiguity.

A Numerical Example: To visualize the limit achiev-
able region, we consider a system with a top-level policy
parametrized by ((p1,p2, L, K)). In this system, the CD-
(p1, K) policy is employed when the 7-occupancy is less
than L, and the CD-(psy, K) policy is employed when the 7-
occupancy is greater than or equal to L. The tolerant customers
are served serially with total capacity of all the leftover
servers. Using the Erlang-B formula, the two 7-static blocking
probabilities of e-customers equal (xp.p,)¥

Pp;, = uipi)erim’ fori=1,2 and
k=0 k!
G = {0,---,L—1}and Go={L,L+1,---,}.

The performance of such a system at limit can be obtained
using the results of Theorems 1-2. We set K = 5, p. = 0.4,
Ar =4 and p, = 8, generate the three parameters (p1,p2, L)
randomly. The scatter plot of the corresponding values of
E*[N] and Pg° is shown in Figure 2. The resulting figure is
a part of the limit achievable region. As seen from the figure,
the achievable region is a non-zero measure set. Further, the
plot indicates that the achievable region is bounded. We will
now address the Pareto frontier associated with this system.

VI. LIMIT PARETO FRONTIER

The Pareto frontier is the efficient sub-region of an achiev-
able region which consists of dominating performance vectors.
A pair (Pp 4+, E4«[N]) (produced by a policy ¢*) is on Pareto
frontier of the limit system, if there exists no other SM policy
¢ that achieves a better performance pair (Pg g, E4[N]) (in
the limit system), i.e., PB,¢ < PB,¢>* and Ed,[N] < E¢* [N],
one of the inequalities being strict.

The Pareto frontier of the limit system is obtained by solving
an appropriate set of parametrized optimization problems.
Prior to that, we discuss the limit performance of both the
sub-systems, under any given SM policy. Invoking Theorems 1
and 2 (specifically, their %Snerallzatlons in [12]), under any ¢,
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A. Pareto-complete family

We now derive a family of Pareto-complete policies, i.e.,
a parametrized family of policies that span the entire Pareto-
frontier of our system. One can obtain all the points on the
Pareto frontier by considering the following parametrized (by
C) constrained optimization problems (with wf defined in (6)).

m(bin Pg 4 such that E4[N] < C, i.e., equivalently  (7)

mm Z d; ————— such that Z z

=0

<C.

1+Zl>1ﬂ—l Zl>1ﬂ—l B

Recall d, d respectively represent the best and worst sub-
policy (with respect to e-customers), in that these represent
the minimum and maximum possible blocking probabilities.
Define:

Ar Ar

T (R ) e R () M
The terms (p, p) represent the (worst and best) load factor
of the 7-customers in the limit system, when e-customers are
scheduled respectively with the best (blocking probability d)
and worst (blocking probability d) sub-policies, in 7-static
manner.

Suppose that the constraint C' on the expected 7-number
satisfies C > p/(1 — p) (observe /(1 — p) is the expected
number in M/M/1 queue with maximum load factor p). Then
the problem (7) becomes an unconstrained problem and the
optimal policy clearly equals ¢* = (d,d,---). We show that
the optimal policy for any given C' < p/(1 — p), is monotone
(but not strictly monotone) in 7-state and further derive its
closed form expression (proof in Appendix):

Theorem 3: The policy ¢* = {df,d},---} that optimizes
the problem defined in (7) is monotone and is given by:

di = 1pcpayd+ 1opyd” + 1pspad ©)

which is parametrized by two parameters (L*,d*). The ex-
pressions for (L*,d*) are given in [12]. ]

The family of schedulers given by (9) are clearly Pareto-
complete. This family is parametrized by (L,d) with 1 <
L <ocoand d<d<d. The policies in this family choose
the ‘worst’ e-sub-policy (i.e., with d = d) when the 7-number
is greater than or equal to L + 1, choose a sub-policy with
intermediate blocking d when 7-number equals L and choose
the ‘best’ sub-policy (i.e., with d = d) for the rest (see (9)).
One can easily compute the performance under these policies,
as below (see 8):

_1-p%  Lpt' | pp"'(p+ L - Lp)
Er.alNl = 1/1<P — - — R
(1-p) 1-p (1-p)
~L—1 —I
T -1 .
Pea = ¥ dpp™~ 1+Pd177+p, d | with
—p p—1
1 Ay
= 1, P= . (10)
v iy P (= d)

e

Thus we derived Pareto complete family as well as the
performance under this family, which can readily be used for
any relevant optimization problem.

Numerical example: We continue with the numerical ex-
ample of Figure 2. For this example, one can easily compute
that p = 0.8134 (no admission control on eager class, i.e., with
p; = 1 for all ¢) and p = 0.5 (eager class is completely blocked
with d = 1 and hence p = A:/pr), when the system can at
maximum serve 5 eager customers in parallel. By substituting
these values into (10), one can obtain the Pareto frontier. The
circles in the figure represent this Pareto frontier, and are
obtained by varying (L, d) appropriately. It is clear from the
figure that the derived set of points are indeed dominating and
are on the Pareto frontier.
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Fig. 2. Achievable region, Pareto Frontier p =
0.8134, p = .5

B. Monte Carlo based case study in pre-limit

We consider an example case-study with CD-(p, K) sub-
policies of Subsection II-C. Specifically, for fixed K, we
consider top-level policies that perform CD-(1, K') when the
T-occupancy is less than certain L (with L > 1) and perform
CD-(0, K) (thus blocking all e-jobs) when the T-occupancy is
greater than or equal to L. In view of Theorem 3, by stepping
over L as above*, we sample performance vectors from the
limit Pareto-frontier of the system.

It is very complicated to obtain an exact analysis of this
heterogeneous system. However by Theorems 1-2, one can
obtain an approximate analysis for this system and the same
is plotted in Figure 3 (the system configuration is mentioned in
the figure itself). We plot both Monte-Carlo estimates as well
as the corresponding theoretical limits for different values of
L. Importantly, the Monte Carlo simulations do not even drop
e-customers at T-transitions as required by A.1. We observe
that Theorems 1-2 provide an excellent approximation for the
performance of actual system even for p as small as 1, when
pr = 0.54. Tt is also apparent that the theory approximates
the system performance well even when the system does not
drop e-customers at T-transitions.

Another example is plotted in Figure 4, where 7-static
policies of [3] are considered along with dynamic policies.
We again observe a good approximation between the theory
and MC estimates for dynamic policies. Interestingly, the
approximation error is bigger in the static case. One possible
explanation for this is the following. It is clear that the approx-
imation error gets smaller as the e-load factor reduces, under
T-static policies. Under Pareto optimal family of schedulers,
the e-load equals O for all 7-states greater than L. Thus we see
the approximation is almost zero towards the right of the two
figures (as Pp gets smaller, L gets smaller). We also observe
that the dynamic policies perform far superior than 7-static

policies. VII. CONCLUDING REMARKS

In this paper, we analyse a multi-class, single server queue-
ing system with an eager (lossy) class and a tolerant (queueing)
class, under dynamic scheduling. While the inter-dependence
between the service processes of the two classes makes an
exact analysis of this system difficult, we obtain tractable
performance approximations under a certain (partial) fluid

4Here again, d (respectively d) equals the blocking probability without
eager admission control (respectively if eager class is admitted only when
T-queue is empty).

Fig. 3. Comparison of Theory with Monte Carlo (MC)
Estimates. Good approximation even for small .
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Fig. 4. Comparison of static and dynamic poli-
cies. Better approximation for dynamic policies.

scaling regime. A key feature of our approximations, which
are shown to be highly accurate via Monte Carlo simulations,
is a pseudo-conservation law: the approximate performance of
both classes is expressed in terms of the standalone blocking
probabilities of the eager schedulers, which are themselves
easy to compute in several cases. Finally, we focus on the
achievable region of the limiting performance vectors for our
system. Remarkably, we are able to obtain an explicit family
of Pareto-optimal policies (these resemble threshold policies).

This work motivates extensions in various directions. One
interesting extension would be to the multi-server setting,
where the tolerant class is no longer work conserving. Another
promising direction is to consider static/dynamic pricing for
such heterogeneous service systems. Finally, specializing our
models to particular application scenarios, including super-
markets, cognitive radio, and cloud computing environments,

would be of independent interest.
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APPENDIX
Proof of Lemma 1: Pick ¢ > 1 such that ¢ € G;. Define

P} = P(Xp41 =i+ 1] X, =1). To show that the birth-
death chain, {X,,} is positive recurrent for large enough .,
it suffices to show that (using star)l\dard Lyaf)onov arguments)

e = 7 (1D

li _ A
P A ey < 2’

He—>00

where the final inequality is a consequence of Assump-
tion B.4. Indeed, given the assumption of finitely many eager
sub-policies, (11) implies that for a suitably small § > 0, there
exists i > 0 such that for p. > g, p&° < 1/2 — ¢ for all j.

To prove (11), note that
phie =P (AT < The (BT)) —1-E [exp(—)\TT;“(BT))] ,

where T;‘ °(B;) denotes the time required to accumulate a
service of B, using the unused service process of the eager
class under sub-policy j, starting with an empty eager queue.
Since Y4<(B;) — Br/v; as. as jie — oo (by [3, Theorem 1],
and, see (2)), and since exp(—A,Y4<(B;)) < 1, it follows from
the bounded convergence theorem that
limy,, c0 P)° :lf“H_‘;i:/yj. [ ]
Proof of Theorem 1 Let X (¢) denote the 7-queue occu-
pancy at time ¢. Under Assumption A.1, {X(¢)} is a semi-
Markov process, with { X, } being its embedded Markov chain
(EMC). Moreover, since the mean time spent in each state of
the semi-Markov process is bounded from above (1/A; is a
trivial sub-policy independent bound), it follows that the time
average distribution of {X (¢)} is well defined (see [13]).
The first goal is to show that the stationary distribution of
{X(t)} converges to that of the limit SDSR-M/M/1 queue as
e — 00. By Lemma 2 (which establishes a bijection between
the stationary distributions of each of the above queues and
the stationary distributions associated with the corresponding
EMCs), it suffices to show that the stationary distribution of
{X,} converges to that of the EMC of the limit SDSR-M/M/1
queue. However, this follows from the convergence of the
transition probabilities of the {X,,} process to those of the
EMC of the limit SDSR-M/M/1 queue (shown in the proof of
Lemma 1). Indeed, note that the stationary probabilities are
a continuous function of the finite vector {p}<, j < g}. The

convergence of E [N#<] to E | NSPSR-M/M/1

] as fte — 00 also
follows, given that E [N#<] is a continuous function of finite
vector {p}<, j < g}. |

Lemma 2: Consider a stable queueing system with Poisson
job arrivals and no simultaneous departures (i.e., jobs depart
one at a time with probability 1), such that the time-average

distribution of queue occupancy 7 = {m;}i>0 is well defined,

Le. ads Vi (a.s.),

where X (t) denote the queue occupancy at time ¢. Let 7 =
{7i}i>1 denote the (discrete-time) time-average distribution of
the queue occupancy sampled just following arrival/departure
epochs. Then 1

o = ™o, and m; =

2

T, — lim —
t—oo t

1{X(s

%(’ﬂ'i,l +7T1) (221)

The proof is available in [12].

Sketch of proof of Theorem 2: For the purpose of almost
sure comparison we construct an e-process for any p. and
any scheme j (when used in 7-static manner), in a similar
way as in [3]. By this construction, the full e-cycles {BH<}
(time duration between start of an e-idle period and the end
of the consequent e-busy period) and {Y*<} (server capacity
available to 7-customers during one full e-cycle), for any j,

can be compared for various p. as below (see [12])
1 1

gre = Bi pne _ X5 ne (B"<)
’ He ’ He PAN

4 = N4i(B}), Ng(B<) = N5(B;)

etc., where NG (+), Ng(+) respectively represent the number of
e-arrivals and number of e-drops in the specified time interval.
It is clear that the length of an e-full cycle (and Y*#<) decreases
to zero, while the e-number arrived/served in a full cycle
remains the same, as p. — oco. This forms the main step in
deriving the limits required for this proof. The overall blocking
probability can be split as

351 (N5(A; (1) + N5(¥;(1)) + Na(t)

Ny ([0, t])

Pp = lim

’
t—oo

where a) A;(t) represents the total time consisting of full e-
cycles during time period [0, t], such that 7-state is in group
G;; b) ¥ ;(¢) is the remaining period (of partial e-cycles) during
which 7 state is in G; before ¢; and ¢) Np(t) is the number
of e-jobs dropped at 7-transition epochs (see A.1).

The A;(t) is shown to form a renewal process of special
full e-cycles. Hence using Renewal Reward Theorem (RRT)
and further using 7-stability as given by Lemma 1 (fraction
of time spent in G; converges to its stationary probability) we

prove that (see [12] for details):
Np(4A; (1)

lim lim
N4 (®)

He—+00 t—00

= Pp ;77 (j) as., for any j.

An upper bound on ¥;(¢) (the partial cycles bounded by
full e-cycles), forms another renewal process. This process
has similar number of e-cycles per renewal period, for all g,

(unlike in A;(¢)), hence become insignificant (almost surely):
N5 (¥;(¢) “o . Na(t) 20, K
—————"> =0and lim i

He—>00 t— 00 N;‘;(t) ““}xNZe (t) = e p.

=0,

with K = maximum waiting space (see assumption A.3). W
Sketch of the proof of Theorem 3: We discuss the major
steps of the proof, while the details are in [12].
a) We first show that the problem is equivalent to the follow-
ing modified optimizing problem, which optimizes over the
sequence of 7-load factors {p;}:
H pj < 0.

p={pi }p<m<p Vi ZH pj, such that Z

i j=0 7

b) The constraint is satisfied with equality at the optimizer;

c) We then prove the following special ’fullness at initial
states’ property: If ¢ = (po,p1---) is any policy such that
there exists an ¢ with p; < p and p;y1 > p (i.e., if initial
decisions have scope to improve and later decision have scope
to lose), then one can construct another policy (by appropriate
partial swapping) that strictly improves upon it. |



