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Abstract We consider a wireless network consisting of
source-destination pairs, in which each source is required to
transmit a given bit volume to its destination. The goal is for
all the sources to transmit the given bit volumes, under a time
constraint, so that the total transmission energy is minimized.
Our approach is the joint optimization of link scheduling and
power control for minimum energy. We show that TDMA
scheduling is appropriate for this goal, in the sense that TDMA
is asymptotically optimal when the time constraint approaches
infinity. When the time constraint is strictly bounded, we show
that TDMA is also optimal for the case of equal channel gains.

1 Introduction
Energy, whose production and consumption can significantly
impact the environment, is a crucial resource in communica-
tion and networking. Here we study the energy performance
for a wireless network in which sources are to transmit given
bit volumes to their destinations under a time constraint. As-
sume that no additional data is generated. Thus, a source idles
after it finishes transmitting the required bit volume. We aim to
develop techniques for accomplishing the transmissions so that
the total transmission energy expenditure (summed over all
transmitting nodes) is minimized. Our transmission problem
can also be considered as “emptying” the network, subject to
a time constraint, while using minimum transmission energy.

Our approach to solving the problem of minimum-energy
transmission for emptying the wireless network is via joint
optimization of link scheduling and power control. A trans-
mission schedule specifies a set of time intervals such that
in each time interval an appropriate group of sources is
chosen to transmit simultaneously. The goal of power control
is to choose a transmission power level (and corresponding
data rate) for each source. Note that the transmission rate
for each source depends on many factors such as power,
constraints (on bit volume delivery and transmission time),
channel attenuation, receiver noise, interference, as well as
encoding-decoding method. Thus, the joint optimization of
link scheduling and power control for minimizing energy,
subject to various constraints, in general is a complex problem.

Different forms of scheduling exist for many communi-
cation and networking problems [1, 7, 9]. In particular, [1]
considers optimal scheduling for emptying wireless networks
in minimum time, with fixed rates and without power control.
The resulting model can then be formulated as linear pro-

gramming optimization, which can be dealt with by standard
linear programming methods (e.g., the simplex algorithm [3]).
In contrast, here we deal with minimum-energy scheduling
and allow for power and rate control, resulting in a non-linear
optimization problem.

We model the wireless network as a K-user interference
channel, affected by additive white Gaussian noise (AWGN)
(Fig. 1). Model extension to include features such as channel
fading, MIMO, cognition, and cooperation is reserved for
future studies. Recall that the goal is for all the sources,
under a time constraint, to transmit the given bit volumes so
that the network transmission energy is minimized. We show
that, although simultaneous transmission may be required for
maximum bit rates, time division multiple access (TDMA),
which avoids simultaneous transmissions, is effective for sav-
ing energy. Here TDMA refers to a medium access scheme
in which only one node can transmit at a time, but the length
of the time allocated to each node depends on factors such
as the bit volume to be transmitted, channel gains, and time
constraint.

We first show that TDMA is asymptotically optimal when
the time constraint approaches infinity (Theorem 1). We then
specify the optimal TDMA scheduling for the case of finite
time constraint. We also show that transmission times should
extend as long as possible, i.e., the inequality time constraint
becomes the equality time constraint for minimum energy
(Theorems 2 and 3). Schedules that are based on treating
interference as noise (TIN) can be effective by allowing certain
groups of sources to transmit simultaneously, as long as the
levels of signal, noise, and interference of the group satisfy
some conditions [7, 9]. In the TIN model, the combined effect
of other-user interference is modeled as AWGN with power
equal to the sum of the received powers of the interfering
users. We then show that TDMA is optimal when the channel
gains are equal, i.e., non-TDMA approaches (such as TIN-
based scheduling) can not consume less energy than TDMA
(Theorem 4).

Although TDMA is a simple concept and widely used in
practice, we show that the determination of optimal TDMA
scheduling is not simple when TDMA is designed to take
into account the joint optimization with constraints on time
and bit volume delivery. In fact, the TDMA optimization with
constraints turns out to be non-linear, and yields no closed
form solutions in general.
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Fig. 1 A K-user interference channel.

2 System Model
We study a stationary network with K links (Sk, Dk), where
Sk is the source and Dk is its destination, k = 1, 2, . . . ,K.
Source Sk is to transmit Vk bits to Dk. Thus, the total network
bit volume to be transmitted is

Vt =

K∑
k=1

Vk

and the total network energy used for transmitting Vt bits is

Et =

K∑
k=1

Ek

where Ek is the transmission energy used by source Sk for
transmitting Vk bits to destination Dk. The network operates
on a single frequency band. Thus, mutual interference exists
among simultaneous transmissions.

The transmissions of sources S1, S2, . . . , SK are coordi-
nated via scheduling, defined as follows. Let G be the family
of all non-empty subsets of {1, 2, . . . ,K}. For g ∈ G,
let tg > 0 be the time duration in which all sources in
{Sk : k ∈ g} transmit simultaneously. A member g ∈ G
is also called a transmission group, in the sense that all
sources in {Sk : k ∈ g} transmit simultaneously as a group
during time tg . For g ∈ G, let gS = {Sk : k ∈ g}. Note
that k ∈ g iff Sk ∈ gS . A transmission schedule is a set
{tg > 0 : g ∈ G}. For example, the TDMA schedule is
specified by {t{1}, t{2}, . . . , t{K}}, where t{k} is the time
duration in which source Sk transmits alone. Another example
is the “all-at-once” schedule {t{1,2,...,K}}, where t{1,2,...,K} is
the time duration in which all sources transmit simultaneously.
Note that TDMA avoids other-user interference, while all-
at-once scheduling can result in high levels of other-user
interference.

We aim to find an optimal centralized transmission schedule
and power assignment so that the total network bit volume Vt
is transmitted within a time constraint, and the total network
transmission energy Et is minimized. The transmission energy
is specified in terms of power and time. For k ∈ g, let p(k, g)
be the transmission power assigned to source Sk, when it trans-
mits simultaneously with other sources in gS = {Sk : k ∈ g}.
For the transmission group g and k ∈ g, let r(k, g) be the
bit rate for link (Sk, Dk). In general, r(k, g) also depends on
other factors such as the time constraint, transmission power,
channel bandwidth, and noise, e.g., see (3) and (4) below.

Consider a transmission schedule {tg > 0 : g ∈ G}. The
total energy used by Sk for transmitting Vk bits is Ek =∑

g∈G p(k, g)tg . The total energy used by the schedule is then

Et =
∑K

k=1Ek =
∑

g∈G Pgtg , where Pg =
∑

k∈g p(k, g)
is the transmission power used by group g. The bit vol-
ume transmitted by Sk during time tg is r(k, g)tg , and the
bit volume transmitted by Sk during the entire schedule is∑

g∈G r(k, g)tg . Recall that the goal is to find an optimal
schedule and power assignment for transmitting all the bits
V1, V2, . . . , VK with minimum total energy, under a time
constraint T . Thus, our minimum-energy problem can be
stated as

Minimize
∑
g

Pgtg

subject to ∑
g

r(k, g)tg ≥ Vk k = 1, 2, . . . ,K (1)∑
g

tg ≤ T (2)

tg > 0

A feasible solution for this problem exists only for appro-
priate values of system parameters. For example, when T is
sufficiently small and Vk is sufficiently large for some k, the
optimization problem has a feasible solution (i.e., the total bit
volume Vt is delivered within the time constraint T ) only if the
transmission power used by source Sk is sufficiently large. In
our model, T > 0 and Vk > 0 in (1) and (2) can be arbitrary,
and we impose no restrictions on the minimum and maximum
values of the transmission power for each source. As seen
later, with power control, TDMA is a feasible solution for all
T > 0 and Vk <∞, k = 1, 2, . . . ,K.

Closely related to the energy performance is the notion of
energy efficiency, which reflects the number of bits transmitted
per unit energy. We consider the following two metrics for
energy efficiency: total energy efficiency and average energy
efficiency, defined respectively by

et =
Vt
Et

=

∑K
k=1 Vk∑K
k=1Ek

ea =
1

K

K∑
k=1

Vk
Ek

Let hij be the channel gain between source Si and desti-
nation Dj , i.e., if Si transmits with power p(i, g), then Dj

receives power hijp(i, g). We assume that the channel is band
limited to W and is affected by AWGN with power spectral
density N0.

Consider a general schedule {tg > 0 : g ∈ G}. When g is
a singleton group, i.e., g = {k}, then the maximum bit rate
for source Sk is given by the Shannon capacity

r(k, {k}) =W log2

(
1 +

hkkp(k, {k})
WN0

)
(3)

which can be achieved in the limit sense, i.e., with infinite
time delay and computational complexity. When g has more
than one member, i.e., |g| > 1, then this transmission group
forms an interference channel, whose capacity rate region is
unknown in general [4, 5, 6, 8]. A simple approximation for
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rates is the use of the Shannon capacity formula by considering
other-user interference as AWGN, i.e., the transmission rate of
source Si is given by

r(i, g) =W log2

(
1 +

hiip(i, g)∑
j∈g\{i} hjip(j, g) +WN0

)
(4)

where g is the group of sources that transmit simultaneously,
i ∈ g, and hij is the channel gain between source Si and
destination Dj .

For notational convenience, we define tk = t{k}, p(k, k) =
p(k, {k}) and r(k, k) = r(k, {k}) when the transmission
group is a singleton set, i.e., g = {k}.

3 Minimum-Energy Transmission Scheduling
Now assume that the time constraint is removed, i.e., let T =
∞. The case of T < ∞ is considered in the next section.
Theorem 1 below shows that simple TDMA scheduling, with
infinite time duration and vanishing transmission power and
rate for each source, optimizes the total energy and energy
efficiency. This result serves as a benchmark for performance
comparison, and provides an approximation for the case of
finite but sufficiently large time constraint.

Theorem 1 Let N0(k) be the power spectral density for
the receiver noise at destination Dk. TDMA scheduling, with
vanishing transmission power for each source, minimizes
total energy and maximizes energy efficiency. The minimum
total energy, maximum total energy efficiency, and maximum
average energy efficiency are given, respectively, by

Et = ln 2

K∑
k=1

N0(k)Vk
hkk

et =

∑K
k=1 Vk

ln 2
∑K

k=1
N0(k)Vk

hkk

ea =
1

K ln 2

K∑
k=1

hkk
N0(k)

When source Sk’s transmission power p(k, k) → 0, we have
rate r(k, k) → 0, time duration tk → ∞. Further, when
p(k, k)→ 0 and p(i, i)→ 0, we have

tk
ti
→ N0(k)Vkhii

N0(i)Vihkk

Proof Consider an arbitrary schedule {tg > 0 : g ∈ G}. We
have

W log2

(
1 +

hkkp(k, g)

WN0(k)

)
≥ r(k, g) = v(k, g)

tg

which implies that

p(k, g) ≥ WN0(k)

hkk

(
e

v(k,g) ln 2
Wtg − 1

)
By using ex − 1 ≥ x, we then have

p(k, g) ≥ WN0(k)

hkk

v(k, g) ln 2

Wtg
=
N0(k)v(k, g) ln 2

hkktg

The total energy used by Sk for transmitting Vk bits is Ek =∑
g p(k, g)tg , which is bounded by

Ek ≥
N0(k)

hkk

∑
g

v(k, g) ln 2 =
N0(k)

hkk
Vk ln 2

which implies that the total network energy is bounded by

Et =

K∑
k=1

Ek ≥ ln 2

K∑
k=1

N0(k)Vk
hkk

We then have

et =

∑K
k=1 Vk∑K
k=1Ek

≤
∑K

k=1 Vk

ln 2
∑K

k=1
N0(k)Vk

hkk

Because Ek ≥ N0(k)Vk ln 2/hkk, we have Vk

Ek
≤ hkk

N0(k) ln 2 ,
which implies that

ea =
1

K

K∑
k=1

Vk
Ek
≤ 1

ln 2

1

K

K∑
k=1

hkk
N0(k)

Now consider TDMA scheduling, i.e., each group has the
form g = {k}. For the transmission of source Sk, we let
tk = Vk/r(k, k), where r(k, k) = W log2

(
1 + hkkp(k,k)

N0(k)W

)
.

Then
Ek = p(k, k)tk =

p(k, k)Vk
r(k, k)

lim
p(k,k)→0

Ek = Vk lim
p(k,k)→0

p(k, k)

r(k, k)

= Vk lim
p(k,k)→0

p(k, k)

W log2

(
1 + hkkp(k,k)

N0(k)W

)
=

Vk
hkk

N0(k) ln 2

Thus, when p(k, k) → 0, k = 1, 2, . . . ,K, we have
r(k, k) → 0, tk → ∞, Et → ln 2

∑K
k=1

N0(k)Vk

hkk
, et →

1
ln 2

∑K

k=1
Vk∑K

k=1

N0(k)Vk
hkk

, and ea → 1
ln 2

1
K

∑K
k=1

hkk

N0(k)
. Note that

tk
ti

=
Vk
Vi

r(i, i)

r(k, k)
=
Vk
Vi

log2

(
1 + hiip(i,i)

N0(i)W

)
log2

(
1 + hkkp(k,k)

N0(k)W

)
When p(k, k), p(i, i)→ 0, we then have

tk
ti
→ Vk

Vi

hii
hkk

N0(k)

N0(i)
tu

The minimum energy per bit for the case of K = 2 is
studied in [2], where TDMA is shown to be optimal in the
low-power regime. Thus, Theorem 1 is not surprising, because
the sources can transmit with vanishing power levels and rates
when the time constraint is removed, resulting in minimum
energy usage.

An alternative low-power performance measure to the min-
imum energy per bit is the slope of the spectral efficiency
versus Eb/N0 curve, i.e., the growth of the achievable rates
with the energy per bit [2]. It can be shown that, in the low-
power regime, TDMA is suboptimal in terms of this slope [2].
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The next section addresses the case of finite T , for which the
low-power analysis may not be applicable. For the rest of this
paper, we let N0(k) = N0, 1 ≤ k ≤ K.

4 Minimum-Energy Transmission Scheduling with Time
Constraints

Recall that we wish to find a transmission schedule and
power assignment so that the network transmission energy is
minimized. Theorem 1, which applies to the case of T =∞,
shows that TDMA is optimal under arbitrary bit rates, power
assignment, receiver noise levels, and channel gains. This
section addresses the case of T <∞.

Theorem 1 suggests that TDMA can be nearly optimal
among all possible schedules when the time constraint T
is finite but sufficiently large. We now derive the TDMA
schedule that is optimal among all TDMA schedules for finite
T . Theorem 2 below shows that in principle the optimal
TDMA schedule can be determined by solving a system of
one linear equation and K−1 non-linear equations. In general,
the solutions can only be approximated by numerical methods,
i.e., no closed-form solutions are available.

We show in Theorem 3 that the optimal TDMA schedule
can be exactly determined when the channel gains between
all source-destination pairs are the same, i.e., hii = hkk, for
1 ≤ k, i ≤ K. We then show in Theorem 4 that TDMA is
optimal among all possible schedules for the case of equal
channel gains, i.e., hij = h for 1 ≤ i, j ≤ K.

Theorem 2 Among the TDMA schedules for sources
S1, S2, . . . , SK to transmit Vt =

∑K
k=1 Vk bits in time T ,

the TDMA schedule {t1, t2, . . . , tK} minimizes the energy,
where tk, 1 ≤ k ≤ K, are the solutions of the following K
equations

K∑
k=1

tk = T

2
Vk

Wtk

hkk

(
1− ln 2

Vk
Wtk

)
− 1

hkk
=

2
V1

Wt1

h11

(
1− ln 2

V1
Wt1

)
− 1

h11

for 2 ≤ k ≤ K. In particular, source Sk transmits with the
following power and rate

p(k, k) =
WN0

hkk

(
2

Vk
Wtk − 1

)

r(k, k) =
Vk
tk

The minimum transmission energy for transmitting Vt bits in
time T =

∑K
k=1 tk is

Et =

K∑
k=1

WN0

hkk

(
2

Vk
Wtk − 1

)
tk

Proof The goal is to find the optimal TDMA schedule for
minimizing the energy

Et =

K∑
i=1

p(i, i)ti (5)

subject to the constraints

u = T −
K∑
i=1

ti ≥ 0

z(i) = r(i, i)ti − Vi ≥ 0, 1 ≤ i ≤ K

where the rate is given by the Shannon formula

r(i, i) =W log2

(
1 +

hiip(i, i)

WN0

)
=

W

ln 2
ln

(
1 +

hiip(i, i)

WN0

)
The optimization problem with inequality constraints can be

solved by the Karush-Kuhn-Tucker (KKT) method [3]. Thus,
we form the augmented function

L = Et +

K∑
i=1

µiz(i) + µK+1u

where µi, 1 ≤ i ≤ K + 1, are KKT multipliers.
For 1 ≤ k ≤ K, we have

∂L

∂p(k, k)
=

∂Et

∂p(k, k)
+

K∑
i=1

µi
∂z(i)

∂p(k, k)
+ µK+1

∂u

∂p(k, k)

where
◦ ∂Et

∂p(k,k) = tk

◦
∂z(k)
∂p(k,k) =

hkkWtk
ln 2[WN0+hkkp(k,k)]

, ∂z(i)
∂p(k,k) = 0 if i 6= k

◦ ∂u
∂p(k,k) = 0

Thus,

∂L

∂p(k, k)
= tk + µk

hkkWtk
ln 2[WN0 + hkkp(k, k)]

We also have

∂L

∂tk
=
∂Et

∂tk
+

K∑
i=1

µi
∂z(i)

∂tk
+ µK+1

∂u

∂tk

where
◦ ∂Et

∂tk
= p(k, k)

◦
∂z(k)
∂tk

= W
ln 2 ln

(
1 + hkkp(k,k)

WN0

)
, ∂z(i)

∂tk
= 0 if i 6= k

◦ ∂u
∂tk

= −1
Thus,

∂L

∂tk
= p(k, k) + µkr(k, k)− µK+1

The KKT multiplier theorem provides the following nec-
essary conditions [3]: µi ≤ 0, ∂L

∂p(k,k) = 0, ∂L
∂tk

= 0, for
1 ≤ i ≤ K + 1 and 1 ≤ k ≤ K, and

K∑
k=1

µk [r(k, k)tk − Vk] + µK+1

(
T −

K∑
k=1

tk

)
= 0 (6)

From ∂L
∂p(k,k) =

∂L
∂tk

= 0, we have

tk + µk
W

ln 2

hkktk
[WN0 + hkkp(k, k)]

= 0 (7)

p(k, k) + µkr(k, k)− µK+1 = 0 (8)

for 1 ≤ k ≤ K.
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Because tk > 0, (7) implies that

µk = − ln 2[WN0 + hkkp(k, k)]

hkkW
(9)

i.e., µk < 0, 1 ≤ k ≤ K.
Suppose that µK+1 = 0. Then (8) and (9) imply that

p(k, k) = −µkr(k, k)

=
ln 2[WN0 + hkkp(k, k)]

hkkW
W log2

(
1 +

hkkp(k, k)

WN0

)
which implies that p(k, k) = 0, which does not correspond to
a feasible solution. Thus, we also have µK+1 < 0. Using (6)
with u ≥ 0, z(k) ≥ 0, µk < 0, 1 ≤ k ≤ K, and µK+1 < 0,
we have

r(k, k) =
Vk
tk

(10)

K∑
k=1

tk = T (11)

From (8) and (9), we then have

p(k, k)− ln 2

hkkW
[WN0 + hkkp(k, k)]

Vk
tk

= µK+1

which can be rewritten as

p(k, k)

(
1− ln 2

W

Vk
tk

)
− N0 ln 2Vk

hkktk
= µK+1

From r(k, k) =W log2

(
1 + hkkp(k,k)

WN0

)
= Vk

tk
, we have

p(k, k) =
WN0

hkk

(
2

Vk
Wtk − 1

)
(12)

We then have
WN0

hkk

(
2

Vk
Wtk − 1

)(
1− ln 2

W

Vk
tk

)
− N0 ln 2Vk

hkktk
= µK+1

which can be simplified to become

2
Vk

Wtk

hkk

(
1− ln 2

Vk
Wtk

)
− 1

hkk
=
µK+1

WN0

Thus, for 2 ≤ k ≤ K,

2
Vk

Wtk

hkk

(
1− ln 2

Vk
Wtk

)
− 1

hkk
=

2
V1

Wt1

h11

(
1− ln 2

V1
Wt1

)
− 1

h11
(13)

Note that (11) and (13) form a system of K equations with
K unknowns tk, 1 ≤ k ≤ K.

For 1 ≤ k ≤ K and t ∈ (0, T ), define

fk(t) =
2

Vk
Wtk

hkk

(
1− ln 2

Vk
Wtk

)
− 1

hkk

It can then be shown that fk is continuous and strictly increas-
ing, i.e., fk is bijective. Thus, the solution (t1, t2, . . . , tK)
obtained from (11) and (13) is unique, which implies that
(t1, t2, . . . , tK) is optimal. After tk, 1 ≤ k ≤ K, are deter-
mined, the power levels, rates, and total energy are determined
from (12), (10), and (5). tu

Example 1 Consider a network of two links, i.e., K = 2.
Further, assume that T = 1, W = 106, V1 = 107, V2 = 108,

h11 = 0.01, h22 = 0.09. Using Theorem 2, it can then be
shown by numerical calculation that t1 ≈ 0.09331 and t2 =
T − t1 ≈ 0.90669. Note that Vt = V1 + V2 = 1.1 × 108.
Thus, t1 ≈ V1T/Vt = 1/11 = 0.09091, and t2 ≈ V2T/Vt =
1/1.1 = 0.90909. In this example we then have

tk ≈
Vk
Vt
T (14)

We will show later that approximation (14) becomes exact
when h11 = h22. tu

We next assume that hkk = h, which is the case, for
example, when the source and destination in each pair are
separated by (exactly or approximately) the same distance. We
then show that the transmission time, power, rate, and energy
can be expressed in closed mathematical formulas.

Theorem 3 Assume that hkk = h, 1 ≤ k ≤ K. Among
the TDMA schedules for sources S1, S2, . . . , SK to trans-
mit Vt =

∑K
k=1 Vk bits in time T , the TDMA schedule

{t1, t2, . . . , tK} minimizes the energy, where tk = Vk

Vt
T ,

1 ≤ k ≤ K. In particular, source Sk transmits with power
p(k, k) = WN0

h

(
2

Vt
WT − 1

)
and rate r(k, k) = Vt

T . The
minimum transmission energy for transmitting Vt bits in time
T is

Et =
TWN0

h

(
2

Vt
WT − 1

)
Proof From Theorem 2, the optimal TDMA schedule is
{t1, t2, . . . , tK}, where tk, 1 ≤ k ≤ K, are the solutions
of the following K equations

K∑
k=1

tk = T

2
Vk

Wtk

hkk

(
1− ln 2

Vk
Wtk

)
− 1

hkk
=

2
Vi

Wti

hii

(
1− ln 2

Vi
Wti

)
− 1

hii

for 1 ≤ k, i ≤ K, k 6= i. For the case of hkk = h, we have

2
Vk

Wtk

(
1− ln 2

Vk
Wtk

)
= 2

Vi
Wti

(
1− ln 2

Vi
Wti

)
which implies that Vk

tk
= Vi

ti
, for 1 ≤ i, k ≤ K. From

tk = ti
Vi
Vk, 1 ≤ i, k ≤ K, and

∑K
k=1 tk = T , we have

ti
Vi

∑K
k=1 Vk = T . Thus, ti = Vi∑K

k=1
Vk

T = Vi

Vt
T , 1 ≤ i ≤ K.

We then have
r(k, k) =

Vk
tk

=
Vt
T

p(k, k) =
WN0

h

(
2

Vk
Wtk − 1

)
=
WN0

h

(
2

Vt
WT − 1

)

Et =

K∑
k=1

p(k, k)tk

=
WN0

h

(
2

Vt
WT − 1

) K∑
k=1

tk

=
WN0

h

(
2

Vt
WT − 1

)
T tu
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Let Et(T ) be the network transmission energy under time
constraint T . Assume that hkk = h, 1 ≤ k ≤ K. From
Theorems 1 and 3, we have Et(∞) = N0 ln 2

∑K
k=1

Vk

h

and Et(T ) = TWN0

h

(
2

Vt
WT − 1

)
for T < ∞. To compare

the energy Et(T ) under time constraint T with the minimum
energy Et(∞), we consider the ratio

Et(∞)

Et(T )
=

Vt ln 2

WT
(
2

Vt
WT − 1

) (15)

Fig. 2 shows (15) as function of WT for Vt ∈ {109, 1010}.
For a given value of channel bandwidth W > 0, Et(T )
decreases as T increases, and approaches the minimum energy
Et(∞) as T → ∞. As expected, the case of Vt = 109

approaches the limiting value faster than the case of Vt = 1010.
The next result shows that TDMA is optimal when the

channel gains are equal, i.e., non-TDMA scheduling can not
consume less energy than TDMA.

2e10 4e10 6e10 8e10 1e11
WT

0.2

0.4

0.6

0.8

1

Et(∞)/Et(T)

Vt =109

Vt =1010

Fig. 2 Evolution of transmission energy as function of
WT , where T is the transmission time constraint, W is the

channel bandwidth, and Vt is the total bit volume to be
delivered to all destinations.

Theorem 4 Assume that hij = h, 1 ≤ i, j ≤ K. Minimum-
energy transmission, subject to constraints on finite time and
bit volume delivery, can be obtained by TDMA scheduling.

Proof Consider any non-TDMA transmission schedule {tg >
0 : g ∈ G}. Let g be any non-singleton group, i.e., |g| > 1.
From hij = h, 1 ≤ i, j ≤ K, it can be shown that∑

i∈g

r(i, g) ≤W log2

(
1 +

∑
i∈g p(i, g)

b

)
where b = WN0

h (see [6, 8]).
Let vi be the bit volume transmitted by source Si during

the time tg , i.e., r(i, g) = vi
tg

. We then have

1

tg

∑
i∈g

vi ≤W log2

(
1 +

∑
i∈g p(i, g)

b

)
which can be shown to be equivalent to∑

i∈g

p(i, g) ≥ b
(
2

1
Wtg

∑
i∈g

vi − 1

)

Now consider the optimal TDMA schedule for the same
sources in group g, in which source Si transmits vi bits, i ∈ g.
Here we require that

∑
i∈g vi bits be transmitted within the

time constraint tg . Using Theorem 3, the total power for the
TDMA schedule is

PTDMA =
WN0

h

(
2

1
Wtg

∑
i∈g

vi − 1

)
= b

(
2

1
Wtg

∑
i∈g

vi − 1

)
≤
∑
i∈g

p(i, g) = Pg

We then have PTDMAtg ≤ Pgtg , i.e., the energy used by the
TDMA schedule (for the same group g to transmit

∑
i∈g vi bits

within the time constraint tg) does not exceed the energy used
the non-TDMA schedule. Thus, any schedule that includes a
non-singleton group can not outperform TDMA, i.e., TDMA
is optimal. tu

5 Summary
This paper addresses the problem of emptying a wireless net-
work of a prespecified bit volume, with the goal of minimizing
transmission energy. Our approach is the joint optimization of
transmission scheduling and power control, while addressing
both infinite and finite time horizons. As shown in the paper,
TDMA scheduling with power control can be effective for
saving energy, especially when the transmission time is suffi-
ciently large. In particular, TDMA is asymptotically optimal,
when the transmission time constraint approaches infinity.
When the time constraint is strictly bounded, TDMA is also
optimal for the case of equal channel gains.
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