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Abstract—The envisioned Internet of Things (IoT) will involve
a massive deployment of objects connected through wireless
cells. While commercial solutions are already available, the
fundamental limits of such networks in terms of node density,
achievable rates or reliability are not known.

To address this question, this paper uses a large scale Multiple
Access Channel (MAC) to model IoT nodes randomly distributed
over the coverage area of a unique base station. The traffic is
represented by an information rate spatial density ρ(x). This
model, referred to as the Spatial Continuum Multiple Access
Channel, is defined as the asymptotic limit of a sequence of
discrete MACs. The access capacity region of this channel is
defined as the set of achievable information rate spatial densities
achievable with vanishing transmission errors and under a sum-
power constraint. Simulation results validate the model and show
that this fundamental limit theoretically achievable when all
nodes transmit simultaneously over an infinite time, may be
reached even with a relatively small number of simultaneous
transmitters (typically around 20 nodes) which gives credibility
to the model. The results also highlight the potential interest of
non-orthogonal transmissions for IoT uplink transmissions when
compared to an ideal time sharing strategy.

I. INTRODUCTION

The Internet of Things (IoT) is now widely recognized
as the next step of disruptive digital innovation. The IoT
paradigm relies on the deployment of billions of physical
things connected seamlessly to the Internet. The objective of
an IoT radio access network is to provide things with an
efficient worldwide real-time connection. From a technical
perspective, optimizing such an architecture is challenging.
As analyzed in [1] and [2], several dedicated technologies
have been recently proposed, either standardized (the LoraTM

consortium) or proprietary (e.g. SigfoxTM). However, this kind
of network is not a simple extension of cellular networks,
due to the specific nature of the information flows. Indeed, a
typical IoT cell is made of a huge number of nodes randomly
transmitting small information quantities. The fundamental
limits of this kind of network in terms of capacity, energy
efficiency or latency have not been established yet.

The basic scenario considered in this paper includes a
unique base station (BS) covering a region containing a high
density of IoT nodes. For this paper, we do not consider
any latency constraints and we are interested in deriving the
maximal node spatial density, or more precisely, the set of
information rate spatial densities ρ(x), achievable under some

power constraint. The objective is to determine an outer bound
of the achievable rate region.

In [3], we proposed a new formalism to study dense cells.
The downlink mode, usually modeled as a k−user Broad-
cast Channel (BC), led to the Spatial Continuum Broadcast
Channel (SCBC) obtained as the limit of a sequence of BCs
when k → ∞. Its access capacity region, defined as the
set of information rate spatial densities achievable under a
given power, was established. This result was straightforwardly
extended to the uplink by invoking the multiple access channel
(MAC)-BC duality.

In the following work, we provide a formal definition of the
Spatial Continuum Multiple Access Channel (SCMAC) and
we derive its access capacity region when individual powers
are transferable. This result relies directly on the capacity
region of the k−user MAC.

This capacity region is known [4] and has been extensively
used for cellular networks (e.g. [5], [6]) and more recently
for IoT networks [7]. However, in these papers, the perfor-
mance analysis is done in two steps: first, a set of nodes is
randomly drawn in the cell area, and a joint transmission
scheme modeled as a K−user MAC is optimized. Then,
general performance results are obtained with Monte-Carlo
simulations where the former results are averaged over a large
number of random draws according to some probability law
and eventually relying on the scheduler properties. Despite its
interest, this approach does not lead to a fundamental limit
in Shannon’s sense since the achievable rates thus obtained
depend on the selected scheduling protocol and the sampling
time. Additionally no converse is established.

The SCMAC model herein proposed establishes a funda-
mental limit, independently of any scheduling protocol or time
sampling.

In the following, Section II derives the SCMAC model and
its properties. In Section III, the access capacity region is
defined and characterized analytically. Section IV describes a
simple reference scenario and presents system level simulation
results validating the model.

II. THE SCMAC MODEL

A. General assumption and definitions

An isolated cell C comprises a unique BS with its service
area Ω ⊂ R2 and is mathematically defined by (Ω,A,m) with
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Figure 1. A PF node (Def. 2.2) is a virtual node associated with any subset
B ∈ A. Its rate R(B) corresponds to the integration of ρ(x) over B (Prop.
2.1). The worst PF node v−(B) (resp. best, v+(B)) associated with B, is
the point of B with the worst (resp. best) channel.

A the Lebesgue σ− algebra and m the Lebesgue measure.
This study is restricted to Gaussian channels and single
antenna transceivers.

Our objective is to establish a capacity theorem for this
cell in terms of achievable spatial densities of information
rates. What achievability means for a rate spatial density is
not straightforward but was rigorously defined in [3] for the
dual scenario (downlink). Without lack of generality, the BS
is located at point (0, 0) and the nodes are spread over time
and space on Ω according to some spatial density u(x). The
average number of nodes per time unit in a given subset B ∈ A
is denoted by U(B). U(Ω) is denoted by UT for short.

Definition 2.1 (Rate spatial density): The rate spatial density
ρ(x) : Ω → R is a measurable function that represents the
information rate density at x;∀x ∈ Ω.
ρ(x) is normalized1 by the system bandwidth and is expressed
in bits per channel use (bpcu) per m2. The cell sum-rate per
channel use is termed the spectral efficiency:

ηs =

∫
Ω

ρ(x) ·m(dx). (1)

The uniform rate condition holds when each node requests
the same quantity of information, denoted by I0, with

ρu(x) = I0 · u(x). (2)

It follows that ηs = I0 · UT .
ρ(x) is said to be achievable with a given sum-power P

if a transmission technique exists such that all the nodes can
transmit their information with zero error probability and with
a sum-power lower than P . Following [3], a few definitions
and properties are necessary.

Property 2.1: The rate requested by a subset B ∈ A is given
by

R(B) =

∫
B

ρ(x) ·m(dx), (3)

where all information elements are assumed to be independent.
Definition 2.2 (Physically feasible (PF) node): For any

subset B ∈ A, a PF node v(B) is defined by selecting a

1ρ(x) and related quantities ( I0, R, ...) are given in bits-per-channel-use
(bpcu) throughout this paper.

point x ∈ B with its own channel characteristics h(x) and a
rate equal to the sum-rate of B given by (3), see Fig. 1.

Let B = {Bk ∈ A; k ∈ [1;K]} be a partition of Ω. A PF
node vk selected according to some rule, is associated with
each element Bk. {v1, . . . , vK} and the BS form a K−user
MAC, denoted by N(B), which is called a physically feasible
network (PFN) that approximates the SCMAC.

The quality of a PFN approximation depends on the parti-
tion size: the larger, the better.

Definition 2.3 (Sequence of physically feasible networks):
Consider a sequence of partitions {B(i);∀i ∈ N+} with B(0) ={
B

(0)
0 = Ω

}
and where a splitting process divides each set

B
(i)
k into two subsets

{
B

(i+1)
2k , B

(i+1)
2k+1

}
.
{
N(i) = N(B(i))

}
forms a PFN sequence.

B. Gaussian SCMAC: definition

Definition 2.4 (GSCMAC):
Given:
• Ω, a subspace on a Hilbert space of dimension 2,
• Xc, an encoding alphabet,
• Ξ = {Φ(x) : Ω→ Xc}, a set of fields Φ(·) on Ω,

representing the encoded input,
• x0 = (0, 0) ∈ Ω, the receiver position, and
• y ∈ Y ⊂ R the channel output observed at x0,

the GSCMAC is a function that maps any input field Φ(·) ∈ Ξ
to a conditional probability density function (pdf) on R:

S =
(
Ξ, Y,pY |Ξ

)
, (4)

with
pY |Ξ ∼ N

(∫
Ω

h(x) · Φ(x) · dΩ, σ2

)
, (5)

where h(·) represents a linear channel and N (µ, ν) denotes
a normal distribution of mean µ and variance ν. σ2 is the
receiver noise variance.

In this paper, the system is constrained by the sum-power
(integrated over Ω) and not by individual powers. This model
is known as the GMAC with transferable power. The capacity
region of the GMAC with transferable power is known and
achievable with simultaneous transmissions, a simple power
allocation policy [8] and using successive interference cancel-
lation (SIC) at the receiver, with a natural ordering of the nodes
as a function of their pathloss strengths. It is worth noting
that this capacity region bound is also an outer bound on the
GMAC capacity region with individual power constraints [4],
[8].

C. Physically feasible networks and relative achievability

The GSCMAC capacity region cannot be handled directly
but it can be be defined at the limit of a PFN sequence.

Any given PFN N(B) forms a GMAC for which a trans-
mission technique can be derived.

Definition 2.5 (Relative transmission technique): A trans-
mission technique (M1, . . . ,MK , n, ε) for N(B) is given by
K individual encoders that select independently the encoded
sequences cn(k) = [c1(k), . . . , cn(k)] over n channel uses,
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as a function of the individual messages Mk, and where the
unique decoder observes a noisy version of the weighted sum
of these symbols and decodes and estimates simultaneously the
K messages (m̂1, . . . , m̂K), with an error probability lower
than ε.

This paper focuses on the asymptotic regime, when n→∞
and ε→ 0.

Definition 2.6 (Physically feasible transmitter): A PF trans-
mitter associated with a subset Bk ∈ B performs two succes-
sive operations to transmit a message Mk:

Mk
C−→ cn(k)

S−→ ΦnBk(x) = cn(k) · δ(xk). (6)

After a classical encoding, a physical point xk ∈ Bk is selected
to transmit a symbol. Therefore, the input field Φ on Bk is
equal to a delta function centered on xk and the global input
field is

Φn(x) =
∑
k

cn(k) · δ(xk).

To derive the capacity region bound, two specific selectors S
are defined. The best selector, denoted by S+, selects the point
with the best (i.e., least) pathloss, while the worst selector,
denoted by S−, selects the point with the worst (i.e, highest)
pathloss (see Fig. 1). For a given partition B, the best and the
worst PFNs are denoted by N+(B) and N−(B) respectively.
In the following, for consistency, the subscript ± will refer to
either the worst or the best PFN.

Definition 2.7 (Relative achievability): An uplink rate den-
sity ρ(x) is said to be achievable with respect to (w.r.t.)
N±(B), if the rate tuple (R(B1) . . . R(BK)) belongs to
C(N±(B)), the capacity region of N±(B).

We now have all the tools to derive the main theoretical
results.

Theorem 2.1 (Relative achievability with worst selectors
implies asymptotic achievability): Consider a sequence of
worst PFNs denoted by

{
N

(i)
−

}
. If ρ(x) is achievable w.r.t.

N
(i)
− for some i ≥ 0, then ρ(x) is also achievable w.r.t. N(j)

− ,
∀j ≥ i. Thus, the capacity regions satisfy

C
(
N

(i)
−

)
⊂ C

(
N

(j)
−

)
;∀j ≥ i.

Therefore, if ρ(x) is achievable w.r.t. the worst PFN associated
with any partition B, then ρ(x) is asymptotically (when i →
∞) achievable.

Proof: The proof relies on time-sharing. Consider a subset
B

(i)
k and its worst node v−,k. When the subset is split into two

subsets B(i+1)
m and B

(i+1)
n , the former keeps the same node

v−,n = v−,k while the latter selects its worst node that has a
better channel than v−,k. Since v−,k is able to transmit at rate
R(Bk) = R(Bn) + R(Bm), a simple time sharing between
v−,n and v−,m achieves the desired rates.

Theorem 2.2 (Converse: relative non-achievability with best
selectors implies asymptotic non-achievability): Consider a
sequence of best PFNs denoted by

(
N

(i)
+

)
. If ρ(x) is not

achievable w.r.t. N(i)
+ for some i ≥ 0, then ρ(x) is also not

achievable w.r.t. N(j)
+ , ∀j ≥ i:

C
(
N

(i)
+

)
⊃ C

(
N

(j)
+

)
;∀j ≥ i,

Therefore, if ρ(x) is not achievable w.r.t. the best PFN
associated with any partition B, then ρ(x) is asymptotically
not achievable.

Proof: Consider a subset B(i)
k with its own best transmit-

ter v+,k. When the subset is split into two subsets B(i+1)
n and

B
(i+1)
m , one subset keeps the same transmitter v+,n = v+,k

while the other subset selects another transmitter v+,m with
a worse channel. Let us assume that a transmission scheme
exists with the partition (i + 1) such that the desired rates
R(Bn) and R(Bm) are achievable. Then, v+,k is obviously
able to transmit at the sum-rate R(Bk) = R(Bn) + R(Bm).

III. GSCMAC ACCESS CAPACITY REGION

The access capacity region2 is defined as the set of all rate
spatial densities ρ(x) that are asymptotically achievable with
a given sum-power Pm. To characterize this set, we use a
specific PFN sequence that lets the capacity regions of the
worst and best PFNs converge to the same limit. This limit
is called the doubly asymptotic access capacity region of the
GSCMAC S. The term doubly asymptotic refers to the fact
that this capacity is defined for n, i→∞.

The access capacity region derives straightforwardly from
the asymptotic achievability stated in Theorems 2.1 and 2.2.

Definition 3.1 (Access capacity region): The access capacity
region noted DS is the set of asymptotically achievable spatial
densities ρ(x).

Theorems 2.1 and 2.2 provide upper and lower bounds of
the asymptotic capacity region. Clearly, the capacity regions
associated with a sequence of partitions satisfy

C
(
N

(0)
−

)
⊂ C

(
N

(1)
−

)
⊂ · · · ⊂ C

(
N

(∞)
−

)
C
(
N

(0)
+

)
⊃ C

(
N

(1)
+

)
⊃ · · · ⊃ C

(
N

(∞)
+

)
.

The key point is to chose a splitting process such that

lim
i→∞

C
(
N

(∞)
+

)
= lim
i→∞

C
(
N

(∞)
−

)
. (7)

If it exists, this limit is unique and is equal to DΩ. Basi-
cally, the worst PFN sequence provides successive achievable
regions while the best PFN sequence provides successive
converse regions.

Let us decompose ρ(x) as ρ(x) = ηs ·fρ(x) where fρ(x) is
a normalized rate distribution (

∫
Ω
fρ(x)·m(dx) = 1). Then the

access capacity region is alternatively characterized: for any
distribution fρ(x) (integrable, positive definite), the capacity
region bound is reached by choosing the maximal value of
ηs such that ρ(x) ∈ DΩ. Then, the access capacity region is
computed under its dual form:

Definition 3.2 (Dual): Consider a rate distribution ρ(x),
with a sum-rate ηS . The minimal power P̃m required to ensure
the asymptotic achievability is given by

P̃m = min
P∈R+

P =

∫
Ω

dP (x) s.t. ηS · fρ(.) ∈ DS(P ), (8)

2We use the term access capacity region to avoid confusion with the
classical MAC capacity that is expressed as a set of joint rates, while here the
access capacity region is defined as a set of information rate spatial densities.
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where DS(P ) is the access capacity region of S with sum-
power P .

Let us define ν(x), the equivalent noise at the receiver, for
a transmitter located in x, i.e. ν(x) = σ2/g(x) with g(x) =
|h(x)|2. The complementary cumulative distribution function
(ccdf) of the nodes’ equivalent noise power is defined as

Gν(ν) =

∫
Ω

fρ(x) · 1 [ν(x) ≥ ν] ·m(dx), (9)

and represents the sum-rate proportion associated with trans-
mitters with an equivalent noise larger than ν. The correspond-
ing pdf is fν(ν) = −dGν(ν)/dν .

Theorem 3.1 (GSCMAC minimal sum-power): The minimal
sum-power required to achieve a given rate distribution ρ(x)
in uplink mode is

P̃m = a · ηs
∫ νM

νm

t · fν(t) · ea·ηs·Gν(t) · dt, (10)

with a = 2 log(2).
Proof: The detailed proof given in the appendix uses a

specific PFN sequence and establishes a differential equation
representing the sum-power as a function of the cell load.
This result is the main theoretical result of this paper, which
completes the derivation proposed for the GSCBC in [3].
Additionally, it proves that the BC-MAC duality [9] extends
to the GSCBC-GSCMAC.

IV. VALIDATION ON A REFERENCE SCENARIO

The interest of the proposed formalism is now illustrated on
a simple scenario. It is worth noting that the model could be
extended to more complex scenarios with multiple cells and
shadowing. For a multicell extension, the reader is referred
to [10]. Alternatively, the strategy used in [5] where the
interference from neighboring cells is considered as a whole
with a weighting factor could be used.

A. GSCMAC fundamental limit

A unique cell covering a disk of radius R is considered,
in the uplink. For the sake of simplicity, a simple power-law
pathloss and omnidirectional antennas are considered with no
shadowing:

g(x) = g0 · |x|−α, (11)

where g0 and α represent respectively a constant and the
attenuation slope. The transmission sum-power constraint is
given by

∑
k Pk ≤ PM .

For the sake of simplicity, the fundamental limit is studied
for a uniform rate density, ρ(x) = ρ0, which means that
ηS = πρ0R

2 and fρ(x) = 1/(πR2). ηs represents the uniform
capacity of this cell and the fundamental limit is characterized
by the minimal sum-power allowing support of the rate density
ρ(x).

With this model, the equivalent noise distribution straight-
forwardly derives as (see [3] for details)

fν(ν) =
2

α · νR
·
(
ν

νR

)2/α−1

, ∀ν ∈ [0; νR] (12)

Figure 2. The EE-SE achievable region bound is achieved with SC (red curve).
Achievability with TDMA is drawn in light blue for comparison purpose.

Using (12) in (10), one obtains

P̃m = ν(R) · (aηs)−α/2 · eaηs · Γ
(

1 +
α

2
, aηs

)
, (13)

with Γ(a, x) the incomplete gamma function. Eq. (13) pro-
vides the energy efficiency - spectral efficiency (EE-SE) fun-
damental limit of the cell. Alternatively, the inverse of this
equation characterizes the cell uniform capacity by providing
ηS as a function of Pm. For consistency, the power is nor-
malized by the equivalent noise received from a transmitter
located at the cell edge (pr = PM/ν(R)) and the EE in bits
per relative power use (bppu) is defined as ηE = ηS/pr leading
to

ηE =
1 + α/2

a · 1F1(1; 2 + α/2; aηS)
. (14)

The EE-SE achievable region is represented in Fig. 2
with α = 3.65 and g0/σ

2 = 1. The red curve shows the
fundamental limit of the uniform capacity region in terms
of EE-SE. Any point of this limit is achievable with an
∞−user superposition coding (SC) strategy with an optimal
SIC receiver. For comparison purposes, the region achievable
with pure orthogonal sharing is also represented and tagged
as Time Division Multiple Access (TDMA).

In the low spectral efficiency regime, when ηS → 0, TDMA
and SC converge to the same limit known as the wideband
limit [11]. But, in the high SE regime, the TDMA performance
goes away from the fundamental limit.

B. Simulation Results

In the previous section, we derived an analytical expression
for the EE-SE fundamental limit of an isolated cell. The theory
developed in this paper proves that the fundamental limit can
be reached with an SC/SIC strategy (see the appendix) in
which all nodes randomly deployed according to the random
process u(x) have to transmit simultaneously their own packet
spread over an infinite time. At this point we may wonder if
this fundamental limit can be reached with a more feasible
algorithm in which the SC/SIC strategy would be used by
successive groups of nodes. This scheme would be a mix
of TDMA and SC. For the sake of simplicity, we consider
an ideal system with perfect channel state information at the
transmitters (CSIT), and we consider that a sub-group of nodes
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Figure 3. Comparison of the theoretical achievable limits versus simulated
EE-SE performance using superposition coding for K = 10 and K = 20.

randomly selected are transmitting simultaneously with an
optimal power allocation.

C. Simulation parameters

The parameters of the system level simulator are given in
Table I.

Cell layout One circular cell model
Cell diameter 500m

Node distribution Uniform
Minimum node distance 35m

Number of bits 100
Antenna type Omni-directional

Transmission mode Uplink single-input-single-output
Pathloss model −36.5 log10(r) dB

Noise density power −166 dBm/Hz
Scheduling SC: Simultaneous transmission

TDMA: Time division slots
Table I

SIMULATION PARAMETERS

For the sake of compatibility with our theoretical analysis,
we do not assume any fading. A large set of nodes is initially
uniformly distributed in the cell. Let us denote a subset of
nodes {u1, u2, · · · , uk} with channel gains g1 < g2 < · · · <
gk, randomly drawn. Therefore, for a maximum sum-power
efficiency, the power is distributed such that uK is decoded
first while u1 is decoded last, which means that the kth node
transmits with a power Pk given by

Pk =
N0 +

∑k−1
i=1 giPi
gk

(
22ηs(k) − 1

)
, (15)

where ηs(k) is the targeted spectral efficiency for user k. Since
a uniform rate distribution is assumed, we have ηs(k) = ηs/K.
A classical SIC receiver is employed at the BS.

D. Results

Monte-Carlo simulations are run for 105 independent sce-
narios with different power levels. During one scenario, each
node transmits 100 bits of data. When TDMA is considered,
the power transmission level is kept constant for all users,
but the time-slot length is adapted as a function of the
pathloss coefficient, such that each node may transmit all of its
information without error. This scheme is slightly sub-optimal
since the power levels are not adapted as a function of the
channel gain but the efficiency loss is limited [10].
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Figure 4. Convergence of the simulated optimal power allocation to the
theoretical limits, with respect to the number of nodes in the cell.

Using SC, all nodes transmit over all time slots simultane-
ously, while individual powers are calculated based on (15) to
obtain perfect reception with the SIC receiver. Fig. 3 compares
the fundamental limit (EE-SE) of three scenarios: a reference
orthogonal resource sharing (TDMA), and two SC strategies
with K = 10 and K = 20.

This figure shows that for this scenario, K = 20 is enough
to reach the fundamental limit while SC with K = 10 induces
EE loss of about 10% in the low SE regime. Both SC schemes
outperform TDMA. This figure shows an excellent agreement
between the fundamental limit and the simulated results even
with finite sets of nodes.

To evaluate the impact of the number of simultaneous
transmitting nodes, the ratio between simulated average power
and the theoretical limit (10), given by E[Pt]/P̃m, is shown in
Fig. 4 w.r.t. the number of simultaneous transmitting nodes K.
To provide a significant gain, SC requires enough simultaneous
transmissions (greater than 5). The convergence w.r.t. K is
faster for smaller ηS .

In addition, Fig. 5 illustrates the power distribution as a
function of the BS-node distance in a 20-node scenario and for
a target η = 2bpcu. Note that the SC curve is mathematically
modeled by (23). Interestingly, with SC, the maximal power is
not obtained at the cell edge. This is due to the SC algorithm
which favors edge users.
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Figure 5. The power distribution as a function of the distance between the
nodes and the BS using TDMA and SC for K = 20 and ηS = 2.

V. CONCLUSION

In this paper, we have extended the spatial continuum
approach proposed in [3] to the SCMAC. We have derived
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the analytical expression for the access capacity region. We
have applied the model in a simple scenario and the simulation
results show that the fundamental limit can be almost reach
with an SC strategy, even with a limited number of nodes
transmitting simultaneously (≈ 20).

This model provides interesting insights for future IoT
network optimization. We have observed for instance how SC
allows a reduction in the transmission power of edge nodes
which may bring strong benefits to the network performance:
e.g. by increasing the network life time by preserving the
power of edge nodes, or by reducing inter-cell interference.

APPENDIX: PROOF OF THEOREM 3.1

The proof exploits Theorems 2.1 and 2.2 with a specific
PFN sequence N(i). We first apply these theorems to B(0)

0 =
Ω. The sum-rate ηS is bounded by the point-to-point capacity
with either the best or the worst transmitters:

log

(
1 +

P̃m
ν−

)
≤ a · ηS ≤ log

(
1 +

P̃m
ν+

)
. (16)

Given B(i)
k with ν(x) ∈

[
ν

(i)
m,k, ν

(i)
M,k

)
;∀x ∈ B(i)

k . Then, B(i)
k

is split such that

B
(i+1)
2k =

{
x ∈ B(i)

k ; ν(x) < ν̄
(i)
k

}
B

(i+1)
2k+1 =

{
x ∈ B(i)

k ; ν(x) ≥ ν̄(i)
k

}
,

where ν̄(i)
k = (ν

(i)
m,k + ν

(i)
M,k)/2.

The rate associated with B(i)
k is

R
(i)
k = ηS ·

∫ ν
(i)
M,k

ν
(i)
m,k

fν(ν) · dν. (17)

According to Theorems 2.1 and 2.2, the access capacity
region DΩ is outer and inner bounded by the access capacity
region of the PF networks: C(N−) ≤ DΩ ≤ C(N+). The
capacity of a K-user MAC with transferable power is known
and is achieved with SIC decoding.

Thanks to the splitting process defined above, the min/max
equivalent noise values associated with each subset are ordered
and satisfy

ν
(i)
m,0 < ν

(i)
m,1 < · · · < ν

(i)
m,2i−1 with ν

(i)
M,k = ν

(i)
m,k+1.

Therefore, P̃m is upper (resp. lower) bounded by the minimal
power required to serve the worst (resp. the best) PFN. The
minimal transmission power required for each PF node vk is
known for an SC/SIC transmission and follows:

g
(i)
±,k ·P

(i)
±,k =

(
eaR

(i)
k − 1

)
·

N0 +
∑
q>k

g
(i)
±,q · P

(i)
±,q

 . (18)

Let the power received at the BS be denoted by Q
(i)
±,k =

g
(i)
±,k · P

(i)
±,k. Then (18) becomes

Q
(i)
±,k =

(
eaR

(i)
k − 1

)
·

N0 +
∑
q>k

Q
(i)
±,q

 . (19)

The cumulative received sum-power (for nodes l > k) is
denoted by Π

(i)
±,k and is given by the recursive sum of (19):

Π
(i)
±,l =

∑
k≥l

(
22R

(i)
k − 1

)
·
(
N0 + Π

(i)
±,k−1

)
. (20)

When i→∞, ν(i)
M,k − ν

(i)
m,k → 0; thus Π

(i)
+,k −Π

(i)
−,k → 0, ∀k.

Furthermore, when i → ∞, the sum-rate of each subset
tends to 0. It follows that

(
eaR

(i)
k − 1

)
→ a · R(i)

k . Using
these limits in (20), Π(ν) becomes asymptotically the solution
of the following Riemann integral:

Π(ν) = aηs ·
∫ νM

ν

fν(x) · (N0 + Π(x)) · dx. (21)

Straightforward computations lead to

Π(ν) = N0 · (eaηS ·Gν(ν) − 1). (22)

The transmission power density as a function of ν is obtained
by deriving (22) and using Qr(ν) = g(x) · Pt(x):

Pt(ν) = ν · aηsfν(ν) · eaηs·Gν(ν(x)). (23)

Its integration w.r.t ν leads to (10).
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