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Abstract—Wireless power transfer (WPT) technology enables a
cost-effective and sustainable energy supply in wireless networks,
where energy users (EUs) can remotely harvest energy from
the wireless signal transmitted by energy transmitters (ETs).
However, the broadcast nature of wireless signal makes wireless
power a non-excludable public good, which renders the traditional
market mechanisms inefficient due to the possibility of the free-
riders. In this study, we formulate the transmit power provision
problem in a single-channel WPT network as a public good
provision problem, aiming to maximize the social welfare of all
the ET and EUs considering their private information and selfish
behaviors. The considered problem also brings both economic
and technical challenges in ensuring voluntary participation and
distributed algorithm design. To this end, we propose a two-
phase all-or-none procedure involving a low-complexity Power
And Taxation (PAT) Nash mechanism, which ensures voluntary
participation, incentive compatibility, and budget balance, and
yields the socially optimal transmit power at all Nash equilibria.
We further propose a distributed D-PAT Algorithm and prove its
convergence by exploiting the connection between the structure
of Nash equilibria and that of the optimal solutions to a related
optimization problem. Finally, our simulation results validate the
PAT Mechanism and the practical algorithm. We show that our
design can significantly improve the social welfare compared to
the benchmark market mechanism, especially when there are
many and relatively comparable EUs.

I. INTRODUCTION

A. Motivation

The far-field wireless power transfer (WPT) technology has

emerged as a promising solution to supply energy to low-

power wireless devices, where energy users (EUs) can harvest

energy remotely from the radio frequency (RF) signals radi-

ated by energy transmitters (ETs) over the air. For example,

Powercast has developed energy receivers that can harvest 40

microwatts (µW ) RF power from a distance of 10 meters,

which is sufficient to power the activities of many low-power

devices, such as wireless sensors and RF identification (RFID)

tags [1]. Through flexibly adjusting the transmit power and

time/frequency resources blocks, the WPT technology can

meet the dynamically changing real-time energy demand of

multiple EUs simultaneously and efficiently, by exploring EU-

s’ heterogeneous characteristics. Therefore, WPT technology
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Fig. 1. An example WPT system with 1 ET, 3 EUs, and 3 channels. The
broadcast power can benefit all EUs, and hence is regarded as a non-excludable
public good. The EUs are heterogeneous in terms of energy consumption rates,
battery status, channel conditions, and operating bands.

will become an important building block of commercial and

industrial systems in the future [2].

Fig. 1 shows an example of the WPT system, where an ET

transmits power on three channels (GSM, Wi-Fi, and LTE),

and each of the three EUs can harvest power on a subset

of the channels. Here EUs can be heterogeneous in their

channel conditions (due to different distances from the ET),

energy consumption rates (due to different applications), and

energy harvesting circuits (which result in different channel

availabilities and energy conversion efficiencies in different

channels). Due to the heterogeneous characteristics, different

EUs have different energy demands and value ET’s transmit

power on different channels differently. For example, EU 3 is

likely to have a higher energy demand than EU 2, since EU 3

is a more energy-hungry wireless device with a lower battery

status.

To maximize the benefit of the WPT technology, we need

to understand how an ET should choose the transmit power

to balance EUs’ heterogeneous power demands and the ET’s

operation cost. There has been much excellent prior work

tackling this issue from a centralized optimization point of

view (e.g., [3]–[6]), assuming that EUs are unselfish and will

always truthful reveal their private information (such as the

channel state information and harvested power requirements).

However, in practice, EUs may have their own interests (as

they may not be directly controlled by the ET) and hence

may choose to misreport their private information to improve

their own benefits. For example, if the ET’s goal is to ensure

fairness among EUs in terms of their harvested power, an EU

can report a smaller channel gain in order to receive more

power than he deserves. To our best knowledge, no existing

work has addressed the network performance maximization

problem under such a private information setting.
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B. Solution Approach and Contributions

To resolve the issue of private information, it is natural to

consider a decentralized market solution, where the EUs deter-

mine their demands by responding to the market price, hence

indirectly reveal their private information. Such a mechanism

works well in many network resource allocation problems

(e.g., [7], [8]), where each user only receives benefit from

the resource allocated to him. However, this may not work

well in the WPT system.

More specifically, the resource in the WPT systems, the

wireless power, is a non-excludable public good that is differ-

ent from many previous considered wireless resources. Due to

the broadcast nature of the wireless signal, one EU harvesting

power from the wireless signal does not affect the available

energy to other EUs, hence wireless power is non-rivalrous

and thus a public good. Furthermore, it is difficult to exclude

some EUs from harvesting the energy once the wireless signal

is transmitted, hence it is non-excludable. Hence, some EUs

may silently harvest the transmit power paid by other EUs,

ending up with an inefficient wireless power provision. Such

a problem does not occur in wireless communication networks

with unicast transmissions (e.g. [7], [8]), because the unicast

information data are private goods, i.e., they are excludable

due to message encryption and rivalrous because the data

dedicated for one user cannot benefit another.

A promising solution to efficiently provision the non-

excludable public good is the Nash mechanism implementing

the Lindahl allocation, which achieves optimum social welfare

for the public good economy [9] at a Nash equilibrium (NE).

The existing Nash implementation literature involves several

mechanisms with desirable economic properties such as budget

balance [10]–[15].

Nevertheless, there are still two unaddressed issues in the

literature of Nash implementation for public good provision.

First, the existing approaches cannot perfectly incentivize

agents to voluntarily participate in the mechanism, hence

cannot completely avoid the free-riding problem [17]. Second,

for the constrained public good provision problem (the case

we study in this paper due to the maximum transmit power

constraint), there does not exist a user adaptation algorithm

that is guaranteed to converge to the NE. This motivates us

to propose a two-phase all-or-none procedure with a proper

economic mechanism and a distributed algorithm to resolve

these two issues.

We summarize our main contributions of this work as

follows:

• Problem Formulation: To our best knowledge, this is the

first work that addresses a wireless resource allocation

problem from the perspective of non-excludable public

goods. In particular, we solve the effective WPT provision

problem by considering the EUs’ private information and

selfish behaviors.

• Mechanism Design: We propose a two-phase all-or-none

allocation procedure and design a Power And Taxation

(PAT) Mechanism. Our scheme can incentivize the EUs to

voluntarily participate in the mechanism, and can achieve

several desirable economic properties such as efficiency

and budget balanced.

• Distributed Algorithm Design: We propose a distributed

D-PAT Algorithm under which the decisions of ET and

EUs are guaranteed to converge to the NE. We prove its

convergence by mapping the NE of the induced game to

the saddle point of the Lagrangian of a corresponding

distributively solvable optimization problem. The proof

methodology suggests a general approach of distributed

algorithm design.

• Performance Evaluation: We show that our proposed PAT

Mechanism achieves the most social welfare improve-

ment over a benchmark mechanism when the number of

EUs is large and the EUs are relatively comparable.

We organize the rest of the paper as follows. In Section II,

we introduce the system model and the problem formulation.

We propose the PAT Mechanism in Section III and the D-PAT

Algorithm in Section IV. In Section V, we provide numerical

results to validate our analysis. In Section VI, we review the

related work. Finally, we conclude our work in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model that captures

several unique characteristics of the WPT problem. Accord-

ingly, we formulate the public good provision problem, with

an objective of social welfare maximization.

A. System Model

We consider a WPT system consisting of one ET who

transmits the power to a group K = {1, 2, ...,K} of K EUs.

Let K̃ = K∪{0} denote the set of both EUs and ET, or simply

called agents, where agent 0 corresponds to the ET. For the

purpose of presentation, we will refer to the ET as “she” and

an EU as “he”. The ET has an omnidirectional antenna, and

broadcasts wireless energy on a narrowband channel.1 Each

EU has one energy receiver. Different EUs can experience

different time-varying channel conditions due to shadowing

and fading. We focus on a time period long enough such that

the channel conditions are stationary to the EUs.

Cost of ET: The ET transmits at a power level of p
and incurs a cost of C(p), which is a positive, increasing,

continuous, and strictly convex in p. The cost function can

capture, for example, the energy consumption cost and the

maintenance cost for the ET’s operation. The transmit power

p lies in the set of P = {p : 0 ≤ p ≤ Pmax}, where Pmax

captures the limitation of the physical circuits or regulations.

Both C(p) and P are ET’s private information and are not

known by the EUs.

Utility of EUs: Each EU k has a utility function Uk(hkp),
where hk is EU k’s long-term average channel gain and hkp
is his received power. Function Uk(hkp) is strictly concave,

increasing, and continuous.

1We leave the results on multi-channel WPT provision in the extended
version of this paper. For the directional multi-antenna WPT and/or multi-ET
networks, it is possible to extend our idea by further formulating a multiple
public goods provisioning problem.
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B. Problem Formulation

We assume that a network regulator operates the ET and

aims to optimize the system performance.2 Specifically, the

ET is interested in choosing the transmit power p to solve the

following Social Welfare Maximization (SWM) Problem

(SWM) max
p

SW (p) ,
∑

k∈K

Uk(hkp)− C(p) (1)

s.t. 0 ≤ p ≤ Pmax

The objective function of the SWM Problem is strictly concave

and the constraint set is compact and convex. Hence, the SWM

Problem admits a unique optimal solution.

To solve the SWM Problem in a centralized fashion, the

ET needs to know the complete information of the EUs (i.e.,

utility functions Uk(hkp) for all k). This is difficult to achieve

in practice, since EUs may not want to report their utility

functions or their channel gains, as doing so may not maximize

the benefits to the EUs. Hence we need to design an economic

mechanism to effectively elicit such information from EUs.

C. Desirable Mechanism Properties

In this paper, we aim at designing a market mechanism that

satisfies the following four desirable economic properties:

• (E1) Efficiency: Maximizes the social welfare, i.e.,

achieves the optimal solution of the SWM Problem.

• (E2) Incentive Compatibility: An EU should (directly or

indirectly) truthfully reveal his private utility.

• (E3) Voluntary participation: An EU should get a non-

negative payoff by participating in the market mechanis-

m.3

• (E4) (Strong) Budget balance: The total payment from

the EUs equals the revenue obtained by the ET. In other

words, if the mechanism is administrated by a third-party,

then there is no need to inject money into the system.

We will design a Nash mechanism to achieve the above

properties (E1)-(E4). Note that for (E2), we focus on the

indirect revelation, in the sense that the mechanism reveals

EUs’ marginal utility at NEs.4

III. A DECENTRALIZED NASH MECHANISM

In this section, we first propose a two-stage all-or-none

procedure and a PAT Nash Mechanism. We then show that

the proposed scheme achieves the economic properties (E1)-

(E4).

2Our analysis also applies to the case where the ET is a self-interested
decision maker. In this case, we need to introduce a third-party network
regulator to coordinate and implement the mechanism to be described in
Section III.

3Most existing results on Nash mechanisms for public goods ignored (E3).
The common assumption in these prior work is that a “government” has
enough power to force all agents to participate in the mechanism, which is
impractical due to the difficulty of enforcement.

4This is because [16] proved that there does not exist any public goods
mechanism that satisfies (E1) and induces direct and truthful revelation at the
same time.

Fig. 2. The two-phase all-or-none procedure.

A. Two-Phase All-or-None Procedure

We propose a two-phase all-or-none procedure shown in

Fig. 2. In Phase I, each EU sends a 1-bit message to the ET

indicating whether or not to participate in the Power and Tax

(PAT) mechanism (to be described later in Section III-B). In

Phase II, if all agents are willing to participate, the ET and the

EUs will execute the PAT Mechanism in Phase II-Y; otherwise,

the ET will transmit no power and no trading occurs in Phase

II-N. A key assumption of this procedure is that the ET knows

the total number of EUs, K, so it knows whether some EU

keeps silent without sending any indication in Phase I.5 Hence

such an all-or-none procedure can incentivize all to voluntarily

participate (E3) and prevent those free-riders, i.e., those EUs

who do not participate the PAT Mechanism (and pay the tax)

but still benefit from wireless power contributed by others. We

will prove this in Section III-C2.

B. Nash Mechanism

Next, we describe the PAT Mechanism to be executed in

Phase II-Y.

Mechanism 1. Power And Taxation (PAT) Mechanism

• The message space: Each agent k ∈ K̃ sends a message

mk ∈ R
2 to the ET:

mk , (γk, bk), (2)

where γk and bk are agent k’s power proposal and price

proposal, respectively.6 Note that the ET (agent 0) also

needs to send a message m0 (to herself). We denote the

message profile as m = {mk}k∈K̃.

• The outcome function: The ET computes the transmit

power p based on the agents’ power proposals:

p(m) =
1

K + 1

∑

k∈K̃

γk. (3)

The ET further computes the tax rate Rk for agent k ∈ K
based on the agents’ price proposals:

Rk(m) = bω(k+1) − bω(k+2), ∀k ∈ K̃, (4)

5This assumption is satisfied, for example, when all EUs also actively
transmit information (e.g., in wireless sensor networks) hence can be detected
by the ET [2]. Even for passive (silent) EUs, it is possible to detect their
existence from the local oscillator power inadvertently leaked from their
communication circuits [22].

6By our mechanism, it is not necessary for the ET to know the other
information of EUs (e.g. battery state or the channel gain).
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where ω(k) = mod(k,K + 1), and mod is the modulo

operator.7 The ET will announce (p(m), Rk(m)) to

agent k, and the agent k’s tax (i.e., payment to the ET)

is8

tk(m) =Rk(m)p(m), ∀k ∈ K̃, (5)

The key intuitions behind the PAT Mechanism are as

follows. First, the determination of the transmission power p
in (3) depends on every agent’s power proposal. Second, agent

k’s tax rate in (4) does not depend on his own price proposal

bk. Finally, the agents’ tax rates in (4) cancel out, i.e.,
∑

k∈K̃

Rk(m) = 0, ∀m ∈ R
2(K+1), (6)

which leads to not only the social optimal equilibrium outcome

(as we will show in Theorem 1) but also the budget balance

property (E4), i.e.,
∑

k∈K̃ tk(m) = 0.

C. Properties of the PAT Mechanism

In this subsection, we will prove that our scheme achieves

the economic properties of (E1)-(E4). Specifically, we will

first analyze agents’ decisions in Phase II, assuming that every

agent chooses to participate in Phase I. Then we return to

Phase I to analyze agents’ participation decisions.

1) Phase II: The PAT Mechanism induces a game among

agents in Phase II, which we simply refer to as the PAT Game.

Game 1. PAT Game (Induced by the PAT Mechanism in Phase

II)

• Players: all agents in K̃.

• Strategy: mk ∈ R
2 descried in (2) for agent k ∈ K̃.

• Payoff function Jk(p, tk) : for each EU k ∈ K

Jk(p, tk) = Uk(hkp)− tk; (7)

for the ET (agent 0)

J0(p, t0) =

{

−C(p)− t0, if p ∈ P,
−∞, otherwise.

(8)

Definition 1 (Nash Equilibrium (NE)). An NE of the PAT

Game is a message profile m∗ that satisfies the following

condition:

Jk (p(m
∗), tk (m

∗)) ≥ Jk
(

p(mk,m
∗
−k), tk

(

mk,m
∗
−k

))

,

∀mk ∈ R
2, k ∈ K̃, (9)

where m∗
−k , {m∗

l }l 6=k,l∈K̃ is the NE message profile of all

other agents except agent k.

Here, we adopt the NE interpretation of [23], i.e., we

interpret NE as the “stationary” messages profile of some

message exchange process (to be described later in Section

IV) that possesses the equilibrium property in (9).

7For example, when K = 4, we have ω(13) = mod (13, 4 + 1) = 3.
8The PAT Mechanism is motivated by the Hurwicz mechanism [10], but

is considerably simpler than the one in [10], and achieves the same desirable
economic properties as explained next.

We summarize the sufficient and necessary conditions for

an NE in the following lemma.

Lemma 1. A message profile m∗ = {(γ∗
k , b

∗
k)}k∈K̃ is an NE

if and only if the following conditions are satisfied

γ∗
k = (K + 1) argmax

p
Jk(p,R

∗
kp)−

∑

l 6=k,l∈K̃

γ∗
l , ∀k ∈ K̃,

(10)

where R∗
k , b∗

ω(k+1)− b∗
ω(k+2) is the NE tax rate for agent k.

To intuitively understand Lemma 1, we first rewrite (10) as

follows

p∗ = argmax
p

Jk(p,R
∗
kp), ∀k ∈ K̃, (11)

where p∗ is the NE transmit power according to (3).

Equation (11) implies that under the NE tax rates {R∗
k}k∈K̃,

the NE transmit power p∗ must maximize every agent’s payoff.

Otherwise, there exists at least one agent k who has the

incentive to adjust γk to change p(m∗) and improve his

payoff. Hence, the NE only occurs all agents agree on the

transmit power.

We can show that there are multiple NEs for the PAT

Game. To see this, given any (γ∗, b∗), we can increase every

b∗k by the same constant, the new message profile (γ∗, b̃
∗
)

still satisfies the conditions described in (11) and thus is

also an NE. However, we can show that the NE allocation

(p∗, t∗) = (p(m∗), t(m∗)) is unique for all NEs, and p∗

corresponds to the unique optimal solution of the SWM

Problem. This leads to the following existence and efficiency

result.

Theorem 1 (Efficiency and Existence). There exist multiple

NEs in the PAT Game, and each NE corresponds to (i) the

same transmit power p∗, which is the unique optimal solution

of the SWM Problem (E1); and (ii) the same NE tax profile

t∗.

The proof of the existence involves constructing an NE m∗

based on the optimal solution to the SWM Problem. Moreover,

the proof of statement (i) in Theorem 1 involves establishing

the equivalence between the conditions (10) in Lemma 1 and

the KKT conditions for the SWM Problem. Finally, the proof

of statement (ii) in Theorem 1 involves showing that the NE

condition in (11) can lead to a unique tax rate R∗
k for each

agent k.

Together with (11), Theorem 1 also implies that the PAT

Mechanism is incentive-compatible (E2), since it incentivizes

the EUs to submit their power proposals so as to reveal their

marginal utilities at NEs. To see this, observe that the EUs

submit their optimal power proposals by maximizing their

payoff functions. Hence, although the EUs do not directly

submit their utility functions, the eventual average of submitted

power proposals is equal to the socially optimal power. Hence,

the PAT Mechanism satisfies the incentive compatibility.
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2) Phase I: We now move to analyze agents’ decisions

in Phase I. To induce all EUs’ voluntary participation, we

should ensure that each agent prefers the unique NE allo-

cation outcome induced by the PAT Mechanism (p∗, t∗) =
(p(m∗), t(m∗)) (when everyone participates in the PAT

Mechanism) to the outcome of no WPT or trade (which

is equivalent to the allocation outcome of (0,0∗)). We can

derive the following theorem implying each EU’s voluntarily

participating behavior:

Theorem 2 (Voluntary Participation). Each EU k ∈ K will

choose to participate in the PAT Mechanism in Phase I.

The intuition is that, given any other EUs’ power proposals

in the PAT Game, every EU k can always choose a power

proposal γk = −
∑

i 6=k γi so that the transmit power is zero

due to (3) (and so is his tax due to (5)). Such a choice is

equivalent to not participating in Phase I. This means that

an EU k will not be worse off by participating in the PAT

Mechanism, regardless of other EUs’ different utility functions

or participation decisions.

To summarize, we have shown that the PAT Mechanism

can achieve (E1)-(E4). In the next section, we will propose a

distributed algorithm under which the agents can achieve the

NE of the PAT Game through an iterative message exchange.

IV. DISTRIBUTED ALGORITHM TO ACHIEVE THE NE

In the PAT Mechanism, the ET and the EUs can directly

compute the NE m∗ (through solving the SWM Problem)

if they know the complete network information. This is not

possible when considering the private information. Hence, we

will propose an iterative algorithm for the ET and EUs to

exchange information and show its convergence to the NE.

A. The Iterative D-PAT Algorithm

Algorithm 1 illustrates the proposed iterative D-PAT Algo-

rithm, with the following key steps. Each agent k initializes

his arbitrarily chosen message mk(0) ∈ R
2 (line 1). Then, the

algorithm iteratively computes the messages until convergence.

First, each EU k sends his message to the ET (line 4).

Then the ET computes each agent k’s tax rate Rk(τ), and

sends Rk(τ) together with agents ω(k − 1) and ω(k − 2)’s
price proposals (lines 5-6) to EU k. Accordingly, each agent

k updates his power proposal and his price proposal (line

7), where [·]ba = max(min(b, ·), a). Finally, the ET checks

the termination criterion (line 9). The termination happens

if the relative changes of agents’ power proposals and price

proposals are small, determined by the positive constants

ǫ1 > 0 and ǫ2 > 0. The ET finally computes the transmit

power and taxes (line 13).

The D-PAT Algorithm should be executed in a synchronous

fashion, which can be achieved in a practical WPT network,

since the ET and the EUs are often physically close-by.

Moreover, the distributed algorithm has small communication

complexity (O(K) per iteration) and computation complexity

(O(1) for each EU and O(K) for the ET).

Algorithm 1: Distributed Algorithm to Reach the NE of

the PAT Game (D-PAT Algorithm)

1: Initialize the iteration index τ ← 0. Each agent k ∈ K̃
randomly initializes mk(0) and the ET initializes the

stopping criterion ǫ1 and ǫ2.

2: conv flag← 0; # initialize the convergence flag

3: while conv flag = 0 do

4: Each EU k sends message mk(τ) to the ET.

5: The ET computes the tax rate Rk(τ) for each agent k.

6: The ET sends Rk(τ), γω(k−1)(τ) and γω(k−2)(τ) to

EU k, ∀k ∈ K.

7: Each agent k computes γk(τ + 1) and bk(τ + 1) by

γk(τ + 1)

=

{

[argmaxp Jk(p,Rk(τ)p)]
P

up

k

0 , if k ∈ K
[argmaxp Jk(p,Rk(τ)p)]

Pmax

0 , if k = 0

(12)

and

bk(τ + 1)

=bk(τ) + 1/
√
τ
(

γω(k−1)(τ)− γω(k−2)(τ)
)

, ∀k ∈ K̃.
(13)

8: Set τ ← τ + 1.

9: if |bk(τ)− bk(τ − 1)| < ǫ1|bk(τ − 1)| and

|γk(τ)− γk(τ − 1)| < ǫ2|γk(τ − 1)|, ∀k ∈ K̃ then

10: conv flag← 1.

11: end if

12: end while

13: The ET computes p(m(τ)) and t(m(τ)) using (3) and

(5).

B. The Convergence of the D-PAT Algorithm

To prove the convergence of the D-PAT Algorithm, we

will consider a reformulation of the SWM Problem with

a decomposition structure, then demonstrate the connection

between the saddle point of the Lagrangian of the reformulated

problem and the NE of the PAT game. We will show that the

D-PAT Algorithm converges to a saddle point and thus an NE

of the PAT game.

1) Problem Reformulation: We reformulate the SWM Prob-

lem by introducing auxiliary variables π = {πk}k∈K̃, which

will decouple agents’ utility and cost functions:

(R− SWM) max
π

∑

k∈K

Uk(hkπk)− C(π0)

s.t. πk = πω(k−1), ∀k ∈ K̃ (14)

π0 ∈ P. (15)

We can verify that the R-SWM Problem is equivalent to the

SWM Problem and has a unique optimal solution.
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2) Lagrangian: We relax the equality constraints (14) and

define the Lagrangian of the R-SWM Problem as follows:

L(π,β) =
∑

k∈K

Uk(hkπk)− C(π0)−
∑

k∈K̃

βk ·
(

πk − πω(k−1)

)

,

(16)

where βk is the dual variable (or the consistency price)

corresponding to the constraint πk = πω(k−1).

3) Dual Decomposition: The Lagrangian in (16) has a nice

dual decomposition structure, i.e., L =
∑

k∈K̃ Lk, where Lk

is the decomposed Lagrangian for each agent k as follows,

Lk(πk,β) =

{

Uk(hkπk)−
(

βk − βω(k+1)

)

πk, if k ∈ K,
−C(πk)−

(

βk − βω(k+1)

)

πk, if k = 0.

(17)

Hence the dual problem of the R-SWM Problem is

min
β

max
π∈Γ

∑

k∈K̃

Lk(πk,β), (18)

where Γ , {π : π0 ∈ P}. We define the saddle point of L as

a tuple (π∗,β∗) that satisfies

L(π,β∗) ≤ L(π∗,β∗) ≤ L(π∗,β), ∀π ∈ Γ,β ∈ R
K+1.

(19)

For such a saddle point, we can show that π∗ is the unique

optimal solution to the R-SWM Problem and β∗ is the optimal

solution to the dual problem in (18) [26, Chap. 5.4].9

4) Relation between the Saddle Point and the NE: If we

set p = πk and bω(k+1) = βk, ∀k ∈ K, then each EU’s

payoff in the PAT Game Jk becomes exactly the decomposed

Lagrangian Lk, i.e.,

Jk(πk, (βk − βω(k+1))πk) = Lk(πk,β), ∀k ∈ K. (20)

We further exploit the relation between a saddle point for

the Lagrangian in (16) and an NE of the PAT Game in the

following theorem.

Theorem 3. For any saddle point (π∗,β∗) for the Lagrangian

in (16), the message profile m̂ = {(γk = π∗
k, bk = β∗

ω(k−1))}
is an NE of the PAT Game.

The intuition of Theorem 3 is as follows. Lemma 1 asserts

that an NE only occurs if all agents have the same payoff-

maximizing transmit power, given the equilibrium tax rate R∗
k.

On the other hand, we attain the optimal dual solution β∗ only

when the maximizer of the Lagrangian L(π,β∗) satisfies the

equality constraint in the constraint in (14). Together with the

relation of Jk and Lk in (20), we can see that Theorem 3

holds.

The significance of Theorem 3 is two-fold. First, it provides

a new interpretation of the messages of the PAT Mechanism.

Specifically, the power proposal for each agent plays a role of

9There are multiple optimal dual solutions β∗. To see this, given any saddle
point of (π∗,β∗), we can increase every β∗

k
by the same constant, and the

new tuple (π∗, β̃
∗

) still satisfies the conditions described in (19) and thus is
also a saddle point.

the auxiliary variable, while the price proposal plays a role of

the consistency price that pulls the auxiliary variables together.

Second, Theorem 3 implies that for any distributed algorithm

with provable convergence to a saddle point of the Lagrangian

in (16), we can design a corresponding distributed algorithm

that converges to an NE of the PAT Game.

We are ready to show the convergence of the D-PAT

Algorithm in the following theorem.

Theorem 4. The D-PAT Algorithm converges to a saddle point

of the Lagrangian in (16), hence an NE of the PAT Game.

The proof of Theorem 4 involves showing that the D-

PAT Algorithm is the subgradient method for solving the

dual problem in (18). Its convergence is guaranteed [24],

if we employ (i) a diminishing step size (line 7 in the D-

PAT Algorithm) and (ii) the bounded subgradients, which are

satisfied in the setting of Algorithm 1.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance

of the PAT Mechanism, focusing on the impacts of system

parameters. We simulate the WPT operation in a time period

of T = 600 seconds. The quadratic cost function for the ET

is

C(p) = σp2 · T, (21)

where σ = 0.5. The ET transmits on a GSM band with a

carrier frequency of 915 MHz.

We adopt the following strictly concave weighted α-fair

utility functions [21] for the EUs

Uk(hkp) =
Ek

Bk

(hkp)
1−α

1− α
· T, ∀k ∈ K, (22)

where α = 0.15, Ek > 0 represents the energy consumption

rate for EU k, Bk > 0 indicates the battery state of EU

k. Parameters Bk and Ek are uniformly and independently

chosen from the intervals [100, 200] and [0.1, 0.7], respectively.

The distance dk between the ET and each EU k follows

the independent and identically distributed (i.i.d.) uniform

distribution from the interval [1, r] (meter), where r is the

cluster radius. The channel gain follows the long-term path-

loss model: hk = 10−3d−3
k . These parameters do not change

during the time period of interest.

For performance comparison, we consider a benchmark

mechanism where the wireless power is provided by means

of “private” purchases by EUs [9]. Specifically, each EU only

pays for the transmit power xk(π) he requests under a uniform

market price π and selects his purchase to maximize his

payoff; the ET chooses her transmit power y(π) to maximize

her profit taking the market price π as given; and a third party

iteratively adjusts the market price π until the market is clear,

i.e., y(π) =
∑

k∈K xk(π). Such “private” benchmark cannot

achieve the social optimum in general, because it ignores the

public good nature of wireless power and incentivizes free-

riders.
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Fig. 3. (a) Impact of K on the social welfare; (b) impact of K on the
EUs’ average payoff; (c) impact of the cluster radius r on social welfare. The
results are the average of 50000 realizations.

We first study the performance of the proposed PAT Mech-

anism and the benchmark mechanism, with r = 5m. In Fig.

3(a), we can see that the social welfare of both schemes

increases in the number of EUs K. Moreover, when K
becomes larger, the performance gap between Pmax = 1W

and Pmax = 4W also becomes larger for the PAT Mechanism.

On the other hand, the maximum power constraint has almost

no impact on the benchmark mechanism. This is because as

K becomes larger, a larger Pmax can allow a larger transmit

power that provides more benefits to more EUs in the PAT

Mechanism. However, in the benchmark mechanism only one

EU with the largest marginal utility will purchase power, hence

a larger K does not significantly increase the demand. Fig. 3(a)

also shows that the social welfare gap between the proposed

PAT Mechanism and the benchmark private good mechanism

increases in K, and the gain is around 60% when K = 20
and Pmax = 4W.

Fig. 3(b) shows the performance comparison of the two

schemes with different cluster radius r, with K = 15 EUs.

For both schemes, the achievable social welfare decreases

when r becomes larger, since EUs experience more channel

attenuation due to the larger distance. Moreover, the perfor-

mance gaps between the PAT Mechanism and the benchmark

mechanism also decrease in r. This is because as the cluster

radius becomes larger, the diversity (difference) of EUs’ utility

also increases. When a single EU has a much better channel

gain than the other EUs, then this single EU purchasing power

alone (as in the benchmark mechanism) can achieve a social

welfare close to the optimal. Hence the benefit of the PAT is

the most significant when EUs are comparable.

VI. RELATED WORK

A. Wireless Power Transfer

Most of the early studies on WPT networks focused on

system optimization with unselfish users (e.g., [3]–[6]), where

ETs and EUs are willing to obey the optimization outcomes

and truthfully report their private information. Specifically,

[3]–[6] considered the real-time wireless resource allocation in

WPT networks to optimize the communication performance.

To our best knowledge, there is only one recent work con-

sidering the game-theoretical analysis of the power provision

problem in WPT neworks with selfish EUs [25]. Our work

differs from [25] that we aim to achieve socially optimal

system performance through mechanism design.

B. Mechanisms Design for Public Goods

There are several related work on Nash implementation

for public goods (e.g., [10]–[15]). Specifically, in [10], [12]–

[15], Hurwicz presented a Nash implementation mechanism

that yields the social optimums for a public good economy,

which is also individually rational and budget balanced. In

[11], Sharma et al. studied a more general local public goods

scenario, where the public goods may only benefit a subset of

all agents.

Among these papers, only few proposed the updating pro-

cesses associated with the mechanisms that converge to the NE

[12]–[15], where the best response dynamics [12]–[14] and the

gradient-based dynamics [15] can provably converge to the NE

under some technical conditions. However, we cannot directly

apply these prior algorithms to our model, since they focused

on the mechanisms for unconstrained public goods provision

problem.

VII. CONCLUSION

In this paper, we proposed a new non-excludable public

good provision framework for a WPT system. We proposed

a simple Nash PAT Mechanism considering agents’ selfish

behaviors and private information, with the desirable eco-

nomic properties including efficiency, incentive compatibility,

voluntary participation, and budget balance. In addition, we

proposed a distributed D-PAT Algorithm that is guaranteed

to converge to the NE of the PAT Mechanism. There are

several directions for extending this work. One possibility is

to consider multi-antenna and/or multi-ET system. Moreover,

it is meaningful to study how to incentivize the voluntary

participation by relaxing the assumption that the ET knows the

total number of EUs. Last but not least, it is also interesting

to consider hybrid information and energy transfer system.
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APPENDIX

A. Proof of Lemma 1

To prove the necessity of (10), suppose there exists an agent

k such that γ̂k = (K+1) argmaxp Jk(p,R
∗
kp)−

∑

l 6=k,l∈K̃ γ∗
l

and γ̂k 6= γ∗
k . In this case, agent k can always deviate and

submit the power proposal γ̂k, which leads to a strictly larger

payoff for agent k. This contradicts to the definition of the NE

in (9). Hence the necessity is proved.

Next, we prove the sufficiency of (10). Due to (10), given

other agents’ NE message profile m∗
−k, agent k cannot find

another γk different from γ∗
k to achieve a no smaller payoff,

due to the strict concavity of his payoff function. In addition,

each agent’s price proposal bk does not influence his payoff.

B. Proof of Theorem 1

We first rewrite the necessary and sufficient conditions for

(10) in Lemma 1 in the following:

1

K + 1

∑

l∈K̃

γ∗
l = p∗ (23)

U ′
k(p

∗)− b∗ω(k+1) + b∗ω(k+2) = 0, k ∈ K (24)

−C ′(p∗)− b∗1 + b∗2 − λ̃+ µ̃ = 0, (25)

λ̃(p∗ − Pmax) = 0, µ̃p∗ ≥ 0, µ̃, p∗, λ̃ ≥ 0, (26)

where (24) is the first-order condition for each EU’s payoff

maximization problem and (25)-(26) are the KKT conditions

of the ET’s payoff maximization problem.

We are ready to prove Theorem 1.

1) Existence: Let (p∗, λ∗, µ∗) be the solution to the KKT

conditions for the SWM Problem. There always exists a mes-

sage profile (m∗ = {(γ∗
k , b

∗
k)}k∈K̃, µ̃

∗, λ̃∗) such that µ̃∗ = µ∗,

λ̃∗ = λ∗, γ∗
k = p∗, ∀k ∈ K̃, and

b∗k =











−C ′(p∗)− λ̃∗ + µ̃∗ if k = 1

0 if k = 2

−
∑k−2

l=1 U ′
l (p

∗) if k ≥ 3 or k = 0

. (27)

We observe that the message profile (m∗ =
{(γ∗

k , b
∗
k)}k∈K̃, µ̃

∗, λ̃∗) satisfies (23)-(26), indicating that

it is an NE. The existence is proved.

2) Efficiency: Combining (24)-(25), we have
∑

k∈K

U ′
k(p

∗)− C ′(p∗)− λ̃+ µ̃ = 0. (28)

We can find that (28) and (25)-(26) are exactly equivalent to

the KKT conditions for the SWM Problem. Hence, every NE

leads to the unique optimal transmit power.

3) Uniqueness of Tax Rate: The tax rate for each EU is

given by R∗
k = b∗

ω(k+1) − b∗
ω(k+2) = U ′

k(p
∗), which is unique

due to the uniqueness of optimal transmit power. Hence, the

tax rate for the ET R∗
0 = −∑

k∈K R∗
k is also unique.

C. Proof of Theorem 2

By the definition of NE and the tax in (5), we have

Jk (p̄, R
∗
kp̄) ≤ Jk(p

∗, t∗k), ∀p̄ ∈ R, ∀k ∈ K̃, (29)

where p̄ = 1
K+1 (γk+

∑

l∈K̃ γ∗
l ) = for arbitrary γk. Let p̄ = 0,

(29) further implies that

Jk (0, 0) ≤ Jk(p
∗, t∗k), ∀k ∈ K̃, (30)

which means that each agent weakly prefers the allocation

(p∗, t∗k) when everyone participates than the allocation when

someone chooses not to participate (0, 0). Hence, each EU k
always weakly prefers to participating in the PAT Mechanism,

regardless of other agents’ decisions.

D. Proof of Theorem 3

The KKT conditions of the R-SWM Problem are given by

∂Uk

∂πk

− βk + βω(k+1) = 0, ∀k ∈ K (31)

∂C

∂π0
− β0 + β1 − λ̂+ µ̂ = 0, (32)

λ̂(π0 − Pmax) = 0, µ̂π0 = 0, πk, µ̂, λ̂ ≥ 0, ∀k ∈ K̃, (33)

Letting γk = π∗
k = po, ∀k ∈ K̃, we show that {γk}k∈K̃

satisfies (23). In addition, substituting bω(k+1) into β∗
k , we

have that (32)-(33) have exactly the same structure as (24)-

(26), which implies that m̂ = {(γk = π∗
k, bk = β∗

ω(k−1))}
satisfies the NE conditions in SWM Problem and thus is an

NE.

E. Proof of Theorem 4

Let γk = πk and bk = βω(k−1). We observe that the

D-PAT Algorithm is a dual-based subgradient method for

solving R-SWM Problem. According to [30], the subgradient

method converges to the optimal solution if we employ (i)

a diminishing step size and (ii) the bounded subgradients.

First, the step size selection in line 7 in the D-PAT Algorithm

satisfies the Condition (i). Second, the updated γk is bounded

due to (12) and hence the subgradient is bounded and satisfies

the Condition (ii). Thus, we have shown the D-PAT Algorithm

converges to the optimal solution to the R-SWM Problem and

thus to an NE of the PAT Game by Theorem 3.


