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Abstract—We design a lightweight beam-searching algorithm
for mobile millimeter-wave systems. We construct and maintain
a set of path skeletons, i.e., potential paths between a user and the
serving base station to substantially expedite the beam-searching
process. To exploit the spatial correlations of the channels, we
propose an efficient algorithm that measures the similarity of
the skeletons and re-executes the beam-searching procedure only
when the old one becomes obsolete. We identify and optimize
several tradeoffs between: i) the beam-searching overhead and
the instantaneous rate of the users, and ii) the number of users
and the update overhead of the path skeletons. Simulation results
in an outdoor environment with real building map data show that
the proposed method can significantly improve the performance
of beam-searching in terms of latency, energy consumption and
achievable throughout.

Index Terms—Millimeter-wave, beam alignment, spatial chan-
nel response, spatial correlation, beam-searching, mobile net-
works

I. INTRODUCTION

Millimeter-wave (mmWave) communication is regarded as

a promising solution to support high data rate demands in

the next generations of wireless networks [1]. To compensate

for the severe propagation loss in this band, both transmitters

(Txs) and receivers (Rxs) rely on directional communications

using a relatively large number of antennas, feasible thanks to

the short wavelength. The use of directional communications,

especially with analog or hybrid beamforming architectures

[2], complicates the channel estimation and beamforming

tasks, since the channel dimension is large and it is available

through the eyes of the analog filters (which are low-rank and

non-invertible). The problem becomes even more challenging

in a mobile network, where the mobility demands frequent

re-executions of the optimal beamforming task to overcome

misalignment between Tx and Rx beams [3]. Therefore, there

is a natural tradeoff between the total beamforming overhead

(which is a function of the number of re-executions of the

task) and the instantaneous rate of the user.

To address the problem in a stationary environment, the

existing approaches usually search over a codebook (a set

of potential beams) to find the optimal beam pairs for Tx

and Rx. In particular, the existing mmWave standards [4],

[5] define a multi-resolution codebook and use an exhaustive

beam-searching algorithm to find the direction with the max-

imum link budget. However, this approach is time-consuming

because it includes many iterations of sending pilot signals

and waiting for control/feedback frames. Generally speaking,

the overhead increases with the number of beam directions

and Tx/Rx may remains most of the time in the beam

scanning phase rather than the data transmission phase [6].

Other approaches, such as sparsity-aware beamforming [7] or

subspace estimation [8], face a similar problem: their over-

heads hinder their applicability in mobile mmWave networks.

Although the recent compressive-sensing based approaches

[7], [9], [10] need a logarithmic number of measurements in

beam-searching, they do not work with the existing mmWave

devices because they require an adopted phase-array antennas

[10] or phase coherent measurements [9].

The spatial channel response (SCR) of mmWave systems

has two fundamental properties. First, it is sparse in the angular

domain [6], [7], [11], [12]. In other words, there are a few

significant line of sight (LoS) and non-LoS (NLoS) paths

between Tx and Rx, hereafter referred to as a path skeleton
[6]. Due to the lack of SCR knowledge, Tx/Rx in the beam-

searching phase scans all directions exhaustively to find the

best beamforming/combining direction. A disadvantage of this

method is that the overhead increases almost linearly with the

number of beam directions. The second property of SCR is the

strong correlation of the values in proximity locations as the

Rx experiences almost the same scattering environment [6],

[12], [13]. This is also known as the robustness of the channel

second-order statistics to the small mobility [3].

Spatial correlation of mmWave SCRs have received a con-

siderable attention in the recent years in order to alleviate

the beamforming overhead. For example, Sur et al. in [6]

presented a model that captures spatial and blockage-invariant

correlation among beams to predict beam directions when

human bodies block the links. However, this model is based

on static links and it cannot capture the Rx mobility and is

limited to an indoor environment.

Zhou et al. in [12] proposed a beam steering approach in

an office environment that leverages the correlation of the

mmWave spatial channel in near locations to predict and re-

establish the blocked links. Although the results are promising

in terms of throughput gain, the computational complexity

of the proposed approach makes it impractical in real-world

scenarios with cheap mmWave mobile devices. Moreover, the

re-execution of the beam-searching is based on a constant

Euclidean distance, which is very heuristic and may vary con-

siderably in different user mobility and networking scenarios.

Indeed, as we show in this paper, having a small Euclidean

distance does not necessarily imply a small/negligible change

in the SCR.

The existing approaches are either not suited to an outdoor
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mobile network or are heuristic based, hindering a proper

control of the tradeoff among the instantaneous achieved rate

and beamforming update overheads in various user mobility

scenarios.

In this paper, we address the problem of the beamforming

overhead and investigate an efficient beamforming algorithm

in an outdoor environment. Inspired by the path skeleton

approach [6], we assume that every Tx maintains a database

including path skeletons of different locations in its coverage

areas. First, we consider a negligible overhead to construct and

update this database and develop an algorithm to track the cor-

relation between path skeletons in different locations through

a specific trajectory. We show that our algorithm requires the

minimum number of coarse beam-searching in comparison to

the existing methods [5] while keeping the throughput and

achieved rate in a near-optimal level. Moreover, we show that

our approach is also efficient in terms of energy consumptions,

computational and signaling complexity. We then characterize

the cost of database maintenance and show that it is inversely

proportional to the number of users. It suggests that as the

number of users increases, the overhead for the database

update decreases drastically and therefore we can optimize

the aforementioned tradeoff at almost no cost.

The rest of this paper is organized as follows. We introduce

the system model in Section II. We describe our proposed

method to track the correlation between path skeletons in

Section III. We also present the ray tracing simulation results

of running our algorithm in a real urban environment in

Section III. We consider the overhead of building and updating

the database in Section IV. The summary of our findings is

presented in Section V.

Notations: Bold upper-case X, bold lower-case x and nor-

mal font x denote matrices, vectors and scalars, respectively.

For any vector x (or matrix X), ‖x‖2, xT and xH are its

l2-norm, transpose, and conjugate transpose, respectively. For

any integer L, we define set [L] = {1, 2, ..., L}. IL denotes an

L× L identity matrix.

II. SYSTEM MODEL

We consider the downlink of a mmWave network with mul-

tiple base stations (BSs) and user equipment (UEs). Without a

loss of generality and to keep the notations simple, we focus

on a specific UE and its serving BS. We consider BS as the Tx

and UE as the Rx. We assume that the Tx location is constant

but the Rx is mobile and moves through a specific trajectory.

Blue and green lines in Fig. 1 show different Rx trajectories.

We assume that Tx and Rx utilize uniform linear arrays

(ULA) with NTx and NRx antennas, respectively. The sep-

aration between both transmit and receive antenna elements

is λ/2, where λ is the wavelength. We consider one radio-

frequency chain both in the Tx and in the Rx. The channel

follows a narrow band cluster model with L paths, and block

fading, where the small scale fading is constant over a coherent

interval (CI). The channel matrix H ∈ C
NRx×NTx in one CI

Fig. 1: Simulation area in the central part of Stockholm city. The blue star
shows the location of the Tx1 and the red star shows the location of the Tx2.
Blue and green lines illustrate the first and the second trajectory respectively.
Point H shows the handover location.

can be expressed as [14]:

H(xi,yi) =

√
NTxNRx

L

L∑
�=1

ḡ�ie
j2πfd�i aRx(θ�i)a

H
Tx(φ�i),

(1)

where ḡ�i ∼ CN (0, 10−0.1PLi) is the complex gain of the �-
th path that includes path loss and small-scale fading. PLi is

the omnidirectional path loss that is a function of the distance

between the Tx and a specific Rx in location (xi, yi) where i is

the location index. fd�i
is the Doppler shift of the �-th path that

is characterized by the the direction of received paths relative

to the motion of the Rx in location index i (see [7], [14] for

more details). aTx ∈ C
NTx and aRx ∈ C

NRx are unit-norm

array response vectors at the Tx and the Rx, respectively.

Since we use ULA, aTx(φ�i) is [2]

aTx(φ�i) =
1√
NTx

[1, ejπ sin(φ�i
), ..., ejπ(NTx−1) sin(φ�i

)]H,

(2)

where φ�i ∈ [0, 2π) and θ�i ∈ [0, 2π) are angle of departure

(AoD) and angle of arrival (AoA) of the �-th path in the

location index i, respectively. The array response vector at

the Rx, aRx(θ�i), can be expressed in a similar fashion by

replacing NTx and φ�i by NRx and θ�i , respectively. For the

sake of notation simplicity, we drop subscript (xi, yi) from H
when it is clear from the context.

With the unit-norm beamforming vector f ∈ C
NTx in the

Tx and the unit-norm combining vector w ∈ C
NRx in the Rx,

the received signal of path � in one CI is

y� = wH
� Hf�s+wH

� n�, (3)

where s is the transmitted symbol and n� ∼ CN (0, σ2) is the

Gaussian noise vector. For the sake of simplicity, we consider

s as the �-th column of
√
P/LIL where the total transmission

power P is equally divided among L paths. Since w� is unit-

norm, we have that wH
� n� ∼ CN (0, σ2). We express the

beamforming vector, f , and the combining vector, w, as

f(φ,NTx) =
1√
NTx

[1, ejπ sin(φ), ..., ejπ(NTx−1) sin(φ)]H, (4)

w(θ,NRx) =
1√
NRx

[1, ejπ sin(θ), ..., ejπ(NRx−1) sin(θ)]H. (5)
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Equations (4) and (5) indicate that only the phase of elements

in beamforming and combining vectors can be varied. We

only consider horizontal (2D) beamforming/combining and the

extension to 3D is straightforward. Each path can be LoS or

NLoS.

We define a path skeleton as a set of L paths that approx-

imate the SCR between the Tx and Rx. The path skeleton

can be obtained after running exhaustive beam-searching in

all directions and applying the so-called path skeleton con-

struction procedure in [6]. The Tx and Rx then search over

this skeleton, instead of an exhaustive search, to substantially

reduce the cost of channel estimation and beamforming design.

We assume that Tx (BS) can store the path skeletons in

different locations of its coverage area in a database, which

should be regularly maintained. However, this task involves

two costs: the maintenance cost and the query cost. The

maintenance cost is the overhead of building and updating the

database. The query cost is the number of times we inform the

Rx about a new path skeleton. We first focus on the case where

the maintenance cost is negligible and optimize the Rx (user)

rate experience with a given limited query budget. We then

relax the negligible maintenance cost and propose a simple

approach to update the database, whose cost is a decreasing

function of the number of Rxs.

Formally, we model a path skeleton based on the large-scale

parameters of each path p� = {θ�, φ�, g̃�}, � ∈ [L] between a

Tx in a fixed location and a mobile Rx in location (xi, yi) as

PS(xi,yi) =

√
NTxNRx

L

L∑
�=1

g̃�iaRx(θ�i)a
H
Tx(φ�i) (6)

where g̃�i =
√
PLi. At this location, the large-scale parame-

ters θ�i , φ�i and g̃�i correspond to the AoA, AoD and the gain

of the �-th path.

In this work, we omit the interference effects of other Txs

and multi-user scenarios and leave them as the future work.

III. PROPOSED ALGORITHM WITH NEGLIGIBLE DATABASE

MAINTENANCE COST

In this section, we consider the low overhead PS database

maintenance scenario. This assumption essentially means all

the PSs are available a priori at every Tx for all locations

inside its coverage areas. Consequently, we only focus on the

query cost and develop optimization problems to maximize

the Rx instantaneous rate given a fixed query budget. In

summary, our solution approach measures the change in the

PSs as the Rx moves and initiates a query automatically only

when a substantial change in PSs, and consequently in the

optimal beamforming vectors, is observed. We will consider

the database maintenance cost in Section IV.

Notice that our proposed algorithm is based on the downlink

transmission; however, it can be applied to the uplink case by

replacing the roles of the beamformer (f ) and combiner (w)

and modifying the channel matrix H.

A. Beamforming Design

In the pilot transmission phase, the Rx asks the database for

the PS of its current location (xi, yi). Then, a sequence of pilot

signals, Pilot�i = (PL , f(φ�i),w(θ�i)), � ∈ [L], are sent along

L paths in the skeleton, whose cardinality is much smaller

than the total number of paths between the Tx and Rx, to find

the existing non-blocked paths. More specifically, Rx measures

signal strength in all p� ∈ PS(xi,yi) and constructs H from (1).

If all paths p� ∈ PS(xi,yi) are blocked or weakened due to the

presence of some potential obstacles or the dynamics of the

environment, the path skeleton finder procedure is called to

refresh this entry (PS(xi,yi)) of the database.

In the data transmission phase, the beamforming vector f
and combing vector w are designed to maximize the link

budget, namely:

maximize
f ,w

|wHHf |2 (7a)

subject to f ∈ F , (7b)

w ∈ W, (7c)

where F and W are predefined beamforming and combing

codebooks, respectively. Vectors f and w follow the functions

given by (4) and (5). When there is no restriction on using

any phase shift φ at the Tx and θ at the Rx and the number

of antenna elements (NTx and NRx) grows large, the optimal

solution of (7) is identical to the antenna response toward the

strongest path. That is, f� = aTx(φ�) and w� = aRx(θ�),
where � = argmax� ḡ�i . Notice that ḡ�i , � ∈ [L] are found in

the channel estimation over the PS. In summary, finding and

applying the optimal beamforming in the asymptotic regime is

very efficient: Rx should feed back to Tx the index of the path

with maximum received signal strength. In this paper, we use

this approach, which is asymptotically optimal in the sense of

(7).

Given designed f� and w�, the received SNR follows

SNR =
P |wH

� Hf�|2
BN0

, (8)

where, N0 is the noise spectral density and B is the signal

bandwidth in the data transmission phase. The achievable rate

per second is then Rate = B log(1 + SNR) and we can find

the achievable throughput in location index i by multiplying

Ratei by the reaming data transmission time. A faster beam-

searching leads to a longer data transmission time and perhaps

a higher achievable throughput.

B. Tracking Spatial Correlation

To run the channel estimation (or equivalently beam-

searching over the skeleton) on every new location, the Tx

should inform the receiver about the set of paths in the skele-

ton. However, for most mobility models, the skeleton is almost

the same over many CIs, essentially over several consecutive

locations of the trajectory. To reduce unnecessary skeleton

inquiry and feedback overhead, Tx continuously monitors the

variations of the skeletons in different locations and reports the

new one only when a significant change is detected. Formally,

assume that Tx has already reported PS(x0,y0) as the reference

skeleton. For any new location (xi, yi), we define

d(xi, yi;x0, y0) = ‖PS(xi,yi) − PS(x0,y0)‖2. (9)
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Rx and Tx know PS(x0,y0) and H(x0,y0). At any new location

(xi, yi), they use the skeleton of (x0, y0) to estimate PS(xi,yi)

and H(xi,yi). Then, Tx translates condition d(xi, yi;x0, y0) ≤
T to the validity of the existing skeleton. The beamforming

vectors for (xi, yi) match to the strongest path in H(xi,yi).

If d(xi, yi;x0, y0) > T , Tx detects a significant change in

the dominant paths of the channel, informs the Rx about

the new skeleton, and asks for the beam-searching over the

new skeleton. Then, this new skeleton is considered as the

reference skeleton. This condition can be interpreted as if

a set of pilot messages based on PS(xi,yi) are sent to the

Rx in location index j. Since the distance between skeletons

in location index i and j is higher than the threshold T ,

additional terms aHTx(φ�j )a
H
Tx(φ�i) appear in (6) and cause

worse channel estimation result.

The performance of the proposed algorithm is dependent

on the mobility model, network topology, and the decision

threshold T . Among them we can only control T . Higher

thresholds leads to fewer overheads of the feedback channel

to send the new skeleton but also the adoption of suboptimal

beamforming solutions: f and w are designed based on the

skeleton in reference location (PS(x0,y0)) not necessarily the

skeleton at the current location (xi, yi). Lower T improves the

rate performance at the expense of higher feedback overhead.

To properly set this hyper-parameter of the algorithm, we run

the proposed algorithm on a dataset of various trajectories and

find an optimal T from the following optimization problem:

T � ∈ argmax
T>0

∑
i∈[M ]

Ratei(T ) (10a)

subject to U < Umax. (10b)

where Umax is a maximum tolerable number of skeleton

queries (database query budget) and M is the length of

the trajectory. The optimization problem (10) includes a

one-dimensional search over T > 0 and can be solved nu-

merically. Examples of the trajectories in the training dataset

are shown in Fig. 1. Once T is obtained, this can be applied

to users with similar mobility patterns.

Reference [12] considers d(xi, yi;x0, y0) =√
(xi − x0)2 + (yi − y20), Euclidean distance, to assess

the PS correlation in different locations. This metric is

both mobility-agnostic and topology-agnostic. To illustrate,

consider the following example. Let Tx2 serves an Rx that

is moving from location A to location B, see Fig. 1. Due to

the small distance between location A and B (about 5 m),

the Euclidean approach declares that the spatial channels in

location A and B are highly correlated. However, the presence

of a building obstacle between two locations completely

changes the AoAs and AoDs and consequently the spatial

channels. Thus, skeletons in location A and location B are

not correlated. However, our proposed metric considers the

actual distance between spatial channels (in norm-2 sense)

and tracks the validity of the existing paths between the Tx

and the Rx. Now, consider the Rx moves from location A to

location C that is about 15 m far away. Although based on the

Euclidean distance approach the spatial channel correlation

weakens due to the long distance between the two locations,

Algorithm 1 Tracking spatial correlation

Inputs: A Trajectory = {(x1, y1), ..., (xM , yM )} of M coor-

dinates, T and B.

1: Initialization: Set (x0, y0)← (x1, y1),PS0 ← skeleton at

(x1, y1) and U = 0
2: for i = 1, ...,M do
3: Send pilots over PS(x0,y0) and observe {ḡ�}�∈[L]

4: if d(xi, yi;x0, y0) < T then
5: f� = aTx(φ�), � = argmax� ḡ�
6: w� = aRx(θ�), � = argmax� ḡ�
7: else
8: // Update reference point

9: (x0, y0)← (xi, yi)
10: PS(x0,y0) ← PS(xi,yi) and inform user

11: Send pilots over PS(x0,y0)

12: f� = aTx(φ�), � = argmax� ḡ�
13: w� = aRx(θ�), � = argmax� ḡ�
14: U ← U + 1
15: end if
16: Ratei = B log(1 + SNRi)
17: end for
18: Outputs: Ratei(T ) and U

the AoAs and AoDs in the two locations are quite similar

so SCRs and equivalently PS should be indeed correlated.

Hence, the norm-2 distance of channels as the metric to track

spatial correlation in different locations can be much more

accurate than a simple Euclidean distance approach.

C. Efficiency of the Proposed Algorithm

Efficiency can be defined based on four parameters:

computational complexity, signaling complexity, through-

put efficiency, and energy consumption. In the context of

beamforming for mmWave networks, an efficient algorithm

should keep the throughput and energy consumption at an

optimal level with manageable computational and signaling

complexities.

Given the presence of an updated skeleton database,

Algorithm 1 adds negligible numbers of computations to

the system. However, this computation uses historical data

about the environment to decrease the number of running

coarse beam-searchings in all directions and they trigger if

the dynamics of the environment change the skeletons in

the database. Moreover, based on our proposed beamforming

design, in order to find the existing paths between Tx and Rx

in reference locations, our algorithm searches only over the

skeleton instead of all the space, leading to substantially less

signaling complexity.

In terms of throughput, our algorithm checks the distance

between spatial channels in different locations and updates

the beamforming and combining vectors if they have been

designed based on an obsolete channel, thereby guaranteeing

a close-to-optimal performance of the channel estimation and

beamforming design. Moreover, due to a faster beamforming

design, we expect a longer data transmission time and there-

fore a gain in the achievable throughput.
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Fig. 2: The index of the updated reference locations by running (a) bench-
marks, and (b) Algorithm 1.

In terms of energy efficiency, our approach keeps the

number of pilots at a minimal level by searching only over the

skeleton and reducing the database query frequency. Thus our

approach is energy efficient, as we observe in the numerical

results.

D. Numerical Results

We numerically evaluate the performance of our proposed

approach in an urban environment using a ray tracing tool [15].

From the ray tracing output, we can obtain the existing paths

between the Tx and the Rx in a specific location. To ensure

high angular resolutions, we measure the AoAs and the AoDs

with step sizes of 0.1 degrees. We extract the 200 m×200

m real building map of a central part of Stockholm city and

use it as the input data for the ray tracing simulation. Fig. 1

shows the simulation area. We randomly assign glass or brick

materials to the buildings. The general simulation parameters

are listed in Table I. We consider two different Rx trajectories.

We assume a normal pedestrian walk with speed 5 km/h.

1) First Scenario: In this scenario, we consider one Tx

on the wall of a building with a height of 6 m and blue Rx

Table I: Simulation parameters.
BS transmit power 30 dBm
Path loss exponent 3

Operating frequency 28 GHz
Signal bandwidth in data transmission phase 500 MHz

Thermal noise power -174 dBm/Hz
Rx height 1.5 m
Tx height 6 m

Number of Tx antennas 8
Number of Rx antennas 8

Brick penetration loss [16] 28.3 dB
Glass penetration loss [16] 3.9 dB
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Fig. 3: Diff-NR in adjacent locations based on (a) benchmarks, and (b)
Algorithm 1.

trajectory of Fig. 1. Rx is served by Tx1 along this trajectory.

The trajectory length is 140 m, including 140 equidistant

locations (once every meter), the Euclidean distance between

Tx and Rx varies from 24 m to 119 m. In the first benchmark,

we simulate a baseline where Tx extracts the PSs from the

database in all locations so the database query budget is equal

to the length of the trajectory. In the second benchmark,

we simulate the approach of [12] where the beamforming

and combining directions update based on a fixed Euclidean

distance as shown in Fig. 2(a). The distance between two

consecutive updates is 3 m, which is chosen to keep the same

total number of updates as our approach (50 updates budget).

In Fig. 2(b), the green curve shows distance between PS(xi,yi)

in the location index i and the reference skeleton, PS(x0,y0).

Based on Algorithm 1, the reference location is updated once

the green curve is higher than the threshold T �, set to be

0.42 for our environment as the optimal solution of (10) with

a query budget of Umax = 50. We have marked the update

points by stems. The irregular inter-stem distance is due to

the mobility of the user and similarity of the channels for

some intervals.

We define difference normalized rate (Diff-NR) in two

adjacent locations (xi, yi) and (xi+1, yi+1) as

Diff-NR =
Ratei+1 − Ratei

Ratei+1
. (11)

In the first benchmark, clearly, Rx achieved rates in each loca-

tion is maximum because of using optimal beamforming and

combining directions in all locations but with the query cost

of 140. In the second benchmark, As shown in Fig. 3(a), the

user experiences some high fluctuations in the instantaneous

rate, which are due to the fact that the channel correlation is

sometimes weak before 3 m distance and we need to update
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Fig. 4: The index of the updated reference locations by running (a) bench-
marks, and (b) Algorithm 1.

the beamforming vectors in the meanwhile. Such fluctuations

may prohibit the support of a reliable connection to the user.

Fig. 3(b) shows Diff-NR of running Algorithm 1, indicating

a very similar pattern as the first benchmark. In other words,

Algorithm 1 with up to 50 queries to the skeleton database

can perform as good as the first benchmark, where we have

optimized the beamforming in all 140 locations of the trajec-

tory.

2) Second Scenario: In this scenario, there are two Txs.

Green line in Fig. 1 shows the Rx trajectory. The length of

this trajectory is 200 m and contains two parts. In the first

part Tx2 serves Rx. The second part is started from point H,

where Tx1 starts serving the user after a handover. Again,

we consider the baseline where each Tx queries PS sets from

its database in all locations as the first benchmark and also

consider the constant Euclidean distance query policy as a

the second benchmark as shown in Fig. 4(a). The result of

runing our algorithm is presented in Fig. 4(b). In this case,

we consider two different thresholds for each Tx. Based on

numerical results, we choose T �
1 = 0.7 as the threshold of

Tx1 and T �
2 = 1 as the threshold of Tx2 that are the solutions

of the optimization problem in (10) with query budget 52.

Reference locations in each Tx coverage area will be updated

based on defined thresholds.

Fig. 5 illustrates Diff-NR in adjacent locations. It is evident

that the rate fluctuation decreases after the handover point in

location index of 75. In the first benchmark the query budget

is 200 and the achieved rate in all locations is optimal. In

the second benchmark the database query is requested every

4 m, shown in Fig. 4(a). Red curve in Fig. 5(a) shows the

Diff-NR in adjacent locations that indicates multiple severe

rate reductions as high as 10 times throughout the trajectory.
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Fig. 5: Diff-NR in adjacent locations based on (a) benchmarks, and (b)
Algorithm 1.

Indeed, Rx experiences low throughput in many locations of

the trajectory, further highlighting that updating beamforming

and combining vectors based on a constant Euclidean distance

is not an efficient solution in a dynamic environment. Fig. 5(b)

presents the results of running our proposed method, which

implies that with running our algorithm and the query cost

equal to 52, Rx achieved rate is near optimal in all locations

of the trajectory.

IV. NON-NEGLIGIBLE DATABASE MAINTENANCE COST

In this section, we consider the database maintenance cost

that includes the overhead of the building and updating

database in a Tx. We start by describing database building

and updating phases. Then, we show that the maintenance

overhead is inversely proportional to the number of users.

So in the outdoor environment with a large number of Rxs,

the overhead of building and updating the database could be

almost negligible.

A. Database Construction

Initially, Tx divides its coverage area to smaller sections

(grids) with pre-defined sizes as shown in Fig. 6. Tx assigns

a unique ID to each grid, approximates each grid with one

point, and considers one skeleton for that point. Therefore, the

database has the same number of skeletons as the number of

grid IDs. The grid size is equal in all sections and is chosen to

balance the location resolution and the complexity of building

a database. The beam-searching procedure runs once in each

grid in order to build PS set of grid IDs.

The database has two lists: the normal list and the watch

list. The normal list consists of updated PSs. The watch list
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Fig. 6: Tx divides its coverage area to grids with an equal size.

includes the grid IDs whose PSs should be updated. Once a

user is located in such grids, Tx may run the path skeleton

finder procedure and update the PSs for those grid IDs.

Clearly, all IDs are in the watch list initially. The main steps

of the initial build up of the database are as follows:

1) Tx sends a skeleton finder request to all users in every

grid ID, say x. If Tx distinguishes two or more than two

Rxs in grid ID-x, it will choose one of them randomly.

2) The selected Rx confirms this request by sending a skele-

ton finder acknowledgment and the discover procedure

(like the one in [6]) will be started afterward. Notice that

an Rx may not confirm the request, for example, due to

its low battery level.

3) The output of discovery process is the path skeleton in x,

which includes all paths between Tx and the grid ID-x.

Tx stores the skeleton, moves ID-x to its normal list, and

activates an aging counter for this skeleton. The counters

determine the age of each PS in the normal list.

Tx repeats the above process for all grid IDs of the watch list

and stores them in the normal list of the database.

In the database updating phase, Tx checks the aging coun-

ters of the PSs in the normal list. If an aging counter exceeds

a predefined threshold (T-Aging), Tx removes the ID from the

normal list and adds it to the watch list of the database. It

means that the skeleton discovery process runs again for this

grid ID. Fig. 7 summarizes the proposed building and updating

phases for a specific grid ID.

The T-Aging depends on the environment. For a highly

dynamic environment like crowded streets, it should be shorter

than a stationary environment, as the skeletons may change

more frequently in the former situation so Tx needs to update

its database in a shorter periods.

B. Database Maintenance Overhead

In this subsection, we show that the overhead of building

and updating the database is inversely proportional to the

number of users in the environment. We then present numerical

results of database maintenance overhead. In the database

building and updating phases the number of the times that a Tx

sends the skeleton finder request to a specific Rx in a trajectory

is the main metric in analyzing the database overhead. We

assume that Rxs always confirm the skeleton finder requests

received from the Tx. In the dense urban environment, the

number of Rxs is essentially high so the probability that one

Fig. 7: A flowchart of the building and the updating database. The algorithm
starts by extracting the grid IDs from the watch list of the database. When Tx
detects a Rx in the grid ID, sends the skeleton finder request to it and stores
the PS set in the normal list and activates the aging threshold. If the value of
an aging counter exceeds the aging threshold, Tx transfers it (the grid ID) to
the watch list again. In this case, the algorithm returns to the skeleton finder
loop.

specific Rx receives several skeleton finder requests from the

Tx can be low. In other words, database maintenance overhead

is distributed among all Rxs in the Tx coverage area such

that the database overhead decreases as the number of the Rx

increase.

To have a better understanding of the interplay between the

number of Rxs and the database maintenance overhead, we

numerically evaluate the performance of the proposed method.

We consider different sets of Rx in our studied environment in

Fig. 1. We randomly assign different trajectories to each Rx.

We assume each Rx is moving through its trajectory with some

random speeds and directions. For instance in Fig. 6 we assign

the normal pedestrian speed walk 5 km/h to Rx1 and average

vehicle speed 30 km/h to the Rx2. Each Tx divides its coverage

areas to grids with an equal size. We choose grid size equal

to 2 m that is suitable for the crowded urban environment. We

also consider the aging threshold equals to 2 minutes in our

simulations. As mentioned in the previous subsection, grid size

and aging threshold are highly dependent on the measurement

environment and need to be very small in the dense urban

environment.

We define C as the database overhead in a specific time
duration. In other words, C is the number of the skeleton

finder requests that the Tx sends to a specific Rx in its

coverage area. First, we consider 100 Rxs that are moving
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Fig. 8: The value C for a Rx that is moving in a trajectory in terms of
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Fig. 9: Average and standard deviation of C for different number of Rxs/users.

through different trajectories with different speeds in our

studied environment. All Rxs are located in different grids

in Tx1’s coverage area, see Fig. 1. First, we run the database

building and updating phases. We consider Rx1, a pedestrian,

that is moving through the trajectory that is shown with blue

line in Fig. 1 and compute C during the simulation time, 7

minutes. Fig. 8 shows the values of C in different time indexes.

In this case, the average amount of C is 2, which means Rx1

receives only 2 skeleton finder requests on average through its

trajectory. In other words, the database overhead are divided

between 100 Rxs in environment so mean values of C for

each Rx is essentially low.

Now we sweep the size of Rx sets and repeat the previous

simulation for each set. We plot the average amount of C for

each Rx set in Fig. 9. We also plot the standard deviation of

values C for each Rx set in Fig. 9 that expresses the amount

of variation of different values of C for a specific Rx Set.

From Fig. 9, it is evident that as the number of Rxs increase,

the mean value of C and also standard deviation decreases,

implying that the database overhead is almost negligible in

crowded environments.

V. CONCLUSION

In this work, we proposed an efficient algorithm that lever-

ages the correlation of path skeletons in order to decrease

the number of running the coarse beam-searching methods in

a mobile environment. We assume that each Tx is aware a

priori of the path skeleton sets in its coverage area and show

that the overhead of this assumption is almost negligible in

dense urban environments. The simulation results highlight

the efficiency of the proposed method and show that without

significant reduction in the achieved rate, and almost the

same throughput, our method can decrease the number of

running beam-searching. Moreover, the results confirm that re-

execution beam-searching based on a constant distance may

cause low throughput while our proposed method sustains the

performance in the Rx trajectory.

REFERENCES

[1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez Jr, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, no. 1, pp. 335–349, May 2013.

[2] S. Kutty and D. Sen, “Beamforming for millimeter wave communica-
tions: An inclusive survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 2, pp. 949–973, 2nd Quart, 2016.

[3] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and
M. Zorzi, “Millimeter wave cellular networks: A MAC layer perspec-
tive,” IEEE Transactions on Communications, vol. 63, no. 10, pp. 3437–
3458, Oct. 2015.

[4] “IEEE 802.15.3c Part 15.3: Wireless medium access control (MAC) and
physical layer (PHY) specifications for high rate wireless personal area
networks (WPANs) amendment 2: Millimeter-wave based alternative
physical layer extension,” Oct. 2009.

[5] “IEEE 802.11ad. Part 11: Wireless LAN medium access control MAC
and physical layer PHY specifications - amendment 3: Enhancements
for very high throughput in the 60 GHz band,” Dec. 2012.

[6] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “Beamspy: Enabling
robust 60 GHz links under blockage.” in Proc. 13th USENIX Symposium
on Networked Systems Design and Implementation (USENIX NSDI),
2016, pp. 193–206.

[7] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Say-
eed, “An overview of signal processing techniques for millimeter wave
mimo systems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 10, no. 3, pp. 436–453, Apr. 2016.

[8] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Subspace esti-
mation and decomposition for large millimeter-wave MIMO systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3,
pp. 528–542, Apr. 2016.

[9] Z. Marzi, D. Ramasamy, and U. Madhow, “Compressive channel estima-
tion and tracking for large arrays in mm-wave picocells,” IEEE Journal
of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 514–527,
Apr. 2016.

[10] H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, and
P. Indyk, “Fast millimeter wave beam alignment,” in Pro. the Conference
of the ACM Special Interest Group on Data Communication (ACM
SIGCOM), 2018, pp. 432–445.

[11] T. S. Rappaport, F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao,
and J. I. Tamir, “Broadband millimeter-wave propagation measurements
and models using adaptive-beam antennas for outdoor urban cellular
communications,” IEEE Transactions on Antennas and Propagation,
vol. 61, no. 4, pp. 1850–1859, Apr. 2013.

[12] A. Zhou, X. Zhang, and H. Ma, “Beam-forecast: Facilitating mobile
60 GHz networks via model-driven beam steering,” in Pro. IEEE
Conference on Computer Communications (INFOCOM), 2017, pp. 1–9.

[13] S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith,
“Propagation models and performance evaluation for 5G millimeter-
wave bands,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9,
pp. 8422–8439, Sept. 2018.

[14] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE Journal on Selected Areas in Com-
munications, vol. 32, no. 6, pp. 1164–1179, Jun. 2014.

[15] L. Simic, J. Riihijärvi, A. Venkatesh, and P. Mahoonen, “Demo abstract:
An open source toolchain for planning and visualizing highly directional
mm-wave cellular networks in the 5G era,” in Pro. IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2017,
pp. 966–967.

[16] H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang,
G. N. Wong, F. Gutierrez, and T. S. Rappaport, “28 GHz millimeter wave
cellular communication measurements for reflection and penetration loss
in and around buildings in NewYork city,” in Pro. IEEE International
Conference on Communications (ICC), 2013, pp. 5163–5167.


