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Abstract—The goal in this work is to design online power
control policies for large energy harvesting (EH) networks where,
due to large energy overhead involved in the exchange of state
information among the nodes, it is infeasible to use a centralized
policy. Furthermore, typical applications of EH networks concern
the scenario where the statistical information, about both the
EH process and the wireless channel, is not available. In order
to address these challenges, we propose a mean-field multi-
agent deep reinforcement learning framework. The proposed
approach enables the nodes to learn online power control policies
in a fully distributed fashion, i.e., it does not require the
nodes to exchange the information about their states. Using the
underlying structure of the problem, we analytically establish the
convergence of the proposed scheme. In particular, we show that
the policies obtained using the proposed approach converge to the
‘stationary’ Nash equilibrium. Our simulation results illustrate
the efficacy of the power control policies, learned through the
proposed approach. In particular, the mean-field multi-agent
reinforcement learning scheme achieves a performance close to
the state-of-the-art centralized policies which operate using the
information about the state of whole network.

I. INTRODUCTION

Internet-of-things (IoT) [1] networks connect a large number
of low power sensors whose lifespan is typically limited by the
amount of the energy that can be stored in their batteries. The
advent of the energy harvesting (EH) technology [2] promises
to prolong the lifespan of IoT networks, by enabling the nodes
to operate using the energy harvested from environmental
sources, e.g., solar, wind, etc. On the other hand, this poses
new constraints in the way energy is to be managed. An EH
node (EHN) operates under the energy neutrality constraint
(ENC) which requires that the total energy consumed by
the node, up to any point in time, can not exceed the total
amount of energy harvested by the node, until that point. This
constraint is particularly challenging due to the random nature
of the EH process. In addition, at a given instant, an EHN can
only store an amount of energy equal to the size of its battery
capacity, which further adds to the complexity of the energy
management problem in EH networks. As a result, a major and
challenging issue in EH-based IoT systems is to devise power
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control policies to maximize the communication performance,
while ensuring the operation under ENC.

Furthermore, when only the causal information about energy
arrivals and channel states [3] is available the power control
policies are termed as online policies. The online policy design
problem is essentially a stochastic control problem which,
upon discretizing the state space (battery state and channel
gains), can be formulated as a Markov decision process (MDP)
[4] and can be solved numerically to obtain an optimal online
policy. However, the MDP based approach requires perfect
knowledge of the statistics of the EH process and wireless
channels, which are difficult to know in practice. In order
to address this drawback, the framework of reinforcement
learning (RL) [5]–[9] or that of Lyapunov optimization [10],
[11] have been proposed to approximate the optimal solution.
All of these previous works take a centralized approach which
makes it infeasible to use them for large networks, where the
presence of a large number of nodes causes inevitable feedback
overheads, as well as, more importantly, a huge complexity
issue. Indeed, the numerical techniques available to solve MDP
problems suffer from the so-called “curse-of-dimensionality”,
making them computationally intractable for the large EH
networks.

Therefore, for the large EH networks, in absence of any
a-priori knowledge about the statistics of the EH process
and the channel, it is essential to develop new techniques
for distributed learning of online policies, which do not
require any information exchange among the nodes. Dis-
tributed approaches for online power control of EH networks
has been recently considered in only a handful of works
[12]–[15]. In [12], the authors use a distributed Q-learning
algorithm where each node independently learns its individual
Q-function. However, no convergence guarantee is provided
for the proposed method. Note that, in general, when multiple
nodes individually use a reinforcement learning algorithm to
learn the optimal policy, the convergence is not assured. This is
because in such a scenario each individual node experiences
an inherently non-stationary environment [16]. The authors
in [13] developed a distributed solution to minimize the
communication delay in EH-based large networks, assuming
the information about the statistics of the EH process and of
the wireless channel is known. Interestingly, the interactions
among the devices are modeled leveraging the mean-field
game theory, a framework specifically conceived to analyze
the evolution of the systems composed of a very large num-



ber of distributed decision-makers [17], [18]. A multi-agent
reinforcement learning (MARL) approach is considered in
[14], where an online policy for sum-rate maximization is
developed. However, there it is assumed that the system global
state is available at each node, which makes the approach from
[14] inapplicable to large networks, due to the extensive sig-
naling required to make the system global state available to all
network nodes. In [15], a two-hop EH network is considered,
and a MARL-based algorithm with guaranteed convergence is
proposed to minimize the communication delay.

The objective of this work is to develop a mechanism to
learn the optimal online power control policies for fading-
impaired multiple access channel (MAC) with a large number
of EH transmitters, in a distributed fashion. The design of
distributed power control policies for EH AWGN MAC is
presented in [19], [20]. In [19], the authors presented fixed-
fraction based policies which achieve a throughput within a
constant gap from the optimal throughput. The policies pre-
sented in [20] achieve the optimal throughput, asymptotically,
and operate in a fully distributed fashion. For EH fading MAC,
the authors in [21] presented deep neural network (DNN)
based online policies which operate in a centralized fashion,
and achieve a near-optimal throughput. However, the design of
distributed online policies for EH fading MAC is not available
in the literature. In this context, we make the following main
contributions:
• We model the problem of throughput maximization for

EH MAC as a discrete-time mean-field game. Further,
exploiting the structure of the problem, we show that the
mean-field game has a unique stationary solution.

• Next, we propose to use deep reinforcement learning at
each individual node to learn the stationary solution of
the mean-field game. Under the proposed scheme the
nodes learn the optimal power control in a completely
distributed fashion, without any apriori knowledge about
the statistics of the EH process and propagation channel.

• Our simulation results illustrate that the throughput
achieved by the online power control policies learned us-
ing the proposed mean-field MARL (MF-MARL) frame-
work is close to the throughput obtained using the state-
of-the-art online policies which operate in a centralized
fashion.

In the following section, we describe our system model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted EH network where a large num-
ber of identical EHNs transmit their data over a block fading
channel to an AP which is connected to the electric mains. The
set of transmitters is denoted by K , {1, 2, . . . ,K}, where
K � 1 denotes the number of EHNs. In the nth slot, the
fading channel gain between the kth transmitter and the AP
is denoted1 by gkn ∈ Gk. In each slot, the channel between

1For any symbol in the paper, the superscript and subscript represent the
node index and the slot index, respectively, and if only the subscript is present
then it denote either the node index or the slot index, depending on the context.
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Fig. 1. System model for the EH fading multiple access network. The EH
process and battery size at the kth node are denoted by Ek and Bmax,
respectively. The nodes transmit their data to an AP over a fading channel.
The complex channel gain from the transmitter k to the AP, in the nth slot,
is denoted by gkn .

any transmitter and the AP remains constant for the entire slot
duration, and changes at the end of the slot. We assume that
the wireless channels between the nodes and the AP, Gk’s,
are identically distributed.

In a slot, the kth node harvests energy according to a general
stationary and ergodic harvesting process fEk(ek), where the
random variable Ek denotes the amount of energy harvested
by the kth transmitter and ek denotes a realization of Ek. We
assume that the harvesting processes {Ek}k∈K are identically
distributed across the individual nodes, but not necessarily
independent. At each node, the harvested energy is stored in a
perfectly efficient, finite capacity battery of size Bmax. Further,
only causal and local information is available, i.e., each node
knows only its own energy arrivals and the channel states to the
AP in the current and all the previous time slots. In particular,
no node has information about the battery and the channel
state of the other nodes in the network. Also, no information
is available about the distribution of the EH process and of
the wireless channels at any node.

Let pkn ≤ Pmax denote the transmit energy used by the kth

transmitter in the nth slot, where Pmax denotes the maximum
transmit energy which is determined by the RF front end.
Further, Pn , {pkn}Kk=1 denotes the set of transmit energies
used in the nth slot, by all the transmitters. The battery at the
kth node evolves as

Bk
n+1 = min{[Bk

n + ekn − pkn]+, Bmax}, (1)

where 1 ≤ k ≤ K, and [x]+ , max{0, x}. In the above, Bk
n



and ekn denote the battery level and the energy harvested by
the kth node, respectively, at the start of the nth slot. An upper
bound on the successful transmission rate of the EH MAC
over N slots is given by [22], [23]

T (P) =

N∑
n=1

log

(
1 +

∑
k∈K

pkng
k
n

)
, (2)

where P , {Pn|1 ≤ n ≤ N}. Note that, the above
upper bound can be achieved by transmitting independent
and identically distributed (i.i.d.) Gaussian signals. In (2), for
simplicity and without loss of generality, we set the power
spectral density of the AWGN at the receiver as unity. 2

In the absence of information about the statistics of the EH
process and the channel, our goal in this work is to learn an
online energy management policy at each node to maximize
the time-averaged sum throughput. The optimization problem
can be expressed as follows

max
{P}

lim inf
N→∞

1

N
T (P), (3a)

s.t. 0 ≤ pkn ≤ min{Bk
n, Pmax}, (3b)

for all n and 1 ≤ k ≤ K. Constraint (3b) captures the fact that
the maximum energy a node can use in the nth slot is limited
by the minimum between the amount of energy available in the
battery, Bk

n, and the maximum allowed transmit energy Pmax.
Note that, since the information about the random energy
arrivals and the channel is only causally available and for each
node the battery evolves in a Markovian fashion, according to
(1), the optimization problem (3) is essentially a stochastic
control problem which, upon discretization of the state space,
could be formulated as a Markov decision process (MDP).
However, obtaining an MDP based solution for the considered
setting poses at least three major challenges:
• Infeasible complexity, since in the considered setup a

large number of nodes K is present in the network.
• Considerably large feedback overhead, since global infor-

mation about the battery and channel states of each node
would be needed for the operation of the policy.

• Finally, solving the MDP also requires statistical informa-
tion about the EH process and the wireless channel, which
is often difficult to obtain and indeed is not assumed in
this work.

For these reasons, the goal of this work is to develop a frame-
work to learn online power control policies in a distributed
fashion, i.e., each node learns the optimal online power control
policy without requiring to know the battery and channel
states, and actions of the other nodes. In the following sections,
we develop a provably convergent multi-agent reinforcement

2We note that, in a scenario when all the EHNs simultaneously trans-
mit their data, the cumulative signal-to-noise ratio (SNR) term in (2),∑

k∈K pkng
k
n, grows with the number of users in the network. In practice,

this problem can be circumvented by ensuring that the transmit power of
EHNs scales down in inverse proportion to the number of users, i.e., O

(
1
K

)
,

as when the number of users increases the power per user must decrease in
order to ensure that the total energy in the network stays finite.

learning approach exploiting the tools of deep reinforcement
learning and mean-field games.

III. MEAN-FIELD GAME TO MAXIMIZE THE SUM
THROUGHPUT

In this section, first we model the sum throughput maxi-
mization problem in (3) as a discrete time, finite state mean-
field game [24]. Next, we present preliminaries on the discrete-
time mean-field games and list the key results which are useful
in showing the convergence of the proposed approach to the
stationary solution of the mean-field game.

A. Throughput Maximization Game

The throughput maximization game GT , {K,S,P,R}
consists of:
• The set of players K , {1, 2, . . . ,K}, each one corre-

sponding to a unique EH transmitter, where K >> 1;
• The state space of all the players S , ×k∈KSk, with
Sk denoting the space of all the states sk for the kth

transmitter and |Sk| , d. Also, let skn , (Bk
n, g

k
n, e

k
n)

denote the state of the kth transmitter in the nth slot, where
Bk

n, gkn, and ekn are discrete-valued;
• The set of policies of all the nodes P , {Pk}k∈K, where
Pk denotes the policy of the kth node;

• The set of reward functions of all the nodes R ,
{Rk}k∈K, where Rk is the reward function of node k.

Note that, since all the transmitters are identical, the state space
of individual nodes, Sk, is the same set for all k = 1, . . . ,K.
In the nth time slot, the kth node uses pkn amount of energy,
prescribed by its policy Pk, and collects a reward according to
its reward function Rk and evolves from one state to another.

Under the mean field hypothesis [24], the reward obtained
by a given node depends on the other nodes only through
the distribution of all the nodes across the states. Let πn ,
(π1

n, . . . , π
d
n) denote the distribution of all the nodes across the

states in the nth slot, where πi
n denotes the fraction of nodes

in the ith state. Thus, in the nth slot the reward obtained by
the kth node can be expressed as

Rk(πn, p
k
n) = log

(
1 + pkn +

d∑
i=1

(K − 1)πi
npigi

)

= log

(
1 +

d∑
i=1

Kπi
npigi

)
, (4)

where gi is the wireless channel gain between the nodes in
the ith state and the AP, and pi ∈ Ap , {0, pmin, . . . , Pmax}
denotes the energy level used for transmission by the nodes in
the ith state. Here, pmin denotes the minimum energy required
for transmission. Note that, (4) is written using the fact that
under the mean-field hypothesis all the nodes are identical
and hence use the same policy which also implies that the
reward function, Rk(·, ·), is identical for all the nodes. Hence,
to simplify the notations, in the ensuing discussion we omit
the node index k. Also, (4) implicitly assumes that all nodes



in state i use the energy pi which is motivated3 by the fact
that for an MDP with finite state and action sets the optimal
policy is a Markov deterministic policy [25, Thm. 8.4.7], i.e.,
in a slot the optimal transmit energy for a node depends only
on its current state.

In the nth slot, when a node in state sn ∈ S transmits using
energy psn the system evolves as

πj
n+1 =

∑
i

πi
nP

n
ij (pi) , (5)

where Pn
ij(·) denotes the probability in the slot n that a node

in state i transits to state j, and depends on, pi, the energy
used for transmission by the node in the ith state4. In addition,
Pn
ij(·) is determined by the statistics of the EH process and the

wireless channel. In a given slot, all the nodes obtain a reward,
R (πn,P), equal to the total number of bits successfully
decoded in that slot, by the AP.

For a given node, starting from the nth slot the expected
sum-throughput obtained by following a policy P can be
expressed as

Vn(πn,P) = R (πn,P) + Vn+1 (πn+1,P) , (6)

where Vn+1(πn+1,P) denotes the expected throughput ob-
tained by following a policy P starting from the slot n + 1,
when in the (n+ 1)th slot the distribution of the nodes across
the states is given by πn+1. In the rest of the paper V (·, ·) is
also termed as the value function. In the above, similar to an
MDP [25], (6) is written using the fact that the expected sum-
throughput obtained by following a policy P , starting from the
time slot n, is equal to the sum of the expected sum-throughput
obtained in the slot n and the slot n + 1 onward. Note that,
under the mean-field hypothesis, the expected sum-throughput
in (6) is identical for all the nodes and due to special structure
of the reward function, the value function of each node V (·, ·)
only depends on the distribution of the nodes across the states,
πn, not on the state of the individual nodes. Hence, (6) does
not include a superscript/subscript to denote the node index.
In the following, we present preliminaries on the discrete-time
finite state mean field games.

B. Preliminaries: discrete-time finite state Mean-field games

In the following, we define the notions of Nash equilibrium,
stationary solution, and briefly summarize the key results used
for proving the convergence of the proposed MARL algorithm.
For a detailed exposition on the discrete-time finite state mean-
field games we refer the readers to [24].

Definition 1 (Nash maximizer). For a fixed probability vector
πn, a policy P∗ is said to be a Nash maximizer if and only if

Vn(πn,P) ≤ Vn(πn,P∗), for all policies P.

Next, for a discrete-time finite state mean-field game, we
define the notions of a solution and stationary solution.

3Note that, for stochastic games with partial observability, an optimal policy
could be history dependent.

4Note that, in a general mean-field game the transition probabilities Pn
ij

may also depend on the actions of the other players.

Definition 2 (Solution of a mean-field game). Suppose that for
each πn there exists a Nash maximizer P∗. Then a sequence
of tuples {(πn, Vn) for n ∈ N} is a solution of the mean field
game if for each n ∈ N it satisfies (5) and (6) for some Nash
maximizer of Vn.

Definition 3 (Stationary solution). Let Gπ and KV be defined
as Gπn

(Vn+1) = Vn(πn,P), and KVn
(πn) = πn+1. A pair

of tuple (π̃, Ṽ ) is said to be a stationary solution if and only
if

Gπ̃(Ṽ ) = Ṽ and KṼ (π̃) = π̃.

Note that, the operators KVn
(·) and Gπn

(·) are compact
representations of (5) and (6), respectively, which are essen-
tially discrete time counterparts of Hamilton-Jacobi-Bellman
and Fokker-Planck equations. The stationary solution of a
mean-field game, (π̃, Ṽ ), is a fixed-point of operators Gπ and
KV . Next, we list the results which identifies the conditions
under which a stationary solution exists. We omit the proofs
for brevity. These results are later used for proving the
convergence of our mean-field MARL (MF-MARL) algorithm
to the stationary solution.

Theorem 1 (Uniqueness of Nash maximizer (Theorem 2
[24])). Let fi(P) = ∂V (π,P)

∂pi
where pi ∈ [0, Pmax] for all

1 ≤ i ≤ d. If the value function Vn is convex and continuous
with respect to pi, and fi is strictly diagonally convex, i.e., it
satisfies

d∑
i=1

(p1i − p2i )(fi(P1)− fi(P2)) > 0, (7)

then there exists a unique policy which is a Nash maximizer
for the value function V . Here, p1i and p2i denote the actions
prescribed in the ith state by two arbitrary policies P1 and
P2, respectively.

The following result shows that if the reward function is
monotonic with respect to both the variables, π and pi, then
the mean-field game admits a unique stationary solution.

Theorem 2 (Uniqueness of stationary solution (Proposition
4.3.1, [26])). Let the value function be a continuous function
with respect to its both arguments, and also assume that there
exists a unique Nash maximizer Pn for all n ∈ {0, 1, 2, · · · }.
Further, let the reward function be monotone with respect to
the distribution π, i.e,

d∑
i=1

(π2
i − π1

i )(Ri(P1, π2)−Ri(P, π1)) ≥ 0, (8)

then there exists a unique solution for the mean-field game. In
the above, Ri(·, ·) denotes the reward obtained by the nodes
in the ith state.

In the following, we establish that the mean-field game GT
admits a unique stationary solution.



C. Unique Stationary Solution for GT
Theorem 3. The throughput maximization mean-field game
GT has a unique stationary solution.

Proof. Proof is relegated to Appendix A �

In the next section, we present an algorithm to learn
the stationary solution of the mean-field game GT , as well
as the corresponding Nash maximizer power control policy.
The proposed approach uses reinforcement learning for this
purpose and is termed as MF-MARL approach.

IV. MF-MARL APPROACH TO POWER CONTROL

In this section, we present our mean-field MARL approach
to learn online power control policies which maximize the
throughput of an EH fading MAC with large number of users.
We show that the proposed approach enables the distributed
learning of the power control policies which eventually con-
verge to the stationary Nash equilibrium. The proposed MF-
MARL algorithm to obtain the online policies exploits the
fact that a discrete time finite state mean field game has the
fictitious play property (FPP) [26]. The FPP for a discrete time
mean field game is described in the following. Let m denote
the iteration index and π̄1 denote an arbitrary probability
vector representing the initial distribution of the nodes across
the states. Let

P∗m , arg max
P

Vm (π̄m,P) , (9)

πm+1 = KVm(P∗
m)(πm), (10)

and π̄m+1 =
m

m+ 1
π̄m +

1

m+ 1
πm+1. (11)

The procedure described by (9), (10) and (11) is called the
fictitious play procedure. As described in (9), at the mth

iteration, a node attempts to learn the Nash maximizer, given
that its belief about the distribution of the nodes across the
states is π̄m. Further, at each iteration of the fictitious play
procedure the belief about the distribution is updated using
(10) and (11). A discrete-time mean field game is said to have
the FPP if and only if the procedure described by (9), (10) and
(11) converges. The following result provides the conditions
under which the fictitious play procedure converges to the
unique solution of the discrete-time mean field game.

Theorem 4 (Convergence of FPP to unique stationary solution
(Theorem 4.3.2 [26])). Let (πm, Vm) denote the sequence
generated through the FPP. If a mean-field game has the
unique Nash maximizer at each stage of the game, and the
reward function is continuous and monotone with respect to
probability vector π, then the sequence (πm, Vm) converges to
(π̃, Ṽ ), the unique stationary solution of the mean-field game.

For the throughput maximizing mean-field game GT , the
convergence of the FPP to the stationary solution of the game
directly follows from the above result and the Theorem 3.
As a consequence of this result, the stationary solution of

Algorithm 1 : MF-MARL approach to learn online policies
Initialize: π̄1 to a valid probability vector, ε1, ε̃, N1 and
m← 0, n← 0. Here, N1 denotes the length of a Q-learning
episode.
do
1) Set m ← m + 1; at each node execute Q-learning

algorithm to learn Nash maximizer Pk
m∗

2) In the nth time-slot, n ≤ N1, of Q-learning episode the
AP estimate πmn .

3) n← n+ 1. If ‖πmn −πm‖2 ≥ ε1 or n > N , broadcast
πm+1 = πmn+1 ; else go to step 2.

4) Update π̄m+1 using (11) and n← 0.
while ‖π̄m+1 − π̄m‖2 ≤ ε̃.
Output: The near-optimal policies and distribution are
given by P∗ and π̃, respectively.

the game GT can be learned through the fictitious play
procedure, provided the Nash maximizer can be found at each
iteration of the fictitious play procedure, and the belief about
the distribution is updated correspondingly. The MF-MARL
proposes to use the reinforcement learning to learn the Nash
maximizer at each iteration, i.e., for a given belief distribution
π̄ each node uses a reinforcement learning algorithm to learn
the Nash maximizer. The proposed MF-MARL approach is
described in Algorithm 1.

In order to implement the step 2 of the algorithm, the AP
builds an estimate of πmn , and periodically broadcasts it to the
entire network. In the simulations, presented in Sec. V, we use
the empirical distribution as an estimate of πmn

. Also, in order
to implement the Q-learning algorithm each node requires the
information about reward, i.e., the sum-throughput, obtained
in each slot. Since the reward function is same across the
nodes, this could be accomplished by using the belief about
the distribution. In particular, each node uses its own policy
and the belief about the distribution to build an estimate of
the reward obtained in each slot. Alternatively, in each slot the
AP can directly broadcast the total number of bits successfully
decoded by it. The latter method obviates the need to maintain
a belief about the distribution of the nodes, albeit at the cost of
a higher feedback overhead. The latter method is essentially
cooperative multi-agent Q-learning [27] where nodes attempt
to maximize a common reward function. In our simulations
it is observed that the proposed MF-MARL based approach
performs marginally better than the cooperative multi-agent
Q-learning method.

At each node, we implement the reinforcement learning
algorithm using the deep Q-learning [28] method where the
Q-function is approximated using a DNN. In order to learn the
Q-function, the DNN is successively trained using the problem
data. This approach of using a DNN to learn Q-function has
the following advantages: (i) it obviates the need to discretize
the state space, as the Q-function approximation learned using
the DNN is continuous over the state space, whereas in
conventional approach it is learned for discrete state-action



TABLE I
PERFORMANCE OF THE MF-MARL AND COOPERATIVE MULTI-AGENT Q-LEARNING APPROACH FOR AN EH MAC WITH K = 5 USERS AND v = 3.5.

PERFORMANCE OF THE CENTRALIZED POLICY CORRESPONDS TO 100%.

Mean
(m)

Centralized Policy
(RPS in nats)

MF-MARL policy
(RPS in nats)

MF-MARL policy
(Percentage )

Cooperative Q-learning
(RPS in nats)

Cooperative Q-learning
(Percentage )

4 3.1498 2.9371 93.24% 2.9354 93.19%

5 3.3107 3.1353 94.70% 3.0046 90.75%

6 3.4410 3.2896 95.60% 3.1852 92.56%

7 3.5102 3.3038 94.11% 3.2417 92.35%

8 3.6146 3.3903 93.79% 3.3064 91.47%

9 3.6166 3.4799 96.22% 3.4528 93.90%

pairs, (ii) it is inherently faster, compared to the conventional
approach of implementing the Q-learning. This is because for
a given state the Q-function corresponding to all the actions
is learned simultaneously. We also note that in the first and
second step of Algorithm 1, the use of Q-learning could
be replaced by any other variant of reinforcement learning
schemes, e.g., actor-critic algorithm. In the following section,
we present the simulation results.

V. SIMULATION RESULTS

We consider an EH fading MAC with K = 5 EH transmit-
ters where each EHN harvests energy according to a non-
negative truncated Gaussian distribution with mean m and
variance v = 3.5, independently of the other nodes. The size of
the battery at each transmitter is Bmax = 20 and the maximum
amount of energy allowed to be used for transmission in a slot
is Pmax = 15. Note that, the unit of energy is 10−2 J. We
benchmark the performance of the proposed MF-MARL and
cooperative Q-learning approach against the state-of-the-art
DNN based centralized online policy [21]. In the centralized
scheme the online policy is learned by training a DNN using
the data obtained by jointly optimal offline policies proposed
in [22]. In contrast to online policies, the offline policies are
designed assuming non-causal information about the energy
arrivals and the channel states over the entire time-horizon.
It is observed in [21] that the throughput achieved by the
DNN based centralized online policy is more than 90% of the
throughput achieved by the optimal offline policies [22]. At
each node, the deep Q network consists of 10 hidden layers
and one input and output layer. The input layer contains 3
neurons, while the number of neurons in the output layer is
equal to |A| = 150, where A = {0, 0.1, 0.2, . . . , 15}. The
first, third, fifth, seventh, and ninth hidden layer consists of
60, 58, 56, 54, and 52 neurons, respectively. The number of
neurons in each even indexed hidden layer remains same as in
the preceding odd indexed hidden layer. At each layer, except
the output layer, the rectified linear unit (ReLu) is used as an
activation function. The output layer uses a linear activation
function. The deep Q-learning algorithm uses γ = 0.99, and
uses the exploration probability εmax = 1 at the start which
decays to εmin = 0.01 with a decay factor equal to 0.995. The
replay memory of length 2000 is used. In Algorithm 1, we use
ε1 = 0.01, ε̃ = 0.001, and N1 = 1000. The performance is
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Fig. 2. Convergence of the MF-MARL algorithm. For m = 7, within
first 1000 slots the sum-throughput obtained by the MF-MARL approaches
roughly 99% of the value shown in Table I. On the other hand, for m = 5, it
takes approximately 5000 slots to achieve a sum-throughput which is within
97% of the value attained finally.

evaluated by averaging the sum-throughput obtained over 105

slots.
As observed from the results presented in Table I, the poli-

cies obtained using the proposed MF-MARL based approach
achieve the sum-throughput which is close to the throughput
achieved by the DNN-based centralized policies. However, in
contrast to the proposed approaches, the centralized online
policy requires the information about the state of all the
nodes in the network. Note that, in order to implement MF-
MARL (or deep Q-learning), the actions space, A, has to be
quantized which leads to the loss in the throughput, relative to
the centralized scheme where the output transmit powers are
continuous. We observe that the proposed MF-MARL based
approach performs marginally better than the cooperative
multi-agent Q-learning based scheme. However, in contrast to
cooperative multi-agent Q-learning approach, the MF-MARL
based procedure requires significantly less feedback. Also, it
is interesting to note that the proposed MF-MARL algorithm
achieves near-optimal throughput even for a network with
small number of nodes. Further, the result in Fig. 2 show



the throughput achieved by our MF-MARL algorithm as a
function of slot index. It is interesting to observe that the MF-
MARL algorithm converges very fast, i.e., for m = 7 and
m = 5 the obtained throughput stabilizes within first 1000
and 5000 slots, respectively. A similar trend is observed for
cooperative Q-learning also.

VI. CONCLUSIONS

In this work, we proposed a mean-field multi-agent rein-
forcement learning based framework to learn online power
control policies for large EH networks. The proposed approach
enables the nodes to learn the online power control policies in
a completely distributed fashion. Moreover, using the structure
of the underlying problem, we analytically showed that the
learning process converges to the unique stationary solution
of the mean-field game. Our simulation results corroborated
the theoretical findings. The future work could involve char-
acterizing the convergence speed of the proposed MF-MARL
algorithm. The proposed MF-MARL framework is useful for
optimization of large wireless networks.

APPENDIX

Proof. The proof follows directly from the result in Theo-
rem 2, provided there exists a unique Nash maximizer and the
reward function is monotone in variable π. The uniqueness
of Nash maximizer can be established using the result in
Theorem 1. It is easy to verify that the reward and value func-
tion of the game GT satisfies the strictly diagonally concavity
property. In order to complete the proof, we just need to show
that the reward function is monotone with parameter π, i.e.,

d∑
i=1

(π2
i − π1

i )(Ri(P, π2)−Ri(P, π1)) ≥ 0. (12)

The proof follows by noting the fact that since the re-
ward obtained by a node does not depend on the state
of the node, i.e., Ri(P, π2) = R(P, π2). Hence, the
RHS in the above can be expressed as (R(P, π2) −
R(P, π1))

(∑d
i=1 π

1
i −

∑d
i=1 π

1
i

)
= 0. �
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