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Abstract—Mobile crowdsensing (MCS) is becoming more and
more popular with the increasing demand for various sensory
data in many wireless applications. In the traditional server-client
MCS system, a central server is often required to handle massive
sensory data (e.g., collecting data from users who sense and
dispatching data to users who request), hence it may incur severe
congestion and high operational cost. In this work, we introduce
a peer-to-peer (P2P) based MCS system, where the sensory data
is stored in user devices locally and shared among users in an
P2P manner. Hence, it can effectively alleviate the burden on
the server, by leveraging the communication, computation, and
cache resources of massive user devices. We focus on the economic
incentive issue arising in the sharing of data among users in such
a system, that is, how to incentivize users to share their sensed
data with others. To achieve this, we propose a data market,
together with a hybrid pricing mechanism, for users to sell their
sensed data to others. We first study how would users choose the
best way of obtaining desired data (i.e., sensing by themselves
or purchasing from others). Then we analyze the user behavior
dynamics as well as the data market evolution, by using the
evolutionary game theory. We further characterize the users’
equilibrium behaviors as well as the market equilibrium, and
analyze the stability of the obtained equilibrium.

I. INTRODUCTION

A. Background and Motivations

With the increasing demand for various sensory data in our
daily life, a novel sensing scheme called Mobile CrowdSensing
(MCS) [1] has become more and more popular in recent
years. The key idea of MCS is to employ a large amount of
user devices (e.g., smartphones) with various built-in sensors
to collect the desired data, instead of deploying dedicated
sensor networks. By crowdsourcing the capabilities of massive
user devices, this novel sensing scheme can achieve a higher
and more flexible sensing coverage with a lower deploying
cost. Thus, it has attracted a wide range of applications in
environment and community monitoring [2]–[6].

A basic MCS framework often consists of two parties: (i)
a set of participating users (clients) for sensing the desired
data by using their carried devices and (ii) a central platform
(server) for providing the necessary control and organization
for the system. In the traditional server-client MCS architec-
ture [7]–[13], the server is also responsible for the necessary
processing of data, such as collecting data from users who
sense, storing and manufacturing data (e.g., data aggregation
and mining), and dispatching the associated data to users who
request. However, in a large system with massive data demand,
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Fig. 1: Illustration of a P2P-based MCS System. Green users 1–3 share the sensory data
with orange users 4–12.

such a server-client system may incur severe congestion and
high operational cost on the server.

To this end, some researchers have started to develop the
peer-to-peer (P2P) based MCS systems, e.g., MPSDataStore
[14], SmartP2P [15], and LL-Net [16]. In a P2P-based MCS
system, the server is no longer responsible for the transferring,
saving, and processing of sensory data. Instead, the sensory
data is processed and saved in user devices locally and shared
among different users (whenever needed) in a P2P and on-
demand manner. Moreover, the data sharing between users can
be achieved via WiFi and Bluetooth (when they are locally
connected) or Internet (when they are not locally connected).
Clearly, in such a P2P-based MCS system, the server only
needs to provide the necessary control and organization for
the system. For example, the server needs to keep track of
each user’s IP address, data occupancy information (i.e., what
data he has), and data request information (i.e., what data he
wants), with which it can help a user find and connect to
another user who has his desired data.

Figure 1 illustrates an example of a P2P-based MCS system,
where green users {1–3} share the sensory data with orange
users {4–12}. That is, user 1 shares his sensory data with users
{4–6}, user 2 shares his sensory data with users {7–10}, and
user 3 shares his sensory data with users {11, 12}. The server
only exchanges the necessary control signal with users (to help
users find and connect to other users who have their desired
data), while the data flows occur within users.

It is easy to see that incentive becomes one of the critical
issues in such a P2P-based MCS system. The reason is that
users need to consume some resources (e.g., bandwidth and
energy) in order to share their data with others. Thus, without
proper incentives, they may not be willing to share data with
others. In [17], [18], Jiang et al. proposed a data sharing market
to address the incentive issue in the data sharing among users.
The key idea is to allow users to sell their sensed data to other



users, instead of sharing data freely with others. However,
they considered a simplified scenario where a user can share
(sell) data with an unlimited number of users in a given time
period. In practice, however, a user can only share data with
a limited set of users due to, for example, the physical-layer
link capacity constraint. In this work, we will study such a
P2P-based MCS system with the limited data sharing.

Note that with the limited data sharing constraint, the market
will become much more complicated due to the following
reason. With the unlimited data sharing (as in [17], [18]), a
user is guaranteed to obtain certain data (if he requests) as long
as there exists one user owning the data. With the limited data
sharing, however, he may not be able to obtain the data, as
the users owning the data may not be able to share the data
with all requesting users (e.g., when only few users own the
data and many users request the data). This actually introduces
certain uncertainty (regarding the supply of data) in the data
market, and hence greatly complicates the problem.

B. Solution and Contributions

In this work, we study a general P2P-based MCS system
with the limited data sharing, where the sensory data is shared
among different users in a P2P manner (without passing
through the server as shown in Figure 1), and each user can
share his sensory data with a limited number of users. We focus
on the economic incentive issue arising in the data sharing
among users in such a system, that is, how to incentivize users
to share their sensed data with others.

Inspired by [17], [18], we introduce a data market to address
the above incentive issue, where users choosing to sense data
can sell the sensed data to other users, instead of sharing
data freely with others. Note that users who purchase data
from others cannot resell the purchased data to others, for the
purpose of copyright protection. We further propose a hybrid
pricing scheme for the data market, where a user needs to pay
a fixed wholesale price plus a varying price proportional to his
achieved revenue when purchasing data from others. Clearly,
such a hybrid pricing generalizes both the revenue sharing
scheme and the wholesale pricing scheme.

In such a data market, users can obtain the desired data
in two different ways: sensing by themselves and purchasing
from others. For example, a user with a high sensing cost
may choose to purchase data from others, while a user with a
low sensing cost may choose to sense data by himself. Note
that a user may choose to sense the data that he is not at
all interested in, as he can potentially sell the data in the data
market to obtain some profit. We are interested in the following
key problems arising in such a market:
• What is the best decision for each user, regarding the way

of obtaining his desired data (i.e., sensing by himself or
purchasing from others)?

• How will the user best decision (behavior) change over
time and how will the whole market evolve?

• What is the equilibrium of the user behavior evolution
and the market evolution?

We study the above problems systematically by using the

evolutionary game theory [19].1 Specifically, we first analyze
the user best decision (behavior), taking the limited data
sharing constraint into consideration. Then we study the user
behavior dynamics and the market evolution using evolutionary
game, based on which we characterize the user equilibrium
behaviors as well as the market equilibrium, and analyze the
stability of the derived equilibrium.

We further analyze how the equilibrium changes with the
hybrid pricing parameters, i.e., the fixed wholesale price and
the varying price factor. We show that the social welfare under
equilibrium first increases and then decreases with the fixed
wholesale price and the varying price factor. The reason is that
a smaller price will attract less users to sense data (and sell
data) and drive more users to purchase data. Thus, with very
small prices, the users who sense data cannot share (sell) their
sensed data with all requesting users, hence causing certain
social welfare loss. Note that this is quite different from the
results in [17], [18] (with the unlimited data sharing), where
the social welfare under equilibrium always decreases with
both parameters. In summary, the key contributions of this
work are as follows.
• More Practical Model: We consider a P2P-based MCS

system with limited data sharing, where each user can
only share his sensed data with a limited number of users
in a given period. This model is more practical than the
existing model in the literature.

• Market Design and Game-theoretic Analysis: We intro-
duce a data sharing market, together with a hybrid data
pricing scheme, and analyze the user behavior as well
as the market equilibrium systematically, by using the
evolutionary game theory. Such an equilibrium analysis
can help us to understand how the market evolves and
where it is likely to evolve to.

• Observations and Insights: Through theoretic analysis
and numerical results, we obtain some new observations
and insights that are different from those in the existing
work with the unlimited data sharing. The most important
one is that the social welfare under equilibrium first in-
creases and then decreases with the fixed wholesale price
and the varying price factor. This implies that a smaller
price is no longer better from the social perspective. On
the contrary, a relatively higher price is desired in order
to attract a sufficient number of users to sense data.

The rest of the paper is organized as follows. In Section
II, we present the system model. In Section III, we derive the
socially optimal solution. In Section IV, we analyze the system
from the game-theoretic perspective. We provide simulation
results in Section V and finally conclude in Section VI.

II. SYSTEM MODEL

A. Network Model

We consider a P2P-based MCS system with a set N =
{1, 2, . . . , N} of participating users (clients), who can share

1Evolutionary game theory has been widely used in wireless networks for
analyzing various dynamic scenarios, such as TV white space information
market [20], [21] and WiFi community network [22], [23].
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the sensed data with each others in a P2P manner (without
passing through the server) as shown in Figure 1. We consider
multiple types of location-based data, each associated with
a particular location. Let I = {1, 2, . . . , I} denote the set
of all locations (or data types). Each user can sense one or
multiple locations, depending on his mobility, device type, and
energy budget. Each location i ∈ I is associated with a weight
ωi, denoting the importance of the location. For example, a
hotspot location often has a larger weight than a non-hotspot
location. Moreover, different users may have different personal
preferences for the same data (location), which is captured by a
user-dependent data value. Let υn,i denotes the user-dependent
value of data i for user n. Then, the utility of data i for user
n is defined as the product of the data weight and the user-
dependent data value, i.e., ωi · υn,i.

Each user can obtain his desired data through either the
sensing of himself or the sharing of other users. The latter case
may happen when the user is not able to sense the data (e.g.,
due to the mobility or device capability constraint), or when the
user’s sensing cost is very large (e.g., due to the energy budget
constraint). The data sharing between users can be based on
WiFi, Bluetooth, and Internet connections. To facilitate the
data sharing among users, the server needs to keep track of
each user’s IP address, data occupancy information (e.g., what
data he has), and data request information (e.g., what data he
wants). Note that the server does not need to store and process
the sensory data, that is, all the sensory data will be stored and
processed in the user devices locally.

B. User Model

As mentioned previously, to obtain the data in a particular
location, a user can choose to (i) act as a sensor and sense
the data directly or (ii) act as a requester and request the data
from others. Note that a user can also choose to not obtain
the data, for example, when he is not interested in the data or
when the cost of obtaining data is larger than the utility of the
data for him. In this case, the user will act as an alien and
neither sense nor request the data. More specifically,
• Sensor: A sensor acquires data via sensing directly, and

hence will incur some sensing cost (e.g., energy consump-
tion). Meanwhile, a sensor can share the sensed data with
other users. As reward, he can ask for certain monetary
payment from the users who get data from him.

• Requester: A requester acquires data from the sharing of
other users, and hence needs to bear the data transfer cost
(e.g., data uploading and downloading cost). Moreover, he
may also need to share some benefit with the user who
shares the data with him as reward.

• Alien: An alien neither senses the data, nor requests the
data from others. This often occurs when the user is not
interested in the data.

Due to the physical-layer link capacity constraint as well
as other possible constraints, a sensor can only share data
with a limited number of other users in a given time period.
Moreover, for the purpose of copyright protection, requesters
cannot share the obtained data to others. Let K denote the

number of users that a sensor can share data with. When
K →∞, our model degenerates to the traditional model with
unlimited data sharing (e.g., those in [17], [18]). In this sense,
our model generalizes the existing model in the literature.

We consider a general sensing cost model, where the same
user may have different sensing costs for different data, and
different users may have different sensing costs for the same
data. Let cn,i denote the sensing cost of user n for data i. To
simplify the later analysis while not affecting the meaningful
insight, we assume that all users have the same average
uploading cost su and average downloading cost sd for any
data. Thus, the average data transfer cost between a sensor and
a requester is s = su + sd. This cost will be fully beared by
the requester.

C. Data Market

To provide necessary incentive for sensors to share their
data with requesters, we introduce a data market as in [17],
[18], where sensors sell data to requesters, instead of sharing
data freely. Obviously, a proper data pricing scheme is the
core of the data market. We propose a hybrid pricing scheme,
which includes both the revenue sharing scheme [24] and
the wholesale pricing scheme [25] as special cases. With the
hybrid pricing, a requester needs to pay a fixed wholesale price
plus a varying price proportional to his achieved revenue when
purchasing data from others. Formally,

Definition 1 (Hybrid Pricing Mechanism). Suppose that a
requester can obtain a total benefit b from the data shared
by a sensor. Then, the payment of the requester is:

γ(b) = (1− µ) · b+ p, (1)

where µ ∈ [0, 1] is the revenue sharing factor and p ≥ 0 is
the fixed wholesale price.

It is easy to see that the hybrid pricing scheme degenerates
to the pure revenue sharing scheme when p = 0 and to the
pure wholesale pricing scheme when µ = 1.

Moreover, with the limited data sharing, a sensor can only
share data with a limited number of requesters, and hence some
requesters may not be able to acquire the desired data. Let
α ∈ [0, 1] denote the probability that a requester acquires the
data successfully, called the serving probability of requester.
Note that with the unlimited data sharing, α is always equal
to 1. With the limited data sharing, however, α can be smaller
than 1, as sensors may not be able to serve all requesters.

Definition 2 (Serving Probability). Suppose that one sensor
can serve at most K requesters. Let NS and NR denote
the number of sensors and requesters, respectively. Then, the
serving probability of requester is:

α = min

{
NS ·K
NR

, 1

}
. (2)

Obviously, when the number of sensors NS is very small
and the number of requesters NR is very large, it is likely that
some requesters cannot be served.
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D. User Behavior and Payoff

Now we model the user behavior and define the user payoff.
Without loss of generality, we consider an arbitrary user n
and an arbitrary data i in the later analysis. For writing
convenience, we omit the subscripts n and i whenever there is
no confusion caused. Hence, we can write the location weight
ωi as ω, and write the sensing cost cn,i and user-dependent
data value vn,i as c and v, respectively.

Note that users can be fully characterized by c and v, as
all other parameters are identical for all users. Hence, we
will use (c, v) to characterize the user type. Different users
have different c and v, which are independent and identically
distributed (iid). For simplicity, we assume that both v and c
follow independent and uniform distributions over [0, 1] across
all users, and hence their joint probability density function
(pdf) is fcv = 1 if v, c ∈ [0, 1], and otherwise fcv = 0.

A user can choose different ways to obtain data or choose
not to obtain data. We denote the user strategy by

χ ∈ {S̃, R̃, Ã}

where χ = S̃ denotes that the user chooses to be a sensor, and
χ = R̃ denotes that the user chooses to be a requester, and
χ = Ã denotes that the user chooses to be an alien. Let U(χ)
denote the net benefit (i.e., payoff) of user when choosing a
particular strategy χ. Note that U(χ) also depends on the user
type (c, v), and we omit (c, v) for presentation convenience.
The objective of the user is to choose the proper strategy χ
that maximizes his payoff. Next, we define the user payoff
U(χ) under different user strategies χ.

Definition 3 (Sensor Payoff). A sensor acquires the data via
sensing, and hence can achieve a certain direct benefit

bS = ω · υ − c.

Moreover, the sensor can also achieve a certain sharing
income by selling the data to requesters. Let ρ denote the
average sharing income that a sensor can achieve by selling
his data to requesters. Then, the user’s payoff when choosing
to be a sensor is

U(S̃) = bS + ρ, (3)

where ρ will be derived in Section IV.

Definition 4 (Requester Payoff). A requester acquires the data
via the sharing of other users and needs to bear the total data
transfer cost. Hence, if acquiring the data successfully, he can
achieve a certain direct benefit

bR = ω · υ − s.

Besides, the requester needs to pay a hybrid price γ(bR)
defined in Definition 1 to the sensor who shares data with
him. Thus, the requester’s payoff when acquiring the data
successfully is bR − γ(bR). Notice that a requester can only
be served with a serving probability α given in Definition
2. Hence, the user’s average payoff when choosing to be a
requester is

U(R̃) = α ·
(
bR − γ(bR)

)
. (4)

Finally, an alien neither achieves benefit, nor incurs cost.
Hence, the user’s payoff when choosing to be an alien is

U(Ã) = 0. (5)

E. Problem Formulation

Each user can choose a role from the strategy set {S̃, R̃, Ã}
according to his type (c, υ) as well as the other users’ choices.
Thus, we formulate the system as a non-cooperative game.
• Players: the set of all users, i.e., N = {1, 2, . . . , N};
• Strategies: each user can choose a strategy χ from the

strategy set {S̃, R̃, Ã};
• Utilities: each user’s payoff when choosing a particular

strategy χ is U(χ) defined in (3)-(5).
For analytical convenience, we assume a large network with

an infinite number of users (i.e., N → ∞) similar as in
[17], [18]. Thus, the impact of a single user’s action on the
whole market can be ignored. That is, each user’s best choice
depends on the choices of a mass of users, rather than that of a
particular user. This assumption is mainly used for facilitating
the theoretic analysis and obtaining the closed-form result. Our
analysis, however, can be applied to any finite number of users.

III. SOCIAL OPTIMUM

Before analyzing the game equilibrium, we first provide the
socially optimal solution as a benchmark, in which all users
cooperate with each other to maximize their total payoff (called
social utility or social welfare).

For notational convenience, we denote χcv as the role of a
user with type (c, v). Then, the total number of sensors (i.e.,
those choosing χcv = S̃) is:

NS =

∫
c

∫
v

IScv · fcv dvdc,

where IScv = 1 if χcv = S̃, and 0 otherwise. Similarly, the
total number of requesters (i.e., those choosing χcv = R̃) is:

NR =

∫
c

∫
v

IRcv · fcv dvdc,

where IRcv = 1 if χcv = R̃, and 0 otherwise. Thus, we have
the following serving probability for requesters:

α = min

{∫
c

∫
v
IScv · fcv dvdc∫

c

∫
v
IRcv · fcv dvdc

·K, 1

}
. (6)

Then, the social utility can be formally defined as follows.

Definition 5 (Social Utility). Suppose the role of a user with
type (c, v) is χcv . Then, the social utility generated by all users
can be defined as follows:

W =

∫
c

∫
v

(ω · υ − c) · IScv · fcv dvdc

+ α ·
∫
c

∫
v

(ω · υ − s) · IRcv · fcv dvdc.

(7)

In (7), the first term is the total achieved benefit of all
sensors and the second term is the total achieved benefit of
all requesters. Note that the social utility consists of the direct
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benefits of sensors and requesters only, as the total payment
of requesters and the total income of sensors cancel out.

Based on the above, we can formulate the social utility
maximization problem as follows.

max
{χcv}

W

s.t. χcv ∈ {S̃, R̃, Ã}, ∀c, v ∈ [0, 1].
(8)

It is challenging to solve the above problem directly, mainly
due to the non-linearity introduced by α. In the following, we
will transform this optimization problem into an equivalent
linear programming.

We first notice that when α < 1 (i.e., when some requesters
cannot acquire data), we can always improve the social utility
by removing some requesters with lower direct benefits (hence
increasing the serving probability of those requesters with
higher direct benefits). We summarize this observation in the
following lemma.

Lemma 1. Under the optimal solution of (8), the serving
probability must be α∗ = 1, or equivalently,

K ·
∫
c

∫
v

IScv · fcv dvdc ≥
∫
c

∫
v

IRcv · fcv dvdc

That is, all requesters can acquire data successfully.

Under the above condition, we can rewrite the social utility
into the following equivalent form:

W̃ =

∫
c

∫
v

(ω · υ − c) · IScv · fcv dvdc

+

∫
c

∫
v

(ω · υ − s) · IRcv · fcv dvdc.

(9)

Therefore, we can transform the above problem into the
following equivalent optimization problem:

max
{χcv}

W̃

s.t. χcv ∈ {S̃, R̃, Ã}, ∀c, v ∈ [0, 1],

K ·
∫
c

∫
v

IScv · fcv dvdc ≥
∫
c

∫
v

IRcv · fcv dvdc.

(10)

It is easy to see that (10) is a linear programming, and hence
can be solved by many classic methods. Due to space limit, we
will skip the detailed solving process here. For convenience,
we denote the optimal solution of (8) or (10) by χ∗cv , and
denote the corresponding maximum social utility by W ∗.

IV. GAME EQUILIBRIUM

In this section, we will study the game equilibrium system-
atically. With a little abuse of notation, we denote χcv as the
strategy choice of a user with type (c, v) and Ucv(χcv) as the
payoff of a user with type (c, v) choosing strategy χcv . Then,
the game equilibrium can be formally defined as follows.

Definition 6 (Nash Equilibrium). A strategy profile
{χ†cv,∀c, v ∈ [0, 1]} is an Nash equilibrium, if and only if

Ucv(χ
†
cv) ≥ Ucv(χcv), ∀χcv ∈ {S̃, R̃, Ã}

for all users with all types.

That is, under an Nash equilibrium, none of the users can
improve his payoff by changing his strategy choice.

We first notice that given a strategy profile {χcv,∀c, v ∈
[0, 1]}, the whole market will be divided into three parts
according to user choices: the sensor set SS , the requester
set SR, and the alien set SA. That is,

MS , {(c, v)|χcv = S̃},

MR , {(c, v)|χcv = R̃},

MA , {(c, v)|χcv = Ã},

For convenience, we refer to them as the mark partitions of
sensors, requesters, and aliens, respectively.

In the following, we will first derive the average sharing
income ρ of sensors, and then analyze the user best response
as well as the game equilibrium.

A. Average Sharing Income: ρ

We now derive the average sharing income ρ of sensors.
Notice that when a requester with type (c, v) acquires the data
successfully, he can achieve a direct benefit: bR = ω · υ − c.
Thus, according to the hybrid pricing mechanism in Definition
1, his payment to the sensor (who shares data with him) is:

γ(bR) = (1− µ) · (ω · υ − c) + p.

For notational convenience, we will write γ(bR) as γcv(bR) or
simply γcv , as it depends on the user type.

We further note that a requester can acquire data success-
fully with a probability α, i.e., the serving probability defined
in (6). Thus, the total payment of all requesters (denoted by
Ω) can be computed in the following way:

Ω = N

∫∫
MR

α · γcv · fcv dvdc. (11)

The above payment will be shared by all sensors equally.
The total number of sensors is:

NS = N

∫∫
MS

fcv dvdc. (12)

Thus, the average sharing income of each sensor is:

ρ =
Ω

NS
= α ·

∫∫
MR γcv · fcv dvdc∫∫
MS fcv dvdc

, (13)

where α is the serving probability defined in (6).

B. User Best Response

We now analyze the user best response under a given market
partition {MS ,MR,MA}.

Specifically, given a market partition {MS ,MR,MA},
we can derive the average sharing income ρ of each sensor
according to (13) and the serving probability α for each
requester according to (6). Then, we can compute the user
payoffs as sensor and requester explicitly according to (3)
and (4). Therefore, the best response of each user can be
characterized as follows:
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1) A user with type (c, v) will choose to be a sensor, i.e.,
χcv = S̃, if and only if his payoff as a sensor is higher
than that as a requestor or an alien, i.e.,

Ucv(S̃) ≥ Ucv(R̃) and Ucv(S̃) ≥ Ucv(Ã) = 0

Substituting (3)-(5), we have:

υ ≥ max

{
c− ρ− α · µ · s− α · p

ω · (1− α · µ)
,
c− ρ
ω

}
.

That is, a user with type (c, v) will choose to be a sensor,
if and only if the above condition holds.

2) A user with type (c, v) will choose to be a requester,
i.e., χcv = R̃, if and only if his payoff as a requestor is
higher than that as a sensor or an alien, i.e.,

Ucv(R̃) ≥ Ucv(S̃) and Ucv(R̃) ≥ Ucv(Ã) = 0

Substituting (3)-(5), we have:
µ · s+ p

µ · ω
≤ υ ≤ c− ρ− α · µ · s− α · p

ω · (1− α · µ)
.

That is, a user with type (c, v) will choose to be a
requester, if and only if the above condition holds.

3) A user with type (c, v) will choose to be an alien, i.e.,
χcv = Ã, if and only if his payoff as an alien (i.e., 0) is
higher than that as a sensor or a requester, i.e.,

Ucv(R̃) ≤ Ucv(Ã) = 0 and Ucv(R̃) ≤ Ucv(Ã) = 0

Substituting (3)-(5), we have:

υ ≤ min

{
c− ρ
ω

,
µ · s+ p

µ · ω

}
.

That is, a user with type (c, v) will choose to be an alien,
if and only if the above condition holds.

After obtaining the best response of every user, we actually
get a new market partition, called the newly derived market
partition and denoted by {M̃S ,M̃R,M̃A}.

Similarly, under the newly derived market partition
{M̃S ,M̃R,M̃A}, we can derive a new average sharing in-
come (denoted by ρ̃) of each sensor according to (13) and the
serving probability (denoted by α̃) for each requester according
to (6). Then, we can compute the user payoffs as sensor and
requester again according to (3) and (4), and derive the user
best response accordingly. This is the key idea of user behavior
dynamics and market evolution.

C. Game Equilibrium Analysis

We now analyze the equilibrium of game, i.e., the equi-
librium state of the above user behavior dynamics or market
evolution.

According to Definition 6, a strategy profile is a game
equilibrium, if and only if none of the users has the incen-
tive to change his strategy. This implies that under a game
equilibrium, the market partition {MS ,MR,MA} will no
longer change, and hence the average sharing income ρ of
sensor and the serving probability α of requester will no longer
change accordingly. Thus, we have the following necessary and
sufficient condition for the equilibrium.

Lemma 2. A strategy profile {χ†cv,∀c, v ∈ [0, 1]} is an Nash
equilibrium, if and only if
(a) M̃S =MS , M̃R =MR, M̃A =MA;
(b) ρ̃ = ρ, α̃ = α.

Note that the two conditions in Lemma 2 are equivalent.
On one hand, if M̃S = MS , M̃R = MR, M̃A = MA,
i.e., the newly derived market partition is same as the original
one, then the new average sharing income ρ̃ must be same as
the original one ρ as they are computed by (??) in the same
way, and the new serving probability α̃ must be same as the
original one α as they are computed by (6) in the same way.
On the other hand, if ρ̃ = ρ and α̃ = α, then the payoffs as
requester and sensor for each user will not change, and hence
all users will keep the same choice, which implies that the
market partition will not change.

D. Dynamic Algorithm

In the previous subsection, we have characterized the con-
ditions of game equilibrium. Now we propose a best response
based dynamic algorithm to compute the above game equilib-
rium.

The key idea of the dynamic algorithm is as follows: every
user repeatedly updates his strategy in a myopic manner, i.e.,
each strategy update is based only on the current market par-
tition. To describe such a dynamic process, we will introduce
a virtual time-slotted system, similar as in [17], [18]. Each
user hypothetically updates his strategy in every time slot
based on the current market partition (formed by the users’
strategy choices in the previous time slot). Such a strategy
update process repeats until none of the users change strategy.
Obviously, the dynamic algorithm stops when it reaches an
equilibrium state.

Let t = 1, 2, ... denote the time slots (each with a sufficiently
small time length) in the virtual time system. For notational
convenience, we denote χcv(t) as the strategy of a user with
type (c, v) at time slot t, {MS(t),MR(t),MA(t)} as the
market partition at time slot t, and ρ(t) and α(t) as the average
sharing benefit of sensor and serving probability of requester
at time slot t. The detailed algorithm is given Algorithm 1.

V. SIMULATIONS

In this section, we will provide simulation results regarding
the average sharing income, social utility, and the proportions
of users with different types, etc. We will show how these
outcomes change with different system configurations and
parameters. To get clear insights, while not affecting the
generality, we assume ω = 1 and s = 0.1 in our simulations.
We will compare our game equilibrium outcome with the
social optimum outcome.

A. Evolution of Market

From the Figure 2, we assume that in an ideal case of K =
5, η = 0.98, p = 0.01, the P2P-based MCS system can reach
the best result of the social optimal model, because the ultimate
distribution of the user type of the two models are almost the
same; and figure 3 shows the serving probability can reach 1
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Algorithm 1: Best Response Based Dynamic Algorithm
Initialization: χcv(0), ∀c, v ∈ [0, 1];
while at each time slot t = 1, 2, ... do

Get the current market partition according to the user
strategy update in the previous time slot:

{MS(t),MR(t),MA(t)} ← xcv(t− 1)

Compute the average sharing benefit of sensor and
the serving probability of requester:

ρ(t), α(t)← {MS(t),MR(t),MA(t)}

Derive the best strategy of each user:

xcv(t),∀c, v ← ρ(t), α(t)

if xcv(t) = xcv(t− 1),∀c, v then
Break; /* reach equilibrium */

after iteration for about 16 times. And we can see from 4, the
average sharing benefit is also increasing as the increases of
iteration times and tends to convergent. Under this particular
case, the requesters can acquire the data with a low price, and
the new model (P2P-based MCS model) can perform pretty
well.

B. Impact of K

The factor K can influence the results of the P2P-based
MCS system, as is shown in the first picture of Figure 5, the
blue points and red points are the best social utility under the
social optimal model and P2P-based MCS model, respectively.

They both under the case of µ = 1, p = 0.01, we can see that
K will more and more seriously effect the difference of social
utility of the two models, especially K is small than 5, hence
we should adjust the price scheme to narrow the gap.

We further see the next two pictures of Figure 5, we choose
K = 1 to simulate, and we can see when µ = 0.84, p = 0.1
or µ = 1, p = 0.17 (though p is still small, it has increased 10
times), the gap can be narrowed, this means when a task need
more sensors, the requesters have to pay a little more money
to get the sensory data.

C. Impact of Pricing Policy

From above analysis, we know that while K is small, the
requesters need to pay more for the data to reach the maximum
social utility. What we want to study is whether the new pricing
scheme which aims at the best social utility will do harm to
the benefit of requesters or sensors.

Simulation results as is shown in Figure 6 and Figure 7
have told us the answer. Actually, both the net benefit of
the requesters and average sharing income of sensors are
increased, due to the increase of the serving probability which
is shown in Figure 8, more requesters can get the data from the
sensors (requester who doesn’t obtain the sensory data will not
pay any money for it), and this make the social utility increase.

VI. CONCLUSION

In this work, we introduced a peer-to-peer (P2P) based MCS
system, where the sensory data is stored in user devices locally
and shared among users in an P2P manner. We focused on the
economic incentive issue arising in the sharing of data among
users in such a system, that is, how to incentivize users to share
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their sensed data with others. To achieve this, we proposed a
data market, together with a hybrid pricing mechanism, for
users to sell their sensed data to others. We analyzed the
user behavior dynamics as well as the data market evolution,
by using the evolutionary game theory, and characterized the
users’ equilibrium behaviors as well as the market equilibrium.
There are several interesting and important directions for the
extension of this work. First, it is important to study the
user behavior dynamics with bounded rationality. Second, it
is important to study the MCS system with multiple coupled
data.
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