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Abstract—Network densification has emerged as a power-
ful paradigm to boost spectral efficiency and accommodate
the continual rise in demand for wireless capacity. The
corresponding reduction in cell sizes also results however
in greater spatial and temporal uncertainty and variation in
traffic patterns and more extreme and unpredictable inter-
ference conditions. These features create unprecedented chal-
lenges for efficient allocation of spectral resources compared
to conventional cellular networks. As a further challenge, the
allocation of spectral resources needs to be jointly optimized
with the assignment of wavelengths in the optical backhaul
of Radio-over-Fiber (RoF) networks, which are increasingly
used in dense deployments and indoor environments.

Motivated by these issues, we develop online algorithms
for joint radio frequency and optical wavelength assignment
in RoF networks. The proposed algorithms rely on load
measurements at the various access points, and involve
configurable thresholds for triggering (re)assignment of spec-
tral resources. We provide a detailed specification of a
system implementation, and conduct extensive simulation
experiments to examine the behaviour in various scenarios
and assess the impact of key parameters. The results in
particular demonstrate that the proposed algorithms are
capable of maintaining adequate load levels for spatially
heterogeneous and time-varying traffic conditions, while
providing favourable throughput performance.

Keywords-Radio-over-Fiber, frequency and wavelength al-
location, dense cellular networks, dynamic load balancing

I. INTRODUCTION

A. Background and motivation

The proliferation of smartphones and other mobile
devices is taxing wireless networks to the limit of their
capacity. The deployment of pico access points yields a
significant potential for capacity gains by reducing cell
sizes and allowing higher spectral reuse and efficiency.
However, physical constraints will typically make it hard
to arrange pico access points in an ideal hexagonal pattern,
which causes the coverage areas to significantly overlap,
and the natural cell regions to be irregularly shaped. This
brings significant new challenges for spectral (sub-band)
allocations that need to be addressed in order to reach the
5G design objectives [1].

First of all, the nominal traffic loads will tend to
exhibit more spatial variation than in traditional macro cell
networks. To prevent severe performance degradation, the
spectral resource allocations will have to take these load
imbalances into account and direct capacity towards areas
where it is most needed [2], [3].

Secondly, not only the spatial variations are more ex-
treme, dense networks also experience more temporal load

fluctuations. Load conditions are certain to change over
time due to hourly and daily usage patterns. It is therefore
crucial to devise sub-band allocation schemes that are able
to dynamically react to changing load conditions.

Thirdly, wireless interference is less predictable and
hence interference management is important to prevent
performance degradation.

The above-mentioned challenges require new ap-
proaches and techniques for resource allocation in dense
cellular networks [4], [5]. Furthermore, new spectral al-
location schemes should be designed and optimized in
an integrated framework with upcoming and developing
technologies in future (wireless) networking.

One consequence of integrating state-of-the-art net-
working technologies is the applicability of centralized
algorithms. Future (cellular) networks are envisioned to
be operated through software-defined radio access net-
working (SD-RAN) technologies. SD-RAN decouples the
access point (AP) intelligence from the physical antennas,
allowing for more flexibility in system configurations (e.g.
SoftAir [6]). A centralized control unit is running virtual
APs, which are transmitting via a set of remote radio heads
(RRHs). The RRHs are connected via a backhaul structure
to the coordinated control unit (CCU), which allows for
centralized allocation schemes. Having all intelligence at
the CCU means that a lot of information on spectrum
usage is available there, which can be used to better control
the sub-band allocations.

Another aspect that needs to be accounted for is dealing
with the allocation constraints imposed by an optical
backhaul structure. Radio-over-Fiber (RoF, [7], [8]) is a
specific backhaul structure which enables dense cellular
networks to be operated by SD-RAN: the wireless signal
is centrally generated at the software-defined AP and
sent as optical signal through a fiber to a RRH. At
the RRH, the optical signal is transformed to a wireless
signal, and then transmitted to the destined user. RoF
is a powerful enabling technology for SD-RAN since it
potentially allows for several advanced techniques like
beamforming and MIMO. The optical network can be
quickly reconfigured to accommodate dynamic resource
allocation schemes. Hence, RoF is a particularly promising
backhaul architecture for dense cellular networks (pico-
cells, femto-cells) [9]. However, the combination of dense
small-cell networks with RoF technologies requires new
and advanced resource allocation algorithms [4], [5], [10].



B. Contributions and results

In this paper, we develop load-aware algorithms for
dynamic joint radio frequency and optical wavelength
assignment in RoF networks. We study dense network
scenarios where the APs are transmitting via RRHs,
and where flow-level traffic dynamics and non-stationary
hotspots influence the load conditions.

Generally there are two ways to balance loads in
a system: bring users to locations where capacity is
available, or bring capacity to where users are located.
Typically in a wireless system, bringing users to APs
that are further away decreases the sub-band efficiency,
and results in lower service rates. Consequently, it is
more efficient to try to bring available capacity (sub-
bands) to an AP or RRH close to the user. However,
since variations in user demands typically change on
a faster timescale (milliseconds-seconds) than statistical
differences in load conditions at RRHs (seconds-minutes),
load-aware user association schemes should be used to
deal with the variance in arriving user intensity, and load-
aware resource allocation schemes should aim to deal
with statistical changes in the average load conditions. We
therefore focus on a decision timescale of multiple user
activations, meaning in the order of seconds to minutes.

Inspired by local-search methods, we introduce a dy-
namic and load-aware heuristic: the Single Load Inter-
val (SLI) algorithm. Sub-band or frequency allocation
problems are typically NP-hard, as they mostly relate
to - and generally extend - graph colouring problems,
and many heuristics and approximation algorithms have
been studied to come up with a near-optimal allocation.
However, even such heuristics can be too slow for online
operation in larger networks, where we envision decision
making on a second to minute time-scale. In situations
with a reasonably large network, we cannot afford to run
a full optimization at every time step as it may take several
minutes.

Based on a set of simple rules and the use of load prox-
ies, the SLI-algorithm automatically detects changes in
load conditions and adjusts the sub-band and wavelength
allocation over time, to relieve highly loaded RRHs and
guarantee favourable throughput performance under non-
stationary load patterns. We furthermore provide extensive
numerical results showing the behaviour of the SLI-
algorithm. The numerical results demonstrate how several
algorithm parameters can be used to reach desired effects,
and how the load proxies can be tuned to adopt a certain
decision timescale.

C. Discussion and related work

Resource allocation in wireless networks has been ex-
tensively studied already, but in most studies either only
the wireless or only the optical domain is considered.
Moreover, many existing dynamic channel assignment
schemes treat the available spectrum as an infinitely divis-
ible resource, while we purposefully stick to a discrete set
of sub-bands, as also currently applied in 4G LTE systems
and upcoming 5G networks.

Allocating sub-bands depending on loads may be seen
as a variant of the multicolouring problem [11] (see
Section II). The allocation of optical wavelengths to RRHs
is related to the (1-dimensional) bin-packing problem
with conflicts (see Section II) [12]. Depending on the
objective, the combined resource allocation is therefore
a combination of a multicolouring problem and a bin-
packing problem, and hence NP-hard to solve in general
as the multicolouring problem is NP-complete in general.

Zhang and Ansari [13] studied a combined wireless
and optical resource allocation problem in a RoF pico-
cellular network, but with some significant differences
compared to the work presented in this paper. They do
not explicitly model the optical fiber topology, and their
proposed algorithms are not load-aware. In contrast, we
focus on load-aware resource allocation schemes, and
specifically include the optical backhaul topology in our
model.

Klinkowski, Jaworski, and Careglio [14] have looked
into the optical resource allocation in RoF networks and
present many observations and system constraints for
the optical domain. However, they do not consider the
allocation of frequency bands, assuming these are already
assigned in an interference-free manner. We on the other
hand explicitly consider the combined wavelength and
radio frequency allocations.

A dynamic resource allocation scheme which shows
some resemblance with our SLI-algorithm is called
channel-borrowing, first introduced by Engel and Perit-
sky [15].

Inter-Cell Interference Coordination (ICIC) [16], [17]
is also concerned with resource allocation, but is more
targeted at macro-pico cell interference avoidance by using
time division schemes.

D. Organization of the paper

The remainder of this paper is organized as follows.
In Section II we present a detailed model description,
and then describe the optimization objective and introduce
our dynamic SLI-algorithm in Section III. In Section IV
we present extensive simulation experiments to gain in-
sight in the behaviour of the SLI-algorithm, and show
it outperforms static allocations in scenarios where load
conditions change over time. Finally, in Section V we draw
conclusions and provide suggestions for future research.

II. MODEL DESCRIPTION

In this section we present a detailed model description
and introduce some useful notation and terminology. We
consider an area A with a wireless radio access system
consisting of L remote radio heads (RRHs) which are
connected to a centralized control unit by means of optical
fiber. Let L denote the set of RRHs. The RRHs are divided
into B disjoint subsets Lb (backbones), where each subset
shares the optical fiber infrastructure (see Figure 2). This is
a separation of optical dependence: in each backbone b, the
lasers and fibers are shared and hence the optical resource
allocation within the set Lb is dependent. However, across



different backbones the optical resource allocations are
independent, as we assume that each backbone has its own
set of lasers.

A. Wireless domain

We start by treating the wireless domain. We consider
the downlink of the wireless network, where some RRHs
may be physically co-located, but involve different radio
access technologies (e.g. 4G LTE or 5G with multi-mode
handsets). The spectral resources are divided into F sub-
bands, all of equal bandwidth. Several studies [18], [19]
have shown that the gain in adaptive power assignments
on different sub-bands is marginal, and hence for control
purposes it is preferred to emit with equal power on all
sub-bands. For convenience we do not consider frequency-
selective fading.

In dense cellular wireless networks it is crucial to ac-
curately capture interference. Even though all RRHs emit
with equal power on all sub-bands, irregular placements
of the RRHs can result in varying interference conditions
throughout the area. Where in macro cellular systems the
cell regions were only marginally overlapping at the cell
boundaries, in a dense cellular network cell regions may
show huge overlaps. As a result, RRHs that are close to-
gether cannot be using the same sub-band simultaneously.
This motivates the modelling of interference by means of
an interference or conflict graph. Even though interference
graphs are not as precise as SINR based interference
models, several studies have shown that an interference
graph is sufficiently accurate for capturing interference
in this context [13], [20], [21]. The sub-band allocation
problem will be a graph multi-colouring problem in the
interference graph.

In the considered area where RRHs are placed, traffic
flows are assigned to the RRHs based on - but not
necessarily completely determined by - their Signal-to-
Interference-Plus-Noise Ratio (SINR). The assignment of
traffic flows generate a notion of offered traffic to a RRH,
which in turn gives rise to a demand Gl at each RRH l.

Allocating sub-bands constrained to the interference
graph means that we assume they are free of significant
interference from other RRHs. This, together with the
flat fading assumption across all sub-bands, implies that
each sub-band f brings equal (long-term) capacity to a
RRH. This allows us to interpret the demand Gl of RRH
l as the fractional number of sub-bands needed by RRH
l to support the average traffic volume. For example, if
Gl = 3.6, then RRH l would need at least 4 sub-bands to
sustain its load. Consequently, the long-term load of RRH
l can be defined as

ρl = Gl/Fl, (1)

where Fl is the number of sub-bands assigned to RRH l.
The capacities of sub-bands are not shared between

different RRHs, but we do allow for re-use of sub-bands
by RRHs. Lastly, denote by Fmax the maximum number
of sub-bands a RRH can operate simultaneously.

B. Connection to the optical domain

We will now describe the optical domain and make the
connection with the wireless domain. We fix the band-
width of sub-bands so that a sub-band occupies a fixed
space on an optical wavelength. Hence Ωj , the maximum
number of wireless sub-bands that can be carried on an
optical wavelength λj , is constant.

The RRHs are connected to the fiber ring by means
of a wavelength add-drop multiplexer (λ-ADM), a pho-
todiode and a frequency ADM (f-ADM), see Figure 1.
The λ-ADM selects the optical wavelengths intended for
the RRH. After that, the optical signal is converted to
an electric signal by the photodiode. Then, the frequency
ADM (f-ADM) selects - from the sub-bands encoded
on the selected wavelengths - only those sub-bands that
should be transmitted by the RRH. Thus, a RRH does not
necessarily transmit all sub-bands encoded on the optical
wavelengths it listens to.

λ-ADM f -ADM
λx, λy, . . .

Photodiode Antenna

λ1, . . . , λJb

Ring

Figure 1: The optical and wireless filters at a RRH.
λx, λy, . . . are the wavelengths forwarded to the antenna.

The interference in the optical domain creates restric-
tions on the sub-band allocation. An optical wavelength
can only carry a sub-band once, meaning that two RRHs
which are allocated a common sub-band should receive
those sub-bands through different wavelengths. In addi-
tion, the λ-ADM can select multiple wavelengths to for-
ward to the transmitter. The optical receiver (photodiode)
has no wavelength filter, and hence the incoming signal to
the f -ADM can be thought of as all sub-bands encoded
on the wavelengths that were selected by the λ-ADM.
Consequently, each sub-band allocated to the RRH can
only appear once on all received wavelengths combined,
as (destructive) interference is caused otherwise.
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Figure 2: A feasible resource allocation, where Ωj = 6
for all j, and the black nodes represent RRHs. The
left and right ring have wavelengths {λ1, λ2} and {λ1}
respectively.



III. DYNAMIC LOAD BALANCING

In this section we state the load-balancing objective that
we pursue, presented as a discrete optimization problem.
Let b(l) be the unique ring backbone b such that l ∈ Lb.
Let zf,l,j = 1 if sub-band f is allocated to RRH l and is
carried by wavelength λj ; and 0 otherwise. Furthermore,
let z be the F × L × J-vector containing all the zf,l,j
variables. It follows that the number of sub-bands assigned
to a RRH l at time t is Fl = Fl(z) =

∑F
f=1

∑J
j=1 zf,l,j .

The objective is to minimize the highest load among
all RRHs, thus balancing the loads among the RRHs. The
sub-band and wavelength allocation with this objective
can then be formulated as the following mixed integer
linear programming (MILP) problem, where Jb is the set
of wavelengths available in backbone b, and U(z(t)) is
the inverse of the highest load amongst all RRHs (which
explains the maximization objective).

max
z

U(z) (2)

sub: Fl =

F∑
f=1

J∑
j=1

zf,l,j , ∀l, (3)

G−1
l Fl ≥ U(z), ∀l, (4)∑

l∈Lb

F∑
f=1

zf,l,j ≤ Ωj , ∀b, ∀j, (5)

Fl ≤ Fmax, ∀l, (6)∑
l∈Lb

zf,l,j ≤ 1, ∀b, ∀f, ∀j, (7)∑
j∈Jb(l)

zf,l,j ≤ 1, ∀f, ∀l, (8)

zf,l,j + zf ′,l,j′+∑
l′∈Lb(l)\{l}

zf,l′,j′ ≤ 2, ∀l, ∀f 6= f ′, ∀j 6= j′,

(9)
J∑

j=1

zf,l,j + zf,l′,j ≤ 1, ∀(l, l′) ∈ E. (10)

In this optimization problem, constraint (5) specifies the
wavelength capacity constraint, (6) represents the sub-
band capacity per RRH, and (7) ensures that sub-bands
are not shared between RRHs. Furthermore, (8) and (9)
guarantee that a RRH receives a sub-band only once
through all the wavelengths, and finally (10) is the in-
terference constraint based on the interference graph G.
Moreover, the maximization induces a load ρl < 1 for
all l = 1, . . . , L whenever possible, meaning that all
RRHs receive enough capacity to serve their entire traffic
demand. If the optimal solution has ρl > 1 for some l, it
simply means that the current sub-bands and wavelengths
are not sufficient to meet all the demand. We call a sub-
band and wavelength allocation stable if it achieves ρl < 1
for all l.

The MILP problem (2)-(10) has a hidden time element
which is coming from its dependence on the demands Gl.
In a sense, the MILP formulation is a snapshot of the

system, taken in a period where the the average traffic
volume offered to a RRH does not change. However,
in practice the offered traffic volume changes due to
fluctuations in the arrival process, as well as due to
statistical changes in the mean traffic intensity. So, over
time the load characteristics at the RRHs change, and the
sub-band and wavelength allocations should change with
them. However, it is impractical and undesirable to find an
optimal solution to (2)-(10) in each timestep, for several
reasons we outline below.

The first reason stems from the hardness of the alloca-
tion problem. Using a reduction to a graph colouring prob-
lem, it can be shown that solving the optimization problem
(2)-(10) is NP-hard for general interference graphs. As
a consequence, advanced solvers like CPlex can take
several minutes to find an optimal solution even for small
systems with at most 20 RRHs. A computation time of
several minutes is not feasible on the timescale we are
considering.

Secondly, even if we could get optimal solutions in
acceptable time, adopting a new allocation can mean a
lot of switching in sub-bands. In other words, it is very
well possible that a RRH has to give up all the sub-bands
it currently has in use and adopt a whole new set of sub-
bands. From a practical point of view, this is undesirable
due to handover and reconfiguration times.

Considering the above stated issues, a dynamic resource
allocation scheme should be based on (computationally)
simple rules. The set of allocated sub-bands per RRHs
should not change too drastically and should take load
conditions into account. We envision local-search like
methods: given the current allocation; choose a new al-
location “close” to the current one.

A. Interval-based dynamic resource allocation

An intuitive local-search move is to allocate an extra
sub-band to an RRH if its load exceeds a certain threshold.
The intuition behind this move is twofold. On the one
hand we wish to allocate extra resources where they are
needed, and on the other hand we may not necessarily
have to allocate extra sub-bands as long as the load of an
RRH is not too high. A similar interval-based procedure
is described by Velayos et al. [22], where instead of sub-
bands, users are re-assigned to different access points. We
remove a sub-band from an RRH if its load is below a
certain (other) threshold to ensure frequencies are also
released when RRHs have surplus capacity.

We introduce an interval-based dynamic allocation
scheme, that we will refer to as the Single Load Interval
(SLI) algorithm. In short, the concept is as follows: choose
an interval [ρmin, ρmax]. For each RRH l, determine the
load estimate ρl(tk) at decision time tk and perform either
one of the following three actions:

• If ρl(tk) ≥ ρmax, (try to) assign an extra sub-band to
this RRH,

• If ρl(tk) ≤ ρmin, remove a sub-band from this RRH
(as long as it does not end up with zero sub-bands),

• Do nothing if ρl(tk) ∈ [ρmin, ρmax].



The idea is to keep loads in the control interval. The upper
bound of the interval guards against overloaded RRHs.
The lower bound of the interval frees capacity when
possible. The decision times are specified by deterministic
intervals, and occur with a frequency of νload. The σl(tk)
is defined as the percentage of time that RRH l was busy in
the time interval [tk−1, tk]. Then, the load estimate ρl(tk)
of RRH l is determined by ρl(tk) = (1 − ε)ρl(tk−1) +
ε(σl(tk)), where ε > 0 determines the magnitude of the
updates (or step sizes) and is typically small.

The SLI-algorithm has three elements influencing the
reaction speed. First, there is the interval [ρmin, ρmax].
The upper bound of the interval determines when extra
sub-bands are added. The lower this upper bound is,
the sooner the algorithm will try to allocate extra sub-
bands. Secondly, there is the frequency νload at which load
measurements are done. A lower frequency will result in
a more averaged view on the RRH loads, while a higher
frequency will result in more instantaneous load values.
Thirdly, the update size ε determines over how many
estimation intervals the load is averaged. If ε is small,
then many observations are needed before a statistical
change in the loads is detected. However, if ε is big, a
“too instantaneous” view on the system is obtained.

The eventual choice of the parameters νload and ε
should ensure that the load estimates are not too sensitive
to the temporal load variations, but that systematic changes
in the underlying load parameters are detected sufficiently
fast.

B. Practical implementation

We will now give a more detailed description of our
practical implementation of the SLI-algorithm, based on
the three actions stated above. Of specific concern is the
action of assigning an extra sub-band to RRH l, which we
implemented by the following steps:

1) Determine if RRH l has enough capacity to be
assigned another sub-band, in view of constraint (6).
If not, the SLI-algorithm reports a failed attempt.

2) Determine the set of available sub-bands by only
looking at the wireless interference constraints (10).
If no sub-bands are available, the SLI-algorithm re-
ports a failed attempt F:W (Failure:Wireless).

3) From the set of available sub-bands, remove those
which will cause interference on the wavelengths
which are already feeding RRH l. If we are left with
no wavelengths, the SLI-algorithm reports a failed
attempt.

4) Among all wavelengths that are already feeding RRH
l, we pick the first one (ordered by the identifier of
the wavelength) that has enough residual capacity to
carry another sub-band. We then assign the “smallest”
sub-band and allocate it to the RRH, and let it be
carried by the selected wavelength. If all wavelengths
are full we proceed to the next step.

5) From the set of available sub-bands, we pick the
“smallest” one. Then we go through the set of wave-
lengths (available on the backbone of RRH l) that are

not yet feeding RRH l and select the first one that
has enough capacity left and can carry the sub-band
to the RRH without violating the constraints (2)-(10).

6) If no wavelengths can carry the sub-band, the sub-
band is discarded and we return to step (5). The SLI-
algorithm reports a failed attempt when all sub-bands
have been discarded.

Notice that if Step 4 results in an allocation, the allo-
cation satisfies all constraints of (2)-(10) by construction
of the previous steps.

The above-described operations can be achieved by
lookup and sorting operations, resulting in a running time
(for a single RRH) of O(F 2|Jb(l)|L log(F )).

IV. NUMERICAL RESULTS

In this section we present the results of the simulation
experiments we conducted to gain insight in the perfor-
mance and behaviour of the SLI-algorithm. We consider
an area of 100m× 50m, where users appear uniformly at
random according to a two-dimensional Poisson process
with rate ν = 100 (per unit of time; second). The file sizes
of users are independent and exponentially distributed
with a mean of 25Mb. These specific arrival and service
distributions are not essential for the implementation of
the SLI-algorithm, but are mainly used for convenience in
the simulation.

Let Ri,l be the base rate at which user i can be served
by RRH l. The base rate Ri,l depends on the strength
of the received signal of the RRH l. Since the capacity of
the RRH is shared by the users assigned to it, the eventual
realized service rate of that user i also depends on the load
at the RRH. Suppose user i is assigned to RRH l. Then
during a small time interval in which Ml - the number
of users assigned to RRH l - does not change, the user i
receives a service rate of Ri,l/Ml. This is in line with the
currently used proportional fair schedulers.

The service rates Ri,l, in Mb/s, are calculated accord-
ing to the 3GGP urban micro model defined in 3GPP
36.814 v9.0.0. Users are assigned to RRHs according
to the Best-SINR algorithm: a user is assigned to RRH
l ∈ argmaxl′ Ri,l′ . In case of tie, the user is assigned to
the RRH with the largest id. The RRHs are grouped into 8
fiber loops based on their locations, as shown in Figure 3,
and each wavelength j has a capacity of Ωj = 40 sub-
bands.

b0

b1 b2

b3

b7

b6 b5

b4

0
0

50m

100m

Figure 3: The eight areas that determine to which back-
bone b a RRH belongs.

We conducted experiments for three different scenarios.
In Scenario 1 we have 26 RRHs located uniformly at



random. In Scenario 2, there are 30 RRHs; 26 are located
uniformly at random, and an additional 4 are located
uniformly at random in a rectangular 20m×10m area with
its south-west corner at (60, 30). Hence there is a zone
where the RRH placement is extra dense. In Scenario 3:
26 RRHs are located uniformly at random. The arrival
process of users in Scenario 3 has a HotSpot of 20m×10m
which moves over time. It starts with its south-west corner
at (20, 10), then it moves to (40, 10), (60, 10), back to
(40, 10) to return to (20, 10), after which this pattern
repeats. The HotSpot has a relative arrival rate of 20 times
the normal arrival rate.

The main performance measures in which we are in-
terested are the user-perceived throughput and delay. The
user-perceived delay is defined as the time it took for
the user to receive its file, i.e. the time the user spent in
service. The user-perceived throughput is defined as the
user’s file size divided by its perceived delay.

The plots presented in the following subsections each
represent a single experiment of one random instance
of a scenario. However, we conducted 100 numerical
simulations for each combination of scenario and control
parameter as named in the respective subsections, and
confirmed that the displayed figures are representative for
the 100 experiments conducted.

A. Impact of the control interval

The first experiments we conducted all used the same
value for ρmax, but have different values for ρmin. All
upper bounds ρmax were set to ρmax = 0.9. For the lower
bounds ρmin we took ρmin ∈ {0.1, 0.2, 0.3, 0.4, 0.6, 0.8},
and the frequency of load measurements is νload = 1
measurements per unit of time (second), 100 times lower
than the user arrival rate, and ε = 0.01. In Figures 4a
and 4b we plotted the empirical cumulative distribution
of the user-perceived throughput for Scenarios 1 and 2,
based on random instances of the scenarios, with 5 000 000
generated users per instance and ε = 0.01.
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(b) Scenario 2.

Figure 4: The user-perceived throughput, for different
values of ρmin.

Notice that the throughput and delay performance
are presented by empirical cumulative distributions. For
throughput, that means that the lower the plot, the better, as
more users will then have experienced a high throughput.
With the delay plots it is the exact opposite: the graph
should be as high as possible, quickly jumping to 1, as in
that case more users will have experienced a low delay.

In Figures 4a and 4b, we see that in general a lower
value of ρmin results in better throughput and delay per-
formance. This can be explained as follows. As the lower
bound of the interval, ρmin increases, RRHs give up extra
allocated sub-bands under higher loads. This particularly
affects the RRHs with moderate to low load conditions,
as they apparently give up resources that end up unused
otherwise.

Over a set of 100 random instances, we kept track of the
number of successful and unsuccessful allocation results
returned by the SLI-algorithm. The numbers presented in
Table I are based on 100 random instances of Scenario 1,
with 500 000 generated users in each instance.

Result ρmin = 0.1 ρmin = 0.2 ρmin = 0.3

None 11 434 644 11 129 799 10 891 111
F : W 490 980 387 847 192 292

+ 10 983 11 612 16 618

Result ρmin = 0.4 ρmin = 0.6 ρmin = 0.8

None 10 545 788 9 175 515 6 328 764
F : W 116 681 165 744 221 539

+ 42 896 262 461 720 887

Table I: The realized number of successful (+), unsuccess-
ful (F:W) allocation results.

Observe that for the two relatively high ρmin values 0.6
and 0.8, the number of times that no reallocation was
needed (“None”), and the number of failures to allocate
an extra sub-band due to wireless constraints (F : W),
decreased significantly. As RRHs give up resources under
higher load conditions, more sub-bands are available when
a RRH experiences severe load conditions. This can also
be observed by the increase in successful allocations as
ρmin increases.

With the second set of experiments we tested the impact
of ρmax on the throughput and delay performance while
keeping the lower bound fixed at ρmin = 0.2. The results
are plotted in Figures 5a and 5b. It may come as no
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Figure 5: The user-perceived throughput and delay, for
different values of ρmax.

surprise that the smaller ρmax, the better the performance.
From results in queueing theory we know that the mean
number of users at a RRH l is given by ρl/(1 − ρl), if
ρl can be considered constant, non-negative and smaller
than one. Since we are dealing with a processor sharing
discipline at the RRH, the more users in service, the



lower the user-perceived throughput will be. So, in a sense
this implies that if ρmax is smaller, the user-perceived
throughputs and delays will be better.

The numerical experiments suggest that the lower bound
ρmin is preferably chosen quite small, and the upper bound
ρmax as well. However, ρmin should stay strictly positive,
to ensure resources are released and made available when
load conditions are favourable.

B. Impact of load proxy parameters

We will now further investigate the impact of the load
proxy parameters ε and νload on the performance of the
SLI-algorithm. In Figures 6a and 6b we present the user-
perceived throughput and delay performance for different
values of ε. The control interval in these experiments was
set to [ρmin, ρmax] = [0.2, 0.8].
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Figure 6: The user-perceived throughput and delay, for
different values of ε.

In Figures 6a and 6b, we observe that larger values
of ε result in a better throughput and delay performance.
Indeed, in Section III-A we noted that the SLI-algorithm
can detect changes in load conditions faster when ε is
bigger.

Similar conclusions can be drawn from Figure 7, where
we plotted the user-perceived throughput for different
values of νload in a random instance of Scenario 2.
Indeed, the higher the rate, the better the user-perceived
throughput performance due to faster reaction times. Even
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Figure 7: The user-perceived throughput, for different
values of νload.

though the numerical results for the parameters ε and
νload may suggest otherwise, bigger values of ε and νload
are not necessarily better choices. Like we mentioned in
the Introduction, the load proxy parameters should be
chosen such that the SLI-algorithm can react fast enough

to statistical load imbalances, but load imbalances that are
a result of statistical variations in the user arrival process
should preferably be handled by dynamic user association
algorithms (which we intentionally do not cover in this
paper). In view of this observation, ε and νload should
not be too big, in order to provide a good “mean view”
of the load conditions at RRHs.

C. Non-stationary HotSpot

We will now present simulation results for Scenario 3,
where we tested the SLI-algorithm against a static, non-
responsive sub-band and wavelength allocation. To obtain
a reasonable static benchmark allocation, we discretized
the area into 1m by 1m squares and calculated their long-
term time-average traffic based on Scenario 3. The traffic
of such a unit square is allocated to the RRH which
offers the best rate to a user located at its center. This
creates a demand at each RRH, and we use a heuristic to
allocate sufficient sub-bands to each RRH such that it can
cope with all offered time-average traffic (and hence keep
long-term loads below 100%), adding more capacity (sub-
band, wavelengths) to the system when necessary. Since
the offered traffic is averaged over time and the HotSpot
of users is moving over time, RRHs in a static allocation
instance may find themselves switching between having
(more than) sufficient capacity when the HotSpot is far
away, and not having enough capacity when the HotSpot is
close. The instances with a static allocation are in the plots
referred to as Non-Responsive. In Figures 8a and 8b we
present the user-perceived throughput and delay results for
a single instance of Scenario 3, where the SLI-algorithm
used control interval [0.2, 0.8], νload = 1 and ε = 0.01,
based on a random instance of Scenario 1 with 5 000 000
generated users. Many experiments were conducted, and
we confirmed that Figures 8a and 8b are representative for
all these experiments.
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Figure 8: The user-perceived throughput and delay, com-
paring the SLI-algorithm to a static allocation.

Figures 8a and 8b clearly show that the SLI-algorithm is
better able to cope with the travelling HotSpot by moving
resources to RRHs that are temporarily experiencing high
load conditions.

V. CONCLUSION

In this paper we presented a dynamic sub-band al-
location scheme, the SLI-algorithm, for dense cellular
networks enabled by Radio-over-Fiber (RoF) technology.



The SLI-algorithm relies on load measurements at APs
and uses the AP’s loads a predefined tunable load interval
[ρmin, ρmax] to make re-allocations.

Extensive simulation experiments demonstrated the in-
fluence of key parameters on the throughput and delay
performance of the SLI-algorithm. In particular, the choice
of the interval [ρmin, ρmax] has significant impact. Lower
values of ρmin utilize the sub-bands more efficiently, but
more often result in a failure to allocate an extra sub-
band to a RRH which is under high load. Lower values of
ρmax result in a better throughput and delay performance
as RRHs claim resources more aggressively.

The load proxy parameters νload and ε also influence
the performance of the SLI-algorithm. The higher the
proxy rate νload, and the bigger ε, the more sensitive
the SLI-algorithm becomes to variations in the offered
traffic and the faster it reacts. However, it is undesirable
for resource allocations to change on too fast a timescale:
rather they should adapt to systematic changes in load
conditions. We have shown how the load proxy parameters
νload and ε can be used to achieve this.

In addition, we have tested the SLI-algorithm against a
static sub-band and wavelength allocation, which was de-
signed to sustain all long-term RRH loads. The numerical
experiments clearly show that the SLI-algorithm is better
suited to cope with a dynamic user environment with non-
stationary hotspots.

This paper was only concerned with the (re)allocation
of sub-bands, but load balancing can also be achieved
through dynamic user association schemes. In particular,
combining dynamic user association and dynamic resource
allocation is an interesting next step towards optimizing
resource management in 5G networks. Also, the SLI-
algorithm could be improved by considering permutations
on the sub-band and wavelength allocation, to make allo-
cations “more efficient”.
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